
Optimization of Test Cases using Soft Computing Techniques: A

Critical Review

Manoj Kumar

#1
 Arun Sharma

2
 Rajesh Kumar

3

1
Department of Computer Application, (Galgotias University), Greater. Noida,(U.P.) - India,

2
Department of Computer Sc., KIET, Ghaziabad,U.P. –India,

3
School of Mathematics & Computer Application, (Thapar University) Patiala- India,

m_pachariya1@yahoo.com, http://www.galgotiasuniversity.edu.in

Abstract: - Software testing is the key technology for evaluating the fault detecting capability quantitatively.

Software testing is very labor-intensive and expensive process. It is a core activity in quality assurance. Test

cases minimization, selection, prioritization forms common thread of optimization. Test case optimization is a

multi-objective optimization, peculiar nature and NP-Complete problem. However, by applying appropriate test

case optimization techniques, these efforts can be reduced considerably. Moreover, by using the multi-objective

optimization of test cases with test data adequacy criteria and automation of testing process will help in

improving the overall quality of the software. Present paper gives the insight into existing single objective test

cases optimization techniques such as Genetic Algorithms, Ant Colony Optimization, Hybrid Genetic,

Intelligent Search Agent Techniques, Particle Swan Optimization, Graph based Intelligent Techniques,

Hybridization of Soft Computing techniques devised by various researchers or practionners by using single

parameter like number of defect detecting capability, cost, efforts, coveragebility of requirement/ code and

quality of the results. In addition to this, it highlights some research issues relating to above.

Key-Words: - Multi-Objective Optimization, Soft Computing Techniques, Test Cases, Test Data Adequacy

Criteria.

1 Introduction
Software testing plays a vital role in quality

software development. Testing is the process of

exercising a program with the specific intent of

finding errors prior to delivery to the end user.

Although software testing is a very labor-intensive

and itself an expensive activity, yet launching of

software without proper testing may lead to cost

potentially much higher than that of testing,

specially in systems where human safety is

involved[1,2]. If the process of testing could be

automated, significant reductions in the cost of

software development can be achieved. It depends

on the quality/fitness and number of test cases

exercised. The solution is to choose the most

important and effective test cases and removing the

redundant and unnecessary ones, which in turn leads

to test case optimization[3,4]. A primary purpose for

testing is to detect software failures so that defects

may be uncovered and corrected. Software testing is

an investigation conducted to provide stakeholders

with information about the quality of the product or

service under test.
Because of the lack of known strategies,

decisions like these are made on the basis of the

experience, intuitive assessments and heuristic rules.

Existing literature review has identified some key

problems in software testing related to test cases

selection, test cases prioritization, test cases

minimization, corresponding adequacy criteria, and

analysis of impact of test cases on software quality.

Decision makers have to answer the following

questions with economic criteria: What test cases

shall tester use to exercise the program?, How to

select the test cases with maximum coverage

ability?, When and how to determine whether

testing has been conducted adequately?, When to

stop testing and whether to continue the testing?,

When to stop optimization and whether to continue

the optimization?, How to determine that whether

generate optimized test cases or optimize the

randomly generated test cases, which one is the

better approach?, How to determine the quality of

software from test cases?, When the quality of

software should be evaluated by means of directed

testing where software is frequently changing?,

What will be the probability of test case failure? and

others[5,6].

Software test adequacy criteria are the rules to

determine whether a software system has been

adequately tested, which points out the central

problem of software testing i.e. “what is a test data

adequacy criterion?”. Number of test data adequacy

criteria has been proposed and investigated in the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 440 Issue 11, Volume 8, November 2011

literature like control flow-based test adequacy

criteria, data flow based adequacy criteria, fault-

based adequacy criteria, and error-based criteria.

Control flow-based adequacy criteria includes

statement coverage, branch coverage, path coverage,

Length-i path coverage, loop coverage, relational

operator coverage, table coverage(whether each

entry in a particular array has been referenced),

cyclomatic number criterion. Data-flow based

adequacy criteria includes all definitions criterion,

all uses criterion. Fault-based adequacy criteria

include error seeding and mutant coverage or

mutant killing score. Each criterion has its own

strength and weakness. A central question in the

study of test adequacy criteria is that how they relate

to fault detecting ability [7,8,9].

The effectiveness of this verification and

validation process depends upon the number of

errors found and rectified before releasing the

system. This, in turn, depends upon the fitness of

test cases generated. A test case is an input to the

program under test. It is a set of conditions or

variables under which a tester will determine

whether an application or software system is

working correctly or not. It is the mechanism for

determining whether a software program or system

has passed or failed. Data generation for software

testing is the process of identifying program input,

which satisfy testing criterion. There are two

different approaches taken by test data generators,

namely, path oriented and goal oriented approach

[8,10]. Usually, the number of test cases required to

develop error-free software, will be very high.

Since, exhaustive testing is not possible, the

generated test cases should be optimal and also

cover the entire software and reveal as many errors

as possible [11,12]. Automatic generation of

optimized test cases is one of difficult points of this

technology [12]. A test suite, less commonly known

as a validation suite, is a collection of test cases that

are intended to be used to test a software program to

show that it has some specified set of behaviours. A

test suite often contains detailed instructions or

goals for each collection of test cases and

information on the system configuration to be used

during testing. A group of test cases may also

contain prerequisite states or steps, and descriptions

of the following tests. Occasionally, test suites are

used to group similar test cases together for some

specific functionality of the system. Test suite may

contain some redundant, irrelevant test cases. Since,

testing is very expensive process, unnecessary

execution of redundant, irrelevant test cases will

increase unnecessary burden of cost. So, test cases

optimization is necessary [13]. Test suite

minimization is to find minimal cardinality sub set

of test suite, which exercises same set of

requirements as exercised by un-minimized test

suite. Test suite minimization is minimal set cover

problem, which uses greedy approximation

approach to solve it. So, Test suite minimization is

NP-complete problem [14,15,16]. Peculiar nature

problem are those problems which requires curious

mix of data and knowledge driven approach to solve

it. Test cases optimization is a search space

problem, which requires hybridization of data

driven and knowledge driven approach to find near

optimal solution of the problem. Hence, Test cases

optimization is also peculiar nature problem[14,17].

An optimization problem is the problem of

finding the best solution from all feasible solutions.

Multi-Objective optimization (MO) also known as

multi-criteria or multi-attribute optimization, is the

process of simultaneously optimizing two or more

conflicting objectives subject to certain constraints.

