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Abstract: - By undertaking a cointegration analysis with annual data over the period 1985~2005 in China, the
estimation results show that there is cointegration relationship between electrical energy consumption and
economic growth taking into account industry structure changes and technical efficiency. The model shows that
three explanatory variables, the GDP per capita, heavy industry share and efficiency improvement are the
crucial factors which influence the electric energy consumption. The three explanatory variables and the actual
electrical energy consumption are input into a support vector machine(SVM), a Gaussian radial basis function
is taken as the kernel function and electrical energy consumptions from 1994~2006 are forecasted. The forecast
results prove that the multivariable SVM is valid in forecasting electrical energy consumption in China.

Key-Words: Cointegration analysis; Electrical energy consumption; Johansen cointegration test; Multivariate
time series; Support vector machine ; Unit root test

1 Introduction heavy industry share and efficiency improvement,
Electrical consumption forecasting is the basis for ~ aré taken as the explanatory variables, and the
electric energy planning. Many scholars [1~5] have ~ €lectrical energy consumption is taken as the
applied econometrics to study electricity demand ~ €xplained variable. An equilibrium relationship
and its main determining factors is usually analyzed ~ Detween the explanatory and the explained variables
correctly in theory, but it is greatly affected by is analyzed by the cointegration analysis. Taking
fluctuations in the sample data. A lot of non-linear ~ these crucial = factors and actual electricity
programming and  combinational ~ forecasting ~ consumption as the input variables of a SVM, and
methods such as fuzzy logic methods are applied selecting the rational kernel function of the SVM,
widely in electric load forecasting. But results e electrical energy consumption is forecasted.

produced by fuzzy logic methods are quite difficult
to express and set up, and the parameters are not .. . . .
easy to modulate [6, 7]. A new machine learning 2 Multivariate Cointegration Analysis

technique called support vector machines (SVM) is of Electrical energy Consumption
not only helpful for solving problems involving
small sample, devilish learning, high dimension and

local minima, but also strong generalizability. So 2.1 Cointegration Theory
SVM was widely applied in electric load forecasting, Cointegration theory seeks to determine whether
and some research results [8"'12] indicate that SVM there is a Stationary re|ationship among
has distinct advantages in electric load forecasting. nonstationary economic variables, and whether there
SVM s seldom used in forecasting the electrical is a long-term equilibrium relationship among them.
energy consumption, and when it is, actual electrical It avoids the disadvantages of unreliable regression
energy consumption is taken as the only input results generated by spurious regression, and it can
variable of the SVM, while the major factors which differentiate long-term stationary relationships from
impact electrical consumption are not considered short-term dynamic relationships among variables.
[13]. Before cointegration analysis came along, the
In this paper, the three variables, GDP per capita,  combination of variables had to be stationary. The
variable autoregression model, which includes g
Project supported by Education Ministry of China (06JC790014) variables and k Iags’ is expressed as:
The authors are grateful to Robert Blohm rb112@columbia.edu for revising yt = ﬂl yt—l + 132 yt—2 4+ 4 ng yt—k + 4, (1)

the English and making a few mathematical corrections.
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Supposed all 'y, are I(1); then a suitable

transformation of equation (1) is made, and the error
correction model is obtained as:
k-1
A Y= IT Yk T ZFiA Yt 4
i=1
k - . .
where y_ Zﬁj L, I, is the g-step unit matrix,

j=1
and I =Zﬁj—lg'
j=1

Matrix II is the coefficient matrix which
reflects the long-term relationships of the variables.
When the variables are in a long-term equilibrium
state, the difference in the first variables of equation
(2) is the zero vector, and E(,)=0; so My, , =0
when the variables are in a long-term equilibrium
state, and this can be judged by calculating the rank
and the eigenvalues of matrix II.

When all the endogenous variables are 1(1), and
when all the variables of mmy_, are 1(0), the

stochastic error term is a stationary process. If
0< Rank(H): m < g, there are matrices a and
B.and m=ap’, So equation (2) is transformed into
equation (3).

)

k-1
A yt =q BT yt—k + ZF'A yt—i + y7A (3)
i=1

Each row of the matrix gTy  is a stationary

combined variable, that is, each row is a linear
combined form which enables the variables
Yirar Yarar Vg tO be cointegrated.

2.2 Explained and Explanatory Variables

Lots of documents show that GDP plays the most
important  role in  determining  electricity
consumption in China. Thus there is a positive
correlation between electrical consumption and GDP.
Taken into account the population, the GDP per
capita is taken as an explanatory variable.

