
Electrical Energy Consumption Forecasting Based on Cointegration and 
a Support Vector Machine in China 

 
ZHANG XING-PING, GU RUI 

School of Business Administration, 
North China Electric Power University 

No.2 Beinong Road, Zhuxinzhuang, Dewai, Beijing 102206 
CHINA 

Zhangxingping302@163.com
 

Abstract: - By undertaking a cointegration analysis with annual data over the period 1985~2005 in China, the 
estimation results show that there is cointegration relationship between electrical energy consumption and 
economic growth taking into account industry structure changes and technical efficiency. The model shows that 
three explanatory variables, the GDP per capita, heavy industry share and efficiency improvement are the 
crucial factors which influence the electric energy consumption. The three explanatory variables and the actual 
electrical energy consumption are input into a support vector machine(SVM), a Gaussian radial basis function 
is taken as the kernel function and electrical energy consumptions from 1994~2006 are forecasted. The forecast 
results prove that the multivariable SVM is valid in forecasting electrical energy consumption in China. 
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1 Introduction1
Electrical consumption forecasting is the basis for 
electric energy planning. Many scholars [1~5] have 
applied econometrics to study electricity demand 
and its main determining factors is usually analyzed 
correctly in theory, but it is greatly affected by 
fluctuations in the sample data. A lot of non-linear 
programming and combinational forecasting 
methods such as fuzzy logic methods are applied 
widely in electric load forecasting. But results 
produced by fuzzy logic methods are quite difficult 
to express and set up, and the parameters are not 
easy to modulate [6, 7]. A new machine learning 
technique called support vector machines (SVM) is 
not only helpful for solving problems involving 
small sample, devilish learning, high dimension and 
local minima, but also strong generalizability. So 
SVM was widely applied in electric load forecasting, 
and some research results [8~12] indicate that SVM 
has distinct advantages in electric load forecasting. 
SVM is seldom used in forecasting the electrical 
energy consumption, and when it is, actual electrical 
energy consumption is taken as the only input 
variable of the SVM, while the major factors which 
impact electrical consumption are not considered 
[13]. 

In this paper, the three variables, GDP per capita, 
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heavy industry share and efficiency improvement, 
are taken as the explanatory variables, and the 
electrical energy consumption is taken as the 
explained variable. An equilibrium relationship 
between the explanatory and the explained variables 
is analyzed by the cointegration analysis. Taking 
these crucial factors and actual electricity 
consumption as the input variables of a SVM, and 
selecting the rational kernel function of the SVM, 
the electrical energy consumption is forecasted. 
 
 
2 Multivariate Cointegration Analysis 
of Electrical energy Consumption  
 
 
2.1 Cointegration Theory 
Cointegration theory seeks to determine whether 
there is a stationary relationship among 
nonstationary economic variables, and whether there 
is a long-term equilibrium relationship among them. 
It avoids the disadvantages of unreliable regression 
results generated by spurious regression, and it can 
differentiate long-term stationary relationships from 
short-term dynamic relationships among variables. 
Before cointegration analysis came along, the 
combination of variables had to be stationary. The 
variable autoregression model, which includes g 
variables and k lags, is expressed as: 

μβββ tktkttt yyyy ++++= −−− 2211  (1) 
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Supposed all  are I(1); then a suitable 
transformation of equation (1) is made, and the error 
correction model is obtained as: 
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Matrix  is the coefficient matrix which 
reflects the long-term relationships of the variables. 
When the variables are in a long-term equilibrium 
state, the difference in the first variables of equation 
(2) is the zero vector, and E(

Π

μ t )=0; so 0=−y ktΠ  
when the variables are in a long-term equilibrium 
state, and this can be judged by calculating the rank 
and the eigenvalues of matrix .  Π

When all the endogenous variables are I(1), and 
when all the variables of  are I(0), the 
stochastic error term is a stationary process. If 

, there are matrices  and 
, and , So equation (2) is transformed into 

equation (3). 
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Each row of the matrix  is a stationary 
combined variable, that is, each row is a linear 
combined form which enables the variables 

 to be cointegrated.  

y kt−βT
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2.2 Explained and Explanatory Variables 
Lots of documents show that GDP plays the most 
important role in determining electricity 
consumption in China. Thus there is a positive 
correlation between electrical consumption and GDP. 
Taken into account the population, the GDP per 
capita is taken as an explanatory variable. 

In China, the share of industrial electricity 
consumption is rising from 71.75% in 2000 to 
74.89% in 2006. Most of the electrical energy is 
consumed by the heavy industry, in 2006 for 
example, electrical energy consumed by heavy 
industrial took up 60.26% of all electrical energy 
consumption, and 79.71% of all industrial electrical 
energy consumption. The breakdown of electrical 
energy consumption has been changing in China; 
electrical energy consumption by the light industry 
increased 1.87% and by heavy industry decreased 
0.14% in 2006. So the heavy industry share or the 
ratio of heavy industry production value to gross 

industry production reflects changing industrial 
structure. So the heavy industry share is a key factor 
which influences the electrical energy consumption, 
and is taken as an explanatory variable. 