The objective of MO optimization is to find the set

of acceptable solutions and present them to the

decision maker/Tester to take decision. If a multi-

objective problem is well formed, there should not

be a single solution that simultaneously minimizes

each objective to its fullest. In each case an

objective must have reached a point such that, when

attempting to optimize the objective further, other

objectives suffer as a result. Finding such a solution,

and quantifying how much better this solution is

compared to many other such solutions, is the goal

when setting up and solving a multi-objective

optimization problem. Test cases optimization is the

problem of finding the best sub set of test cases

from a pool of test case to be audited. It will meet

all the objectives of testing concurrently. Test suite

should be designed in such way that it will achieve

maximum of code coverage, maximum

requirements coverage, high fault detecting

capability, maximum mutant killing score. Test suite

should also contain minimum number of test cases

with minimum execution efforts and cost. Test suite

should be constructed in minimum efforts, time and

cost. So, Test cases optimization is a multi-objective

optimization problem.

Test cases generated by combining variable input

values and variable sequencing of input values

result in too many possible combinations to test.

Due to time limitations on testing, all possible

combinations of input values and sequencing of

input results cannot be executed [18,19]. As such,

test cases optimization techniques such as test case

selection, test suite minimization and prioritization

are considered. Thus, it becomes essential to

optimize the test cases in order to cover maximum

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 441 Issue 11, Volume 8, November 2011

faults in minimum time. The objective of test case

optimization is to reduce the number of test cases

and to improve the fitness/effectiveness of test

cases. Since, test cases optimization problem is a

multi-objective optimization problem, It cannot be

solved in combinatorial time and hence it is a NP-

hard problem. Solution to these type problems

cannot be obtained by direct search. It requires

heuristic searching techniques [15,20]. Though,

there are several objectives of test case optimization

like maximum number of defect detecting

capability, minimum test design efforts/cost,

minimum execution cost, maximum coveragebility

of client requirements and codes, maximum mutant

killing score and so forth. Therefore optimization of

test cases should be treated as multi-objective

optimization problem. However most of test cases

optimization approaches found in the literature are

single objective. Single objective formulation of test

cases optimization problem is not justified and not

meeting the objectives of testing. Some objectives

of test cases optimization are conflicting in nature,

coveragebility of one objective will suffer other

objective like cost, quality and quantity while

considering all objectives concurrently. It is not

appropriate to estimate fitness of test cases or

optimize the test cases just on the basis of only a

single parameter/objective as it is a multi-faceted

concept. So, Multi-faceted concept for test cases

optimization will help tester /decision maker to take

decision for selecting/filtering prioritizing the test

cases with highest adequacy. It will provide

testers/decision maker the fitness/coveragebility

scores of test cases for opting best test case from

various alternate test cases. It will surely reduce the

cost & efforts of software testing and improve the

quality of test cases and reduce the number of test

cases also. Hence, the study of existing literature

concluded that the test cases optimization is a multi-

objective optimization, peculiar nature and NP-

Complete problem. Present paper discusses these

several issues and conducts a critical survey for

various proposals made by researchers for test case

optimization by using soft computing techniques.

2 Test Cases Optimization

Software testing consists of three main activities:

selecting tests inputs, running the inputs on the

software under test, and evaluating the correctness

of the outputs. The first and third of these activities

are labour-intensive and error prone. Software

testing and retesting occurs continuously during the

software development lifecycle to detect errors as

early as possible and to ensure that changes to

existing software do not break the software. Test

suites once developed are reused and updated

frequently as the software evolves. As a result, some

test cases in the test suite may become obsolete,

redundant as the software is modified. Due to the

resource and time constraints for re-executing large

test suites, it is mandatory to optimize available test

suites by using test cases prioritization, test case

filteration, test case selection and test suite

minimization [21].

Test case prioritization techniques try to find an

ordering/ranking of test cases so that some test case

adequacy can be maximized as early as possible.

Test case prioritization and filteration depend on

quality of initial population of test cases. Selection

and prioritization of test cases are the two important

solutions to the problem of test case optimization.

Test case filteration and prioritization are closely

related. In fact, test cases can be filtered by selecting

the first N ordered test cases. Therefore, any test

case prioritization algorithm can be used as a test

case selection algorithm. Naturally, it is desirable to

select those test cases that are most likely to reveal

defects in the program under test [22,23]. Test suite

minimization is a selection of smallest subset the

test cases from a pool of test cases to be audited for

a program. It covers as many program elements as

the entire pool does. Test suite reduction seeks to

reduce the number of test cases in a test suite while

retaining a high percentage of the original suite’s

fault detection effectiveness. Test suite

minimization techniques seek to reduce the effort

required for regression testing by selecting an

appropriate subset of test suites. The test suite

minimization problem is a special case of the

traditional set-cover problem, which is NP-hard

[24,25]. One major difference between test suite

minimization and test case selection is that test case

selection chooses a temporary subset of test cases,

whereas test suite minimization reduces the test

suite permanently based on some external criterion

such as structural coverage. When testing a

program, software testers have to define the testing

objectives first. A test suite is then constructed to

satisfy the all objectives of testing. It is generally

agreed that a test suite must achieve maximum

coveragebility of all objectives of testing [26,27].

Usually, the constructed test suite may contain

redundant test cases. A test case in a test suite is said

to be redundant if the same testing objective can still

be satisfied by other test cases of the test suite.

Since the execution of test cases and evaluation

their results are very expensive, it is of paramount

importance to remove redundant test cases within a

test suite. However, removal of all redundant test

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 442 Issue 11, Volume 8, November 2011

cases is practically infeasible because the problem is

NP-complete[28]. However, a weakness of test

suite reduction is that the removal of some test cases

from the test suite may potentially reduce the fault

detecting capability of the test suite too. To be

worthwhile, the sum of the cost of test cases

filteration, execution and audit of selected test cases

should be less than the cost of that of all of the test

cases of the original pool [23, 25]. The goal of test

cases filteration is to chunk/filter out irrelevant,

redundant and less fit test cases from the test suite.

Test cases filteration is to hunk out subset of closely

related test cases. So that a large portion of the

defects would be found as if the whole test suite was

to be used. It is often desirable to filter a pool of test

cases for a program in order to identify a subset that

will actually be executed and audited at a particular

time. When it is uncertain that how many test cases

can be run and audited, it is advantageous to order

or rank the test cases as per priorities so that the

tester will select the test cases as per their rank or

order, which permit tester to start quick, early fixing

the most of the defects [29,30]. Study of existing

literature has identified several techniques for test

cases optimization. Some of them are described

below:

Xiao Qu et al. [9] proposed a combinatorial

interaction techniques (CIT) for regression testing

for test case generation and prioritization. It is an

effective regression testing techniques to select and

order (or prioritize) test cases between successive

releases of a program. However, selection and

prioritization are dependent on the quality of the

initial test suite. An effective and cost efficient test

generation technique is combinatorial interaction

testing (CIT), which systematically samples all t-

way combinations of input parameters. They

examined several CIT prioritization techniques and

compare them with a re-generation/prioritization

technique. They concluded from results that CIT

performs well in finding seeded faults when

compared with an exhaustive test set. It lacks the

prioritization of test cases on several criteria

concurrently. Kim et al. [30,31] proposed test cases

prioritization techniques for regression testing using

test historical data to reduce the cost of regression

testing. Under certain conditions, some can even

guarantee that the selected test cases perform no

worse than the original test suite. They prioritized

the test cases and exercised only those that fit within

existing constraints. They pointed out that existing

prioritization techniques are memory less,

implicitly, local choices. Instead, they proposed a

new technique for prioritization based on historical

execution data and conducted an experiment to

assess its effects on the long run performance of

resource constrained regression testing. It lacks its

validity and generalization. Varun et al. [32]

proposed a new approach for test case prioritization

techniques using fault severity based on requirement

prioritization. Aim is to find the severity of faults

early in the testing process and hence to improve the

quality of the software according to customer point

of view, to reduce the cost of regression technique

and to increase the effectiveness of testing process.