In China, the share of industrial electricity
consumption is rising from 71.75% in 2000 to
74.89% in 2006. Most of the electrical energy is
consumed by the heavy industry, in 2006 for
example, electrical energy consumed by heavy
industrial took up 60.26% of all electrical energy
consumption, and 79.71% of all industrial electrical
energy consumption. The breakdown of electrical
energy consumption has been changing in China;
electrical energy consumption by the light industry
increased 1.87% and by heavy industry decreased
0.14% in 2006. So the heavy industry share or the
ratio of heavy industry production value to gross
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industry production reflects changing industrial
structure. So the heavy industry share is a key factor
which influences the electrical energy consumption,
and is taken as an explanatory variable.

As the science and technology level has steadily
increased since 1997, the comprehensive social and
technology level index increased by 1.5% in 2006 to
47.11%. Consequently, efficiency improvement
plays an important role in electrical energy
consumption; so the ratio of increase in industrial
value to industrial electricity consumption is used to
reflect efficiency improvement.

So electricity consumption (Q) is chosen as the
explained variable, and GDP per capita (PCGDP),
heavy industry share (HIS), and efficiency
improvement (EI) are chosen as the explanatory
variables. The sample space is from 1985 to 2005.
The impact of inflation is removed, and the samples
are shown in table 1.

Table 1 Sample Data from 1985 to 2005
Q PCGDP
Year (70 million (yuan) HIS El
KW.h)

1985 4705.9 858 52.6 1.178
1986 5096.4 963 524 1.231
1987 5514.3 1112 51.8 1.311
1988 5956.0 1366 50.7 1.509
1989 6390.8 1519 51.1 1.566
1990 6895.7 1644 50.6 1.584
1991 7399.1 1893 51.6 1.750
1992 7991.0 2311 53.4 2.017
1993 8590.4 2998 53.5 2.547
1994 9260.4 4044 53.7 3.214
1995 10023.4 5046 52.7 3.744
1996 10764.3 5846 51.9 4.206
1997 11284.5 6420 51.0 4472
1998 11598.5 6796 50.7 4.640
1999 12305.2 7159 50.8 4.646
2000 13471.4 7858 50.2 4719
2001 14633.5 8622 50.6 4.740
2002 16311.5 9398 50.9 4.570
2003 19031.6 10542 64.5 4.492
2004 21971.4 12336 66.5 4.547
2005 24940.4 14040 69.0 4.682

2.3 Cointegration Analysis

Because the economic variables in a time series are
usually nonstationary, and there is neither
randomness nor a definite tendency, the sample data
should be transformed by taking the natural log so as
to reduce vibration, and by taking the difference so
as to eliminate instability and heteroscedasticity.
Before cointegration analysis, the Augment
Dickey-Fuller (ADF) test was applied to test
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whether a data series is stationary. The null
hypothesis is that the data series is nonstationary.

The test results are shown in Table2. (2 expresses
the first order difference).

Table 2 ADF unit root test results on variables

Zhang Xing-Ping, Gu Rui

ratio of the first two eigenvalues is greater than the
critical value at the 5% significance level; therefore
there is a long-term equilibrium relationship between
electricity consumption and the three explanatory
variables. The normalized cointegration coefficients
are shown in table 4.

Variables ADF Test 504 Critical Conclust Table 4 Normalized Cointegration Coefficients
isti onclusion
Statistic Value LNQ LNPCGDP LNHIS  LNEI C

LNQ -3.423 -3.710 non-stationary 1.0000 1.01 0.13 -0.86 1.27
ALNQ -3.168* -3.066 stationary (0.028) (0.065)  (0.040)
LNPCGDP -1.217 -3.691 non-stational
ALNPCGDP  -4.107* 3733 stationary g Note: the.number in parenthesis in the table is the
LNHIS -1.093 3.658 non-stationary asymptotic standard error.
ALNHIS 4413 -3.674  stationary So the cointegration function is stated as:
LNEI -1.316 -3.691 non-stationary R
ALNEI -3.802* -3.733 stationary LNQ =1.27 +1.01LNPCGDP +

Note:"*" expresses MacKinnon critical values for rejection
of hypothesis of a unit root under the 5% significance level

In table 2 all the original values of the variables
are less in absolute value than the ADF test
statistic’s critical value at the 5% significance level;
so we fail to reject the null hypothesis at the 5%
significance level. But all the computed ADF test
statistic values of the first difference of the variables
are greater in absolute value than the ADF test
statistic’s critical value at the 5% significance level,
and so the null hypothesis is rejected at the 5%
significance level, and so all the variables are 1(1),
and this meets the conditions for cointegration
analysis. In other words, from 1985 to 2005, there
may be a cointegration relationship between
electricity consumption and the explanatory
variables.