As the science and technology level has steadily 
increased since 1997, the comprehensive social and 
technology level index increased by 1.5% in 2006 to 
47.11%. Consequently, efficiency improvement 
plays an important role in electrical energy 
consumption; so the ratio of increase in industrial 
value to industrial electricity consumption is used to 
reflect efficiency improvement. 

So electricity consumption (Q) is chosen as the 
explained variable, and GDP per capita (PCGDP), 
heavy industry share (HIS), and efficiency 
improvement (EI) are chosen as the explanatory 
variables. The sample space is from 1985 to 2005. 
The impact of inflation is removed, and the samples 
are shown in table 1. 

 
 
2.3 Cointegration Analysis  
Because the economic variables in a time series are 
usually nonstationary, and there is neither 
randomness nor a definite tendency, the sample data 
should be transformed by taking the natural log so as 
to reduce vibration, and by taking the difference so 
as to eliminate instability and heteroscedasticity. 
Before cointegration analysis, the Augment 
Dickey-Fuller (ADF) test was applied to test 
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whether a data series is stationary. The null 
hypothesis is that the data series is nonstationary. 
The test results are shown in Table2. (△ expresses 
the first order difference). 

   In table 2 all the original values of the variables 
are less in absolute value than the ADF test 
statistic’s critical value at the 5% significance level; 
so we fail to reject the null hypothesis at the 5% 
significance level. But all the computed ADF test 
statistic values of the first difference of the variables 
are greater in absolute value than the ADF test 
statistic’s critical value at the 5% significance level, 
and so the null hypothesis is rejected at the 5% 
significance level, and so all the variables are I(1), 
and this meets the conditions for cointegration 
analysis. In other words, from 1985 to 2005, there 
may be a cointegration relationship between 
electricity consumption and the explanatory 
variables. 

The cointegration test needs to be run to find 
whether there is a cointegration relationship. The 
null hypothesis is that there is no cointegration 
relationship between electrical energy consumption 
and the explanatory variables. All the observed 
series contain a time trend; so the cointegration test 
model contains the intercept and time trend. The 
results of the Johansen cointegration test are shown 
in table 3. 

0.7561
0.7184
0.3170
0.1380

60.950
34.141
10.645
2.821

47.856
29.797
15.495
3.841

None*
At most 1*
At most 2
At most 3

Table 3 Results of  Johansen Cointegration test

Eigenvalue Likelihood 5 Percent
 Critical Value

Hypothesized 
No. of CE(s)

Note:  "*" expresses it is significant under 5% confidence 
level

 
The results in table 3 show that the Likelihood 

ratio of the first two eigenvalues is greater than the 
critical value at the 5% significance level; therefore 
there is a long-term equilibrium relationship between 
electricity consumption and the three explanatory 
variables. The normalized cointegration coefficients 
are shown in table 4. 

 
So the cointegration function is stated as: 
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If the residual series of equation (4) is stationary, 
there is a cointegration relationship between 
electrical energy consumption and the three 
explanatory variables; otherwise, there is no 
cointegration relationship. So the Johansen 
cointegration test is run to test whether the residual 
series is stationary, and the test results are shown in 
table 5. 

 
The 5% critical value of the ADF test statistic is 

-3.71; the computed ADF test statistic value of -4.01 
indicates that there are no unit roots in the residual 
series; that is, the residual series is stationary. So 
there is a cointegratoin relationship between 
electricity consumption and the explanatory 
variables. 

In equation (4) the coefficients of the 
explanatory variables are the elasticity of Q with 
respect to the three explanatory variables. That is, a 
1% increase in PCGDP leads to, on average, a 
1.01% increase in Q, a 1% increase in HIS increases 
Q by 0.13%, and a 1% improvement in EI decreases 
Q by 0.86% on average. 

 
 

3 Multivariate SVM Model 
 
 
3.1 Regression Arithmetic of SVM 
Suppose )},(,),,(,),,{( 11 ppii yxyxyxT = , 
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where  is the input variable, is the 
corresponding output value and is the total 
number of the data points. Then the SVM regression 
function is: 

m
i Rx ∈ Ryi ∈

p

bxxf +Φ⋅= ))(()( ω           (5) 
where is a non-linear mapping function,  is 
a weight vector, and is the error term.  and b  
are estimated by: 
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where  is the punishment parameter, which is 
considered to specifies the trade-off between 

empirical risk and the model’s flatness. 