They formulated testing objective to increase rate of

fault detection early in the testing process and others

formulated the objectives based on code coverage

and focused for finding the maximum no of faults

rather than severity of faults. They concluded that

prioritization approach frequently yields faults with

high severity from their experiment results.

Leon et al. [21,33] studied an empirical

comparison of four different techniques for

filtering large test suites(test suite minimization,

prioritization) by using additional coverage, cluster

filtering, one-per-cluster sampling, and failure

pursuit sampling. The first two techniques are based

on selecting subsets that maximize code coverage as

quickly as possible, while the latter two are based on

analyzing the distribution of the tests’ execution

profiles. These techniques were compared with data

sets obtained from three large subject programs: the

GCC, Jikes, and javac compilers. Some simple

combinations of these techniques were evaluated for

use in test case prioritization, and found that these

two kinds of techniques are complementary in the

sense of finding different defects.. The results also

indicate that these techniques can create more

efficient prioritizations than those generated using

prioritization by additional coverage. They

concluded from results obtained that distribution-

based techniques can be as efficient or more

efficient for revealing defects than coverage-based

techniques. Harrold et al. [23] proposed and

experimented a technique to select a representative

set of test cases from a test suite that provides the

same coverage as the entire test suite. This selection

is performed by identifying and then eliminating,

the redundant and obsolete test cases in the test

suite. It is not dependent on any particular test

selection criterion and can be used as long as the

association between requirements and test cases can

be made. They developed a program and applied the

proposed techniques on the program to identify and

remove unnecessary test cases. They found a

significant reduction in fault detection capability of

test suite from experiment when they exercised

minimized test suite on a simple program.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 443 Issue 11, Volume 8, November 2011

Fischer et al. [34] proposed a formal method for

selection of test cases for regression testing. Their

approach required both control flow and data-flow

analysis to determine which test case should be

selected. Miller et al. [35] pointed out the need for

the identification of program units where all

changes can be localized, while addressing the

issues involved in the automation of software

development processes. Benedusi et al. [36]

proposed a test selection technique based on path

change analysis, and constructed a test table,

containing test cases and associated paths. This

reduction of number of rows is accomplished based

on the coverage of input conditions and paths. The

test cases are selected on the basis of minimum

number of rows in the test table. Weiser et al. [37]

proposed dynamic slicing technique for test case

selection. These slicing techniques were applied in

program debugging. The objective of their research

was to extract a small portion of the code that

possibly contains the more faults. Subsequently,

these techniques were applied to Regression Test

cases Selection (RTS). Agrawal and Horgan [38,39]

have proposed several dynamic slicing algorithms,

also described dynamic slicing in the presence of

unconstrained pointers for regression test case

selection. Ferrante et al. [40] proposed an

optimization approach using Program Dependency

Graph (PDG) that makes explicit both the data and

control dependence for each operation in a program.

Data dependences have been used to represent only

the relevant data flow relationships of a program.

Control dependences are introduced to analogously

represent only the essential control flow

relationships of a program. Control dependences are

derived from the usual control flow graph. The PDG

allows transformations such as vectorization.

Subsequently PDG was used for selection of

regression test cases.

Frankl et al. [5] proposed an analytical

approach for fault detecting ability of testing

methods. They examined several relations between

software testing criteria, each induced by a relation

between the corresponding multi sets of sub

domains. They explored whether for each relation R

and each pair of criteria, C1 and CZ, R(C1, Cz) and

investigated that C1 is better at detecting faults than

CZ according to various probabilistic measures of

fault-detecting ability. They concluded that the fact

that C1 subsumes CZ does not guarantee that C1 is

better at detecting faults. Wong et al. [11,27] have

reported several studies aimed at evaluating the

fault-detection effectiveness of test cases

prioritization and test suite minimization using all

blocks, decisions, and the other criteria while

retaining one or more control-flow and data-flow-

based coverage metrics. Size and code coverage are

important attributes of a set of tests. They addressed

the issue “What is the impact of reducing the size of

test suite on fault detecting capability, while keeping

coverage constant?”. They found little to no loss in

the fault-detection effectiveness, when test cases

that do not reduce overall block coverage, are

removed from a test suite. Tallam and Gupta [12]

proposed a delayed greedy minimization algorithm

using lattices and dominators for test cases

minimization. It improves upon the prior heuristics

by iteratively exploiting the implications among the

test cases and the implications among the coverage

requirements, leveraged only independently from

each other. They experimented comparable time

performance and concluded that proposed

techniques consistently produced same size or

smaller size test suites than prior heuristics. They

also admitted that the test suite minimization

problem is NP complete. Harrold et al. [25]

proposed a methodology to control the size of a

regression-test suite. Test-suite reduction based on

code coverage is one of the several criteria proposed

by authors for the reduction in the size of a test

suite. Lei et al. [41] proposed a framework for

minimization of randomized unit test cases and

gave empirical evidence that randomized

generation of unit test cases using sequences of

method calls has high coveragebility and more

effective. The randomized test generator allows the

automatic production of a high volume of varied test

input, and the test oracle allows the output to be

checked automatically. The goal is not to build a

fixed test suite, but rather to keep drawing test cases

randomly from a large test case space until either

the software under test fails or a stopping condition

is reached. Authors showed that test case

minimization algorithm significantly reduces the

length of these sequences. They studied the resulting

benefits qualitatively and quantitatively, via a case

study on open-source data structures and an

experiment on lab-built data structures. They

concluded that randomized unit test cases can

achieve high coverage and is effective at forcing

failures, but tends to generate long failing test

cases. They used algorithm proposed by Zeller and

Hildebrandt [13] for Simplifying and isolating

failure-inducing input . It can significantly reduce

the length of these failing test cases, making

them more valuable for the debugging process. This

in turn increases the practical applicability of

randomized unit testing. It lacks the implementation

a JUnit-style or Jartege- style framework for

automation of randomized testing and test case

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 444 Issue 11, Volume 8, November 2011

minimization of unit testing. This technique has

been known for years in specific domains, like

functional program testing and compiler testing .