The cointegration test needs to be run to find
whether there is a cointegration relationship. The
null hypothesis is that there is no cointegration
relationship between electrical energy consumption
and the explanatory variables. All the observed
series contain a time trend; so the cointegration test
model contains the intercept and time trend. The
results of the Johansen cointegration test are shown
in table 3.

Table 3  Results of Johansen Cointegration test
Eigenvalue Likelihood CE') Percent  Hypothesized
ritical Value  No. of CE(s)
0.7561 60.950 47.856 None*
0.7184 34.141 29.797 At most 1*
0.3170 10.645 15.495 At most 2
0.1380 2.821 3.841 At most 3

Note: "*" expresses it is significant under 5% confidence
level

The results in table 3 show that the Likelihood
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(4)
0.13LNHIS - 0.86 LNEI

If the residual series of equation (4) is stationary,
there is a cointegration relationship between
electrical energy consumption and the three
explanatory variables; otherwise, there is no
cointegration  relationship. So the Johansen
cointegration test is run to test whether the residual
series is stationary, and the test results are shown in
table 5.

Table 5 ADF Unit Toot Test Results on Residual Series
ADF Test 1 Percent 5 Percent 10 Percent
Statistic  Critical Value Critical Value Critical Value
-4.01 -4.62 -3.71 -3.30

The 5% critical value of the ADF test statistic is
-3.71; the computed ADF test statistic value of -4.01
indicates that there are no unit roots in the residual
series; that is, the residual series is stationary. So

there is a cointegratoin relationship between
electricity consumption and the explanatory
variables.

In equation (4) the coefficients of the
explanatory variables are the elasticity of Q with
respect to the three explanatory variables. That is, a
1% increase in PCGDP leads to, on average, a
1.01% increase in Q, a 1% increase in HIS increases
Q by 0.13%, and a 1% improvement in EI decreases
Q by 0.86% on average.

3 Multivariate SVM Model

3.1 Regression Arithmetic of SVM
Suppose T ={(X;, ¥;),--+ (X ¥i)on (X0 ¥ )}
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where x;, € R™ is the input variable, y; € Ris the
corresponding output value and p is the total

number of the data points. Then the SVM regression
function is:

f(x) = (- ®(x))+b (%)
where ®(-) is a non-linear mapping function, ® is

a weight vector, and b is the error term. ® and b
are estimated by:

. 1 s
minR(w) =~ || o I#+CY L (i, f(x))  (6)
i=1
where C is the punishment parameter, which is
considered to specifies the trade-off between

L 1 :
empirical risk and the model’s flatness. r lo]|? is

the normalization term. L_(y,, f(X;)) is called
the & -insensitive loss function, which is defined as:
L (y;i, f(x)) = max(]Yi - f(Xi)|_‘9’0) (7
In equation (7) the loss equals zero if the
forecasting error is less than&; otherwise the loss
not less thaneg. In order to represent the distance

from actual values to the corresponding boundary
values of the &£-band, two positive slack variables

& and &7 are introduced. Then, equation (6) is
transformed into the following form:

J=Zllolf €Y +4)

st Yi _[‘”’(D(X)]_bsg"'fi*
@, @(X)]+b-y, <e+&

This constrained optimization problem is solved
by using the following Lagrangian form:

MaXH (0,6 == 3" (0,00, 0K (x,.%,)

i=1 j=1

(8)

& >0
& 20

#3201 —)-e X0 +)

p

st. g(ai —0:1)=0 (9)
0;,0; €[0,C]
where 0,,0; are Lagrangian multipliers, and

0, — 0, #0ie. corresponding data points are a

support vector. 0, and &; calculated by the

Lagrange multipliers, an optimal desired weight
vector of the regression hyperplane is obtained:

o =Y (8,0 K (X, X) (10)
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Hence, the regression function is:

0= @-0)Ko0+b (1)
i=1

where K(X;,X) is called the kernel function. The
value of the kernel function equals the inner product
of ®d(x;) and @®(x) , which are produced by
mapping X; and X
feature space; that is:

into a higher dimensional

K(x;,X) = D(x;,X) (12)
3.2 Multivariate SVM Model
For a univariate time series {X;,X,,-*,X,} ,
training sample sets, {X,X%,,---, X, }—=>{X, ..} .

{1 Xy X b > {X,0} » +++, are established.