C
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the normalization term.  is called 
the 
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ε -insensitive loss function, which is defined as: 
)0,)(max())(,( εε −−= iiii xfyxfyL   (7) 

In equation (7) the loss equals zero if the 
forecasting error is less thanε ; otherwise the loss 
not less thanε . In order to represent the distance 
from actual values to the corresponding boundary 
values of the ε -band, two positive slack variables 
ξ  and  are introduced. Then, equation (6) is 
transformed into the following form:  
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This constrained optimization problem is solved 
by using the following Lagrangian form: 
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where are Lagrangian multipliers, and 

i.e. corresponding data points are a 

support vector. and calculated by the 
Lagrange multipliers, an optimal desired weight 
vector of the regression hyperplane is obtained: 
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Hence, the regression function is: 
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where is called the kernel function.
value of the kernel function equals the inn

ix
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of ( )Φ  and )(xΦ ，  which are produced by 

mapping ix and x  into a higher dimensional 
feature space; tha
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.2 Multivariate SVM Model  

or a univariate time series , 
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are established. 

⎦
⎢
⎢
⎢
⎢

⎣

⎡

=

−+−−

+

11n

132

21

nmmn

m

xxx

xxx
xx

X  

and 
where  is the input vector, 

is the output value and s the em ded 
ion. 

Su e 

,

3

F },,,{ 21 nxxx
training sample sets, ,,,{ 21 mxxx }{}

}{},,,{ 2132 ++ → mm xxxx ， , 
Suppose 

⎥
⎤mx

⎥
⎥
⎥

Τ
++= ][ 21 nmm xxxY  

},,,{ 11 −++ miii xxx
}{ mix +  m i bed

dimens

pposed that we hav observed an 
l-dimensional multivariate time series:  

}{ )},,,{( ,,2,11 nlnn
N
nn xxxX ==  

As in the case of a univariate time series, we 
make a state space reconstruction: 

Τ
+−−

+−−

+−−=

],,,

;;

1,1,,

12

lmnlnlnl

mn

xxx

 

is the embedded dimension of ith variable, 
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The structure of the multivariate SVM is shown 

in figure 1. 
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4 Case Study 
 
 
4.1 Kernel Function and Parameters  
Comparing the results calculated by 4 kinds of 
kernel function, the Gaussian radial basis 
function, )2||exp(),( 2σxxxxK ii −−= , was 
applied in the SVM. 

In the model of SVM, the forecast results are 
sensitive to the parameter of σ , and insensitive to 
the other parameters. According to the simulation 
results and the principle of minimum error [14], let 
ε =0.0008, and C=10000. When ε  and C are 
selected, the simulation results between σ  and the 
mean of absolute proportional error (MAPE) of the 
forecast results is simulated and shown in figure 2. 
According to the figure 2, when the σ =3.5, the 
MAPE is minimal, so σ  is set as 3.5. 

 
 
4.1 Forecast Results 
The electrical consumption is the output variable. 
The model (4) indicates that the PCGDP,HIS and EI 
are the determining factors of Q, and there is a long 
term equilibrium relationship among them. So 
PCGDP, HIS, EI and actual Q are the input variables 
of the SVM, which is called multivariable SVM. In 
order to eliminate dimensional diversity in the 
variations in each time series, data is normalized into 
the interval [0, 1]. The forecasted results of electrical 
consumption by multivariable SVM are shown in 
table 6. 

To compare the forecast results of the 
multivariable SVM with that of univariable SVM, 
the forecast results by univariable SVM are shown in 
table 6. There is only one input variable, the actual 
electrical consumption, in the model of univariable 
SVM. That is, the future electrical consumptions are 
obtained by inputting the previous electrical 
consumptions into the model of SVM. 

 
   The absolute proportional error (APE) between 
the actual value and the forecasted value is 
calculated by: %100)(APE * ×−= iii xxx . 

where  is the forecast value, and  is the actual 
value. 

∗
ix ix

According to the table 6, the average values and 
the variances of APE forecasted by multivariable 
SVM and univariable SVM are shown in table 7. 

   From table 6, the APE forecasted by 
multivariable SVM is in the open interval of [0.1613, 
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3.7444], and the APE forecasted by univariable 
SVM is in the open interval of [0.4222, 4.1917]. 
From table 7, the average value and variance of APE 
forecasted by multivariable are less than that 
forecasted by univariable SVM. It proves that the 
forecast effect by multivariate SVM is better than 
that by univariable SVM in forecasting electrical 
consumption in China. 

 
 

5 Conclusion 
Two conclusions are obtained:  

(1) By undertaking a cointegration analysis with 
annual data over the period 1985~2005 in China, the 
estimation results show that there is cointegration 
relationship between electrical energy consumption 
and the three explanatory variables; the cointegration 
model (4) explains how the three explanatory 
variables influence the electrical energy 
consumption. 

(2) Input PCGDP, HIS, EI and actual electrical 
energy consumption into the model of SVM, the 
electrical energy consumption are forecasted. 
Comparing the forecast results by multivariable 
SVM with that by univariable, we conclude that the 
forecast effect by multivariate SVM is better than 
that by univariable, because the crucial factors which 
influence the electrical energy consumption are 
considered in the multivariable SVM. 
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