Agrawal et al. [42,43] used the notion of

dominators, superblocks and mega blocks to derive

coverage implications among the basic blocks to

reduce test suites such that the coverage of

statements and branches in the reduced suite implies

the coverage of the rest. Similarly, Marre and

Bertolino [44] used a notion of entities subsumption

to determine a reduce set of coverage entities such

that coverage of the reduced set implies the

coverage of un-reduced set. Sampath et al. [45] have

presented a concept analysis based algorithm

(SMSP) for reducing a test suite for web

applications. They considered the URLs used in a

web session as the attributes and each web session

as a test case. One test case from each of the

strongest concept in the concept lattice is selected to

generate a reduced test suite to cover all the URLs

covered by the unreduced suite. As shown in recent

report of Sprenkle et al. [28], the reduced suites

produced by their approach are in generally larger

than those produced by applying the classical

greedy algorithm and the HGS algorithm for reduce

a set of web user sessions. Sampath [45] also

experimented and concluded that Delayed-Greedy

algorithm always produced equal or smaller test

suites than classical greedy algorithm, the HGS

algorithm [25] and the SMSP [45] algorithm.

Rothermel et al. [46] made an empirical study for

analysing the impact of size reduction test suite/set

on fault detecting capability of test case. They used

HGS Algorithm for reducing/minimizing test suite.

They concluded that size reduction of test suite will

certainly reduce the fault detecting capability of test

suite, which is contradiction of Wong studies[11,

27]. Horgan and London [47] implemented a tool a

for data flow coverage testing in C programming

language, called ATAC. It was implemented to

construct the optimized test suite.

The works in [11,27,46] study the effects of test

suite minimization on the fault detection capabilities

of the reduced test suites. In [46], the HGS

algorithm is used for minimization of test suites

selected from the test suite pools. Thus, the quality

of the test suites selected from these test pools is

high as they contain test cases to cover a wide range

of requirements. Therefore, in the experimental

studies reported in [46], a significant loss in the fault

detection capability of the minimized suites was

observed. In contrast, the experimental studies in

[11,27] used ATAC [47] system to compute

optimally minimized test suites from the randomly

generated test suites. It can be concluded that

minimization techniques can reduce the test suite

size to a great extent with no loss in fault detection

capabilities of test suites. Although, these two

studies seem to be contradictory, we believe that the

quality of the initial test suites used in detecting the

faults and experimented with software under test is

the only fundamental reason for the clashing

conclusions obtained in these studies [11,27,46].

Jones and Harrold [48] have recently presented

some heuristics to minimize test suites specifically

tailored for the Modified Condition/Decision

Coverage (MC/DC) criterion. Authors proposed a

heuristics techniques for reducing a test suite with

respect to set of requirements which could be

derived from any coverage criterion or a

combination of different criteria. The context table

which contains the information about the set of

requirements covered by each test case in the test

suite is the only input to algorithm. Authors selected

the test suite on the basis of maximum test suite

score the outcome of algorithm. Graves et al. [49]

examined the costs and benefits of several

regression test selection techniques, including test

suite minimization (greedy coverage maximization),

a dataflow technique, a safe technique, and random

selection. In separate studies, Elbaum et al. [22,50]

and Rothermel et al. [51,52] compared several test

case prioritization techniques, including ones

based on code coverage, estimated fault

proneness, and other factors using historical

execution data.

3 Soft Computing Techniques for Test

case Optimization

Software testing plays a crucial role in high quality

software development. It uses the application of

artificial intelligence techniques, that in turn helps in

identifying optimized test cases which will improve

quality of testing, reduce the total time and cost

needed in the testing process. The paradigm of soft

computing or computational intelligence refers to

the seamless integration of different, seemingly

unrelated, intelligent technologies such as fuzzy

logic, NNs, GAs, ML (CBR and decision trees

subsumed), rough set theory and probabilistic

reasoning in various permutations and combinations

to exploit their strengths in the area of software

testing. Soft computing is an emerging collection of

methodologies, which aim to exploit tolerance for

imprecision, uncertainty, and partial truth to achieve

robustness, tractability and total low cost. Soft

computing is a term applied to a field within

computer science which is characterized by the use

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 445 Issue 11, Volume 8, November 2011

of inexact solutions to computationally-hard tasks

such as the solution of NP-hard problems, for which

an exact solution cannot be derived in polynomial

time [53,54]. Soft Computing techniques are also

providing better solution of peculiar nature

problems, which is curious mix of data and

knowledge driven problem. Problem of generating a

minimum test suite or test cases optimization is also

NP-complete and peculiar nature problem. The

exemplar of computational intelligence techniques

in the area of software testing is less explored but

some researchers have explored soft computing

techniques in this area are as follows:

Mala et al. [15] proposed Hybrid Genetic

Algorithm (HGA) based approach for improving the

software quality by optimization of test cases. HGA

approach combines Genetic Algorithm (GA) and

Local Search (LS) techniques to reduce the number

of test cases by improving quality of test cases

during test case generation process. They compared

the proposed approach with Genetic Algorithm

(GA), Bacteriologic Algorithm (BA) and concluded

that HGA is best among them. Berndt et al. [55]

proposed a breeding techniques for optimization of

software test cases with the help of Genetic

Algorithms. They used an evolving fitness function.

They also proposed a framework that distinguishes

between absolute and relative fitness functions. It is

used to organize past research and characterize this

project’s reliance on a relative or changing fitness

function. In particular, the genetic algorithm

includes a fossil record that records past organisms,

allowing any current fitness calculations to be

influenced by past generations. Three factors are

developed for the fitness function: novelty,

proximity, and severity. They developed several

techniques for fossil record visualization are

developed and used to analyze different fitness

function weights and resulting search behaviors.

Debasis et al. [56] used genetic algorithm to

optimize the test cases, generated graph using the

category-partition and test harness patterns. They

investigated an approach for measuring

effectiveness of test cases, The optimal test suites

are devised by the method of sampling statistics.

Prabahar et al. [57] used Hybrid Genetic Algorithm

(HGA) to optimize the test cases, and compared the

simple genetic algorithm with HGA for optimization

of test cases. They concluded that HGA is better

than simple GA. Baudry et al. [58] explored several

complementary computational intelligence

techniques for testing of .Net component. They used

new artificial Intelligent (AI) algorithm to estimate

the defect revealing power of test cases, and

automatically improving test cases efficiency. They

also explored GA to estimate the defect revealing

power of test cases, and automatically improving

test cases efficiency. They also conducted

comparative analysis of GA and BGA

(Bacteriological GA) and concluded that BGA is

better than GA. Panda et al. [59] proposed graph

theory based GA approach for optimization of test

cases. They used the predictive modelling based

approach for the test cases generation. It uses

directed graph of all immediate state of system for

expected behaviour of system. They used genetic

algorithm for network testing or system testing. The

process of figuring out the multiple test cases leads

to complications and there are chances to miss out

some of the test cases in this process.