Suppose
Xl X2 Xm
X X X
X = .2 .3 rrj+l
Xn—m Xn—m+1 anl
T
and Y = [Xm+l Xm+2 Xn]

is the

{X;..} is the output value andmis the embedded
dimension.

where {X;, Xi.1s "y Xivmat input  vector,

Supposed that we have observed

I-dimensional multivariate time series:

X =40 Xoms o X0 )}

As in the case of a univariate time series, we
make a state space reconstruction:

an

Vo =[Xpn Xpnoas s Xonom o1
Xon1Xanar s Xonom 41775
Xl,n1XI,n—ll"'1XI,n—m‘+l]T

m; is the embedded dimension of i"" variable,
i=12,---,1. The node quantity is the sum of the

embedded dimensions in the multivariate time
series:

m=m, +m, +---+m,

The structure of the multivariate SVM is shown
in figure 1.
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xl.n+l

4.1 Forecast Results

Z The electrical consumption is the output variable.
The model (4) indicates that the PCGDP,HIS and El
0] a, are the determining factors of Q, and there is a long

term equilibrium relationship among them. So
PCGDP, HIS, El and actual Q are the input variables
of the SVM, which is called multivariable SVM. In
order to eliminate dimensional diversity in the
variations in each time series, data is normalized into
the interval [0, 1]. The forecasted results of electrical
consumption by multivariable SVM are shown in

O
T table 6.
To compare the forecast results of the
X Xt Kemat Xy, X X multivariable SVM with that of univariable SVM,
the forecast results by univariable SVM are shown in
Fig.1 Multivariate Time Series SVM table 6. There is only one input variable, the actual

electrical consumption, in the model of univariable
SVM. That is, the future electrical consumptions are

4 Case Study obtained by inputting the previous electrical
consumptions into the model of SVM.

Table 6 The Forecast Results of Electrical Consumption

4.1 Kernel Function and Parameters

Comparing the results calculated by 4 kinds of . Multivariable SVM Univariable SVM
. . . . ear
kerne_l function, the Gaussian radzlal basis Forecastvalue APE  Forecast value APE
function, K(x;,X) =exp(—|x;, —x|/20?) , was 1994 9141.1 1.2883 92213 04222
applied in the SVM. 1995 98333 1.8966 9946.6  0.7662
In the model of SVM, the forecast results are ooy 202 28 (98675 09624
n , S It 1997 11266.3 0.1613 116052 2.842
sensitive to the parameter of o, and insensitive to 1998 11652.4 0.4647 11519.1 0.6846
the other parameters. According to the simulation ;(9)(9)3 gg?g; gg‘s‘gé i;;??‘z‘ 4.1917
N~ L . . . 2.5669
results and the principle of minimum error [14], let 2001 144047 15635 141694 31715
& =0.0008, apd C:_10000. When & and C are 2002 158908 2.6985 15902.1  2.6293
selected, the simulation results between o and the 2003 18374.2 3.4543 185103 2.7391
mean of absolute proportional error (MAPE) of the oo e S a0
forecast- results is S|_mulated and shown in figure 2. 2006 287275 1.6964 28759.6 18100
According to thei figure 2, when the o =35, the The absolute proportional error (APE) between
MAPE? minimal, so o s setas 3.5. the actual value and the forecasted value is
o | calculated by: APE:‘(Xi —xi*)/xi‘xloo%.
g0} where x." is the forecast value, and X; is the actual
< 70 | value.
m . .
e According to the table 6, the average values and
< 6.0 . . .
= the variances of APE forecasted by multivariable
50t SVM and univariable SVM are shown in table 7.
4.0 Table 7 Average values and variances of APE
3.0 f
20 | Multivariable SVM Univariable SVM
1.0 . . . . Average Variance Average Variance
0.0 2.0 40 6.0 8.0 10.0 1.9359 1.2499 2.2261 1.4166
o
Fig.2 Simulated Relationship Between ¢ and MAPE From table 6, the APE forecasted by
multivariable SVM is in the open interval of [0.1613,
ISSN: 1109-2769 Issue 12, Volume 6, December 2007
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3.7444], and the APE forecasted by univariable
SVM is in the open interval of [0.4222, 4.1917].
From table 7, the average value and variance of APE
forecasted by multivariable are less than that
forecasted by univariable SVM. It proves that the
forecast effect by multivariate SVM is better than
that by univariable SVM in forecasting electrical
consumption in China.

5 Conclusion
Two conclusions are obtained:

(1) By undertaking a cointegration analysis with
annual data over the period 1985~2005 in China, the
estimation results show that there is cointegration
relationship between electrical energy consumption
and the three explanatory variables; the cointegration
model (4) explains how the three explanatory
variables  influence  the electrical  energy
consumption.

(2) Input PCGDP, HIS, EI and actual electrical
energy consumption into the model of SVM, the
electrical energy consumption are forecasted.
Comparing the forecast results by multivariable
SVM with that by univariable, we conclude that the
forecast effect by multivariate SVM is better than
that by univariable, because the crucial factors which
influence the electrical energy consumption are
considered in the multivariable SVM.
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