Dorigo et al. [60,61] proposed the ACO

algorithms, based on pheromone trails used by the

ants, which mark out food sources. ACO is

probabilistic techniques that can be applied to

generate solutions for combinatorial optimizations

problems. The artificial ants in the algorithm

represent the construction procedures for the

stochastic solutions. There are two major problems

commonly associated with state-based software

testing: (1) some of the generated test cases are

infeasible; (2) inevitably many redundant test cases

have to be generated in order to achieve the proper

testing coverage required by test adequacy criteria

[60,61,62]. Though ACO is next generation

technique for optimization problems but it is not

providing good solutions of problems like multiple

objectives optimization, Dynamic Optimization

Problems, the Stochastic Optimization Problems,

continuous optimization and Parallel

Implementations of the constraints. Dorigo et al.

[61] proposed search strategy for positive feedback

(autocatalytic) process prompts all ants to choose

the shorter path. Leading ant is moving towards

destination, suddenly an obstacle appears in the path

or the path is cut off. Leading ant have to decide

whether to turn right or left, The choice is

influenced by the intensity of the pheromone trails

left by preceding ants. A higher level of pheromone

on the right path gives an ant a stronger stimulus

and thus a higher probability to turn right. If leading

ant followed wrong path due to lack in sensing

capability or vaporization of pheromone, the

follower ants will also follow wrong path. So, there

is a scope of research to identify approach/

technique for predicting impediments of the path.

Huaizhong et al. [62] proposed an ant colony

optimization approach for automatic generation of

test cases sequence/rank in test suite using UML for

state-based software testing. Test sequences in a test

suite can be automatically generated to achieve

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 446 Issue 11, Volume 8, November 2011

required test coverage. They used an developed

algorithm, which is uses the concept that a group of

ants can effectively explore the UML State chart

diagrams and automatically generate test sequences

to achieve the test adequacy requirement. They

pointed out the advantages of proposed approach as

follows : (1) the UML State chart diagrams exported

by UML tools are directly used to generate test

sequences; (2) the whole generation process is fully

automated; (3) redundant exploration of the State

chart diagrams is avoided due to the use of ants,

resulting in efficient generation of test sequences.

Singh et al. [63] proposed an ant colony

optimization based approach for selection and

prioritization of test cases. They compared ACO

with other techniques using Average Percentage of

Faults Detection (APFD) as a parameter and

concluded that ACO is providing better results than

others. It lacks automation of the techniques and

application on large, complex software. They

considered single parameter/objective for

optimization of test case but it is a multi-objective

optimization problem.

Mala et al. [64] proposed non-pheromone based

approach for software test suite minimization by

using Artificial Bee Colony (ABC) optimization

approach, based on intelligent behavior of biological

bees. They explored to find near global optimal

solution. They compared it with GA, and concluded

that ABC approach takes less iteration to complete

the task, and found it more scalable. Mohan.V. et al.

[8] proposed an Intelligent Search Agent (ISA)

technique for optimizing test sequences by using

graph, it satisfy the fitness criteria of test sequence.

they compared ISA and ACO techniques, and

concluded that ISA is taking less time and cost in

generating optimal test sequences. Shihab et al. [65]

proposed a framework for Intelligent Meaningful

Test Data Generation Model (IMTDG). They

improved the test data generation, by providing the

flexibility to user to insert or select the test data list.

Crina Grosan et al. [66] used high dimensional

functions for global optimization of test cases. High

dimensional function is a certain class of functions,

have the property, the partial derivatives have the

same equation with respect to all variables. They

used the optimum value (minimum or maximum)

takes place at a point where all the variables have

the same value, to minimize the computational

burden due to the fact that the search has to be

performed only with respect to one variable for test

cases optimization. Ibrahim et al. [67] proposed two

techniques for intelligent selection of test-cases that

achieves the best coverage using the minimum

number of computing cycles, is crucial for

microprocessor design. First, it addresses the

generalization of covering problems to partial

covering. Second, it finds a good set of test cases

that fulfils the target coverage under different

scenarios, while taking into considerations

operations priority, and computing cycles required

by each test case.

Wenyan et al. [68] proposed a technique for

generation and reduction of test cases using

covering rough sets. Authors have proposed a

high-dependable method for the generation and

reduction of software test cases, which based on

software operational profile and covering rough

set. Authors tried to improve the efficiency of

software reliability testing by using fewer test cases

of covering all operational profiles. This method

makes up for the shortcoming of Musa method that

generates test cases with high repeatability and

relatively low efficiency, and consequently

improves efficiency of test cases to some extent.

Authors also provided one new train of thought for

high dependability software testing. Shin et al. [26]

introduced the concept of Pareto efficiency for test

case selection. The Pareto efficient approach takes

multiple objectives such as code coverage, past

fault-detection history and execution cost, and

constructs a group of non-dominating, equivalently

optimal test case subsets. Authors also described the

potential benefits of Pareto efficient multi-objective

test case selection and illustrated with empirical

studies of two & three objective formulations. It

lacks applicability a wider range of software

artifacts with different meta-heuristic multi-

objective optimization techniques. Junmin et al. [69]

designed some artificial immune operators for

generating optimized test cases. Artificial immune

operators play an important role to support the test

case generation method by utilizing optimization

ability of artificial immune algorithm these

originally random generated test cases are

continuously optimized till final/finding test case

corresponding to the target path by artificial

immune analysis. Authors concluded from

experimental results manifest that the proposed

immune operator designing algorithm is valid and

efficiently generate target path test case. Swain et

al. [70] proposed a comprehensive test case

generation approach with the help of UML models.

Authors constructed Use Case Dependency Graph

(UDG) with the help of Use Case diagram and

Concurrent Control Flow Graph (CCFG). They

generated test cases for integration and system

testing. They also compared proposed approach

with existing approaches on single parameter code

coverage and concluded that proposed approach is

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 447 Issue 11, Volume 8, November 2011

the best. However they have not included other

important parameters for efficiency of test cases like

fault detecting capability, mutant killing score, and

execution time of test cases, testing cost, test case

design efforts, requirement coveragebility and so

forth. Above discussion concludes that test case

optimization problem is not a single objective but a

multi-objective problem. Moreover, though soft

computing techniques are being explored in this

area, but there is still a good scope to implement

these individual & hybridization of intelligent

techniques in future to optimize the test cases by

considering it as a multi-objective optimization

problem.

4 Conclusion & Future Work
Test data generation is one of the key issues in

software testing. A properly generated test suite may

not only locate the errors in a software system, but

also help in reducing the high cost, efforts

associated with software testing. Present work

surveyed various techniques of software test case

optimization. First we summarized traditional and

advanced test optimization techniques, and then we

identified gaps in existing techniques. Optimization

of test cases is multi-objective optimization, NP-

complete and peculiar nature problem. Soft

computing can be used for these type problems,

whose inexact solutions driving is computationally-

hard tasks such as the solution of “NP-complete

problems”.

In conclusion, a lot of test cases optimization

techniques have been developed for achieving

software testing effectiveness and fault coverage.

Review of existing literatures has identified that

there are several objectives of test case optimization

like maximum number of defect detecting

capability, minimum test design efforts/cost,

minimum execution cost, maximum coveragebility

of client requirements & codes, maximum mutant

killing score and so forth. Therefore optimization of

test cases should be treated as multi-objective

optimization problem. However most of test cases

optimization approaches are single objective. Single

objective formulation of test cases optimization

problem is not justified and not meeting the

objectives of testing. Some objectives are

conflicting in nature, coveragebility of one objective

will suffer other objective while considering all

objectives concurrently. So, there is strong need to

shift the paradigm from single objective test case

optimization to multi-objective test case

optimization. Moreover for these techniques, soft

computing approaches like Genetic Algorithms,

Fuzzy Logic, Artificial Neural Network etc may be

well suited for experimentation and validation

purpose.

References:

[1] [Alberts, 1976] Alberts, D. S., “The economics

of Software”, Proceedings of National

Computer Conference on quality assurance,

held at Montvale, N.J., Vol. 45, pp: 433-442 ,

1976.

[2] [Korel, 1990] Korel, B., “Automated test data

generation”, IEEE Transactions on Software

Engineering, Vol. 16(8), pp: 870- 879, 1990 .

[3] [Dalal, 1996] Dalal, S., Cohen, D., Parelius, J.

and Patton, G., “The Combinatorial Approach

to Automatic Test Generation”, IEEE Software,

Vol. 13(5), pp: 83-87, 1996.

[4] [Yilmaz, 2004] Yilmaz, C., Cohen, M. B.,

Porter, A., “Covering arrays for efficient fault

characterization in complex configurations

spaces”, the Proceedings of Int. Symposium on

Software Testing and Analysis, ACM Sigsoft,

Vol. 29(40), pp: 45-54, 2004.

[5] [Frankl, 1993] Frankl, P. G., and Weyuker, E.

J., “A Formal Analysis of the Fault Detecting

Ability of Testing Methods”, IEEE

Transactions On Software Engineering, Vol.

19(3), IEEE press, 1993.

[6] [Michael, 1997] Michael, C. C., Voas, J. M.,

“Problem of accuracy in prediction of software

quality form directed test", Proceedings of the

Italian Conference on Theoretical Computer

Science (ICTCS), pp:1-12, 1997.

[7] [Hong Zhu, 1995]Hong Zhu “Axiomatic

assessment of control flow-based software test

adequacy criteria” Software Engineering

Journal, September 1995,pp:194-204, 1995.

[8] [Haruka, 2008] Haruka, N., Fraunhofer, R. E.,

“Strategic usage of test case generation by

combining two test case generation

approaches”, Proceedings of The Second IEEE

International Conference on Secure System

Integration and Reliability Improvement, pp:

230-235, 2008.

[9] [Xiao Qu, 2007] Xiao Qu, Myra B. Cohen,

Katherine M. Woolf, “Combinatorial

Interaction Regression Testing: A Study of Test

Case Generation and Prioritization”, published

in ICSM, IEEE ICSM 2007, pp:255-264,

2007.

[10] [Wang, 2007] Wang, X., Qin, Z., Han, F.,

“UML Based Hybrid Model for Generation of

Software Reliability Test Cases”, Journal of

Xi'an Jiaotong University, Vol. 41(4), pp: 421-

425, 2007.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 448 Issue 11, Volume 8, November 2011

[11] [Wong, 1997] Wong, W. E., Horgan J. R.,

Mathur, A. P., and Pasquini, A., “A test set

size minimization and fault detection

effectiveness : A Case study in space

application”, Proceedings of IEEE 21st Annual

International Computer Software and

Application Conference (COMPSAC-97) held

at Los Alamitos, CA, IEEE Press, pp: 552-

528, 1997.

[12] [Tallam, 2005] Tallam, S. and Gupta N, “A

Concept analysis inspired greedy algorithm for

test suite minimization” the sixth ACM

SIGPLAN-SIGSOFT Workshop on program

analysis for software tools and engineering,

held at New York, NY, ACM Press, pp: 35-42,

2005.

[13] [Zeller, 2002]Zeller, A. and R. Hildebrandt,

“Simplifying and isolating failure-inducing

input,” IEEE Transactions on Software

Engineering, vol. 28(2), pp. 183–200, February

2002.

[14] [Phil, 2004]Phil McMin, “Search-based

Software Test Data Generation: A Survey”,

Proceedings in Software Testing, Verification

and Reliability, Vol. 14, pp:105-156, 2004.

[15] [Mala, 2010] Mala, D.J., Mohan, V., “Quality

Improvement and Optimization of Test cases–

A Hybrid Genetic Algorithm Based Approach”,

ACM SIGSOFT Software Engineering notes,

Vol. 35(3), pp: 1-14, ACM Press, 2010.

[16] [Mohan, 2007] Mohan, V., Mala, D. Jeya,

“IntelligenTester – Software Test Sequence

Optimization Using Graph Based Intelligent

Search Agent”, Proceedings of IEEE

International conference on Computational

Intelligence and Multimedia Applications, Vol.

8(7), pp: 22-27, 2007.

[17] [Bendt, 2005] Berndt, D. J., and Watkins, A.,

“High Volume Software Testing using Genetic

Algorithms”, Proceedings of 38th IEEE

International Conference on System Sciences,

held Hawaii, Vol. 8(5), pp: 1-5, 2005.

[18] [Maxwell, 2000] Maxwell, P., Hartanto, I. and

Bentz, I., “Comparing Functional and

Structural Tests”, Proceedings of International

Test Conference, pp: 400-407, 2000.

[19] [Maity, 2005] Maity, S., Nayak, A., “An

Improved Test Generation Algorithms for Pair-

Wise Testing”, Proceedings of the 16th IEEE

International Symposium on Software

Reliability Engineering (ISSRE’05), IEEE

Press, pp: 1-2, 2005.

[20] [Williams, 2000] Williams, A. W.,

“Determination of test configurations for pair-

wise interaction coverage”, Proceedings of 13th

International Conference on the Testing of

Communicating System (Test COM -2000),

held at Ottawa, Canada, pp: 59-74, 2000.

[21] [Leon, 2003] Leon, D., Podgurski, A., “A

Comparison of Coverage-Based and

Distribution-Based Techniques for Filtering

and Prioritizing Test Cases”, Proceedings of the

14th International IEEE Symposium on

Software Reliability Engineering (ISSRE’03),

pp: 442-453, 2003.

[22] [Elbaum, 2002] Elbaum, S., Malishevsky,

A.G., and Rothermel, G., “Test case

prioritization: a family of empirical studies”,

IEEE Transactions on Software

Engineering, Vol. 28(2), pp: 159-182, 2002.

[23] [Harrold, 1999] Harrold, M. J., Rothermel, G.,

Untch, R., Chu, C., “Test-case prioritization: an

empirical study”, Proceedings of the

International Conference on Software

Maintenance, pp: 179-188, 1999.

[24] [Black,2004] Black, J., E. Melachrinoudis and

D. Kaeli, “Bi-Criteria Models for All-Uses Test

Suite Reduction,” 26th International

Conference on Software Engineering,

Edinburgh, Scotland, UK, 2004

[25] [Harrold, 1993] Harrold, M. J., Gupta R.,

Sofifa, M. L., “A Methodology for controlling

the size of test suite”, ACM Transaction on

Software Engineering Methodology, Vol. 2(3),

pp: 270-285, 1993.

[26] [Shin, 2007] Shin, Yoo and Mark Harman,

“Pareto Efficient Multi-Objective Test Case

Selection”, Proceedings of the International

symposium on Software testing and analysis

(ISSTA), held at London, U.K, ACM press,

pp: 140-150, 2007.

[27] [Wong, 1998] Wong, W. E., Horgan, J. R.,

London, S., and Mathur, A. P. , “Effect of test

set size minimization and fault detection

effectiveness”, Journal Software Practice and

Experience, pp: 347-369, 1998.

[28] [Sprenkle,,2004] Sprenkle, S., S. Sampath, E.

Gibson, A. Souter, L. Pollock, ”An Empirical

Comparison of Test Suite Reduction

Techniques for User-session-based Testing of

Web Applications,” Technical Report 2005-

009, Computer and Information Sciences,

University of Delaware, November 2004

[29] [Grindal, 2004] Grindal, M., Lindstrom, B,

Offutt, A. J., and Andler, S. F., “An Evaluation

of combination test strategy for test case

selection”, Technical report HS-IDA-TR-

03001, Organized by Department of computer

Science , University of Skovde. Sweden, 2004.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 449 Issue 11, Volume 8, November 2011

[30] [Kim, 2002] Kim, J. M., Porter, A.,“A

history-based test prioritization technique for

regression testing in resource constrained

environments”, Proceedings of the 24th

International Conference on Software

Engineering, held at Orlando, FL, pp: 119-129,

2002.

[31] [Kim, 2000] Kim, J. M., Porter, A., and

Rothermel. G. “An empirical study of

regression test application frequency”, In Proc.

of the 22nd lnt'l. Conf. on Software. Eng., pp:

126-135, Jun. 2000.

[32] [Varun,2010] Varun Kumar, Sujata, Mohit

Kumar, “Test Case Prioritization Using Fault

Severity”, International Journal of Computer

Sci ence and Technology (IJCST) Vol. 1(1),

September 2010, pp:67-71, 2010.

[33] [Leon , 2000] Leon, D., Podgurski, A., and

White, L.J. “Multivariate visualization in

observation-based testing”, Proceedings of the

22nd International Conference on Software

Engineering (Limerick, Ireland, June 2000),

ACM Press, pp:116-125,2000.

[34] [Fischer, 1981] Fischer, K., Raji, F.,

Chruscicki, A, “A Methodology for Retesting

modified Software”, Proceedings of IEEE

National Telecommunication conference, Vol-

6(3), held at Piscataway, NJ, IEEE Press, pp: 1-

6, 1981.

[35] [Miller, 1988] Miller, E. F., “Advances in

Automating Software Testing”, Proceedings of

Software Engineering Congress, pp: 202-212,

1988.

[36] [Benedusi, 1988] Benedusi, P., Cmitili, A.,

DeCarlini, U., “Post-Maintenance Testing

based on path changes analysis”, Proceedings

of Conference on Software Maintenance , pp:

352-361, 1988.

[37] [Weiser, 1984] Weiser, M., “Program Slicing”

in IEEE Transaction on Software Engineering,

Vol. 10(4), pp: 352-357, 1984.

[38] [Agarwal, 1991] Agrawal, H., DeMillo R.A.,

Spafford, E H, “Dynamic Slicing in the

presence of unconstrained pointers”,

Proceedings of ACM Symposium on Testing,

Analysis & Verification(TAV-4), held at New

York, NY, ACM Press, pp: 60-73, 1991.

[39] [Agarwal, 1990] Agrawal, H., Horgan, J R.,

“Dynamic Program Slicing”, Proceedings of

Conference on programming language Design

& Implementation (PLDI-90), held at New

York, NY, ACM Press, Vol. 25(6), pp: 246-

256, 1990.

[40] [Ferrante, 1984] Ferrante, J., Ottenstein, K. J.

and Warren, J. D., “Program Dependence

Graph and it’s use in Optimization”,

Proceedings of 6th Springer Colloquium on

International Symposium on Programming,

held at London, Springer Press, pp: 125-132,

1984.

[41] [Lei, 2005] Lei, Yong, and James, H. Andrews,

“Minimization of Randomized Unit Test

Cases”, Proceedings of the 16th IEEE

International Symposium on Software

Reliability Engineering (ISSRE’05) IEEE

Computer Society, pp: 1-13, 2005.

[42] [Agrawal, 1994] Agrawal H., “Dominators,

super blocks, and program coverage,” 21st

ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages,

Portland, Oregon, 1994.

[43] [Agrawal, 1999] Agrawal H.,, “Efficient

Coverage Testing Using Global Dominator

Graphs,” 1999 ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software

Tools and Engineering, Toulouse, France,

1999.

[44] [Marre, 2003] Marre M. and A. Bertolino,

“Using Spanning Sets for Coverage Testing,”

IEEE Transactions on Software Engineering,

Vol.29(11), pp:974-984, Nov. 2003.

[45] [Sampath, 2004] Sampath S., V. Mihaylov, A.

Souter and L. Pollock ”A Scalable Approach to

User-Session based Testing of Web

Applications through Concept Analysis”, in

proceedings of Automated Software

Engineering, 19th International Conference on

(ASE’04) Linz, Austria, September 2004,

[46] [Rothermel, 1998] Rothermel G., M.J Harrold,

J. Ostrin, and C. Hong, “An Empirical Study of

the Effects of Minimization on the Fault

Detection Capabilities of Test Suites,”

International Conference on Software

Maintenance, November 1998.

[47] [Horgan,1992] Horgan J.R. and S.A. London,

“ATAC: A data flow coverage testing tool for

C,” in Proceedings of Symposium on

Assessment of Quality Software Development

Tools, pp: 2-10, May 1992.

[48] [Jones,2003] Jones J. A. and M. J. Harrold,

“Test-Suite Reduction and Prioritization for

Modified Condition/Decision Coverage,” IEEE

Transactions on Software Engineering , 29(3),

pp:195-209, March 2003.

[49] [Graves,2001] Graves, T. L., Harrold, M. J.,

Kim, J. M., Porter, A.,and Rothermel, G. “An

empirical study of regression test selection

techniques”, ACM Transactions on Software

Engineering and Methodology 10, 2 (April,

2001), pp:184- 208, 2001.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 450 Issue 11, Volume 8, November 2011

[50] [Elbaum, 2000] Elbaum, S., Malishevsky,

A.G., and Rothermel, G. “Prioritizing test cases

for regression testing”. Proceedings of the 2000

International Symposium on Software Testing

and Analysis (Portland, OR, August 2000),

pp:102-112, 2000.

[51] [Rothermel,, 1999] Rothermel, G., Untch, R.,

Chu, C., and Harrold, M.J. “Test-case

prioritization: an empirical study”. Proceedings

of the 1999 International Conference on

Software Maintenance (August, 1999), pp:179-

188, 1999.

[52] [Rothermel,, 2001] Rothermel, G., Untch, R.,

Chu, C., and Harrold, M.J “Prioritizing test

cases for regression testing”, IEEE

Transactions on Software Engineering 27, 10

(October 2001), pp:929-948, 2001.

[53] [Mohanty, 2010] Mohanty, R., Ravi, V., Patra,

M. R., “The application of intelligent and soft-

computing techniques to software engineering

problems: A Review”, International Journal of

Information and Decision Sciences, Vol. 2(3),

pp: 233-272, 2010.

[54] [Thomas, 2006] Thomas Weise “Global

Optimization Algorithms–Theory and

Application”, second edition published by

Thomas Weise, Licensed under GNU FDL,

2006.

[55] [Berndt, 2003] Berndt,D. J. Fisher, L. Johnson,

J. Pinglikar, and A. Watkins, “Breeding

Software Test Cases with Genetic Algorithms”,

Proceedings of the 36th (IEEE) Hawaii

International Conference on System Sciences,

Waikoloa, Hawaii, pp:1-10, Jan 2003.

[56] [Mohapatra, 2009] Mohapatra, D., Prachet, B.,

“Automated Test Case Generation and its

optimization for Path Testing Using Genetic

Algorithm and Sampling”, Proceedings of

International Conference on Information

Engineering, pp: 643-646, 2009.

[57] [Prabahar, 2009] Prabahar, T., James, Godwin,

Guru, Subramani S., “Intelligent Test Case

Optimization Using Hybrid Genetic

Algorithm” , the International J. of Math. Sci.

& Engg. Appls. (IJMSEA), Vol. 3(1), pp: 191-

208, 2009.

[58] [Baudry, 2002] Baudry, B., Fleurey, F.,

Jézéquel, Jean-Marc, Yves, L.T., “Automatic

Test Cases Optimization using a

Bacteriological Adaptation Model: Application

to .NET Components’’, IEEE 17th

International Conference, pp: 253-256, 2002.

[59] [Panda, 2008] Panda, V.R., Satanik, A.B.,

“Efficient Software Test Case Generation

Using Genetic Algorithm Based Graph

Theory”, Proceedings of first IEEE

International Conference on Emerging Trends

in Engineering and Technology (ICETET), pp:

298-303, IEEE Press, 2008.

[60] [Dorigo, 1996] Dorigo, M., Maniezzo, V.,

Colorni, A., “The Ant System: Optimization by

a Colony of Cooperating Agents”, IEEE

Transactions on Systems, Man, and

Cybernetics-Part B, Vol. 26(1), pp: 29-41,

1996.

[61] [Dorigo, 1991] Dorigo, M., Maniezzo, V.,

Colorni, A., “Positive Feedback as a Search

Strategy”, Technical Report No. 91- 016, held

at Politecnico di Milano, Italy, 1991.

[62] [Huaizhong, 2005] Huaizhong, L., Lam, C.P.,

“An Ant Colony Optimization Approach to

Test Sequence Generation for State-based

Software Testing”, Proceedings of the Fifth

IEEE International Conference on Quality

Software (QSIC’05), IEEE Press, pp: 255-264,

2005.

[63] [Singh, 2010] Singh, Yogesh, Kaur, A., Suri,

B., “Test Case Prioritization using Ant Colony

Optimization”, ACM SIGSOFT Software

Engineering Notes , Vol. 35(4), pp: 1- 7, 2010.

[64] [Mala, 2009] Mala, D.J., Mohan, V., “ABC

Tester - Artificial Bee Colony Based Software

Test Suite Optimization Approach”,

International Journal of Software Engineering,

Vol. 2(2), pp: 15- 43, 2009.

[65] [Shihab, 2000] Shihab, A. Hameed,

“Framework For Intelligent Meaningful Test

Data Generation Model-IMTDG”, WOO, pp:

11-16, IEEE Press, 2000.

[66] [Crina, 2009] Crina, G., Ajith, A., “On A Class

of Global Optimization Test Functions” in ICS

AS CR, pp: 247-252, 2009

[67] [Ibrahim, 2006] Ibrahim, W., ElChouemi, A.,

Hesham, El-Sayed, “Novel Heuristic and

Genetic Algorithms for the VLSI Test

Coverage Problem”, Vol. 3 (6), pp: 402-408,

IEEE Press, 2006.

[68] [Wenyan, 2008] Wenyan Li., Wang Jiyi, Lin

Gaomin, “Generating and reducing test case

based on covering rough sets”, Proceedings of

the 5th IEEE International Conference on

Software Engineering, held at Los Alamitos,

CA, pp: 439-449, IEEE Press, 2008.

[69] [Junmin, 2008] Junmin, Y., Zemei, Z.,

Zhenfang, Z., Wei, D., Zhichang, Q., “Design

of Some Artificial Immune Operators in

Software Test Cases Generation”, Proceedings

of 9th International Conference for Young

Computer Scientists(ICYCS) Vol. 8(2), Crown

Copyright, pp: 2302-2307, 2008.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 451 Issue 11, Volume 8, November 2011

[70] [Swain, 2010] Swain, S. K., Mohapatra, D. P.,

Mall, R., “Test Case Generation Based on Use

case and Sequence Diagram”, International

Journal of Software Engineering,Vol.3(2), pp:

21- 52, 2010.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manoj Kumar, Arun Sharma, Rajesh Kumar

ISSN: 1790-0832 452 Issue 11, Volume 8, November 2011

