
Estimation of HW/SW Cost Parameters in Altera FPGA Design

Environment
1
M.JAGADEESWARI,

2
M.C.BHUVANESWARI

1
Department of Electronics and Communication Engineering

Sri Ramakrishna Engineering College,

Coimbatore-641022,

INDIA

jagadee_raj@rediffmail.com, http://www.srec.ac.in
2
Department of Electrical and Electronics Engineering

P.S.G College of Technology,

Coimbatore 641 004,

INDIA

Abstract: - This paper explains the method for obtaining Hardware/Software (HW/SW) cost parameters

such as hardware area, hardware time, software area and software time using Altera FPGA design

environment. HW/SW partitioning of FFT and JPEG FDCT are derived using multi-objective

optimization techniques Weighted Sum Genetic Algorithm (WSGA), Elitist Non-dominated sorting

Genetic Algorithm (ENGA) and Multi-Objective Particle Swarm Optimization using Crowding Distance

(MOPSO-CD) algorithms. Experimental results show that ENGA is effective in obtaining the HW/SW

partition that obtains both minimum area and minimum time for both the applications.

Key-Words: - Evolutionary algorithms, HW/SW partitioning, Multi-objective optimization, Pareto-optimal

solutions.

1 Introduction

This paper deals with the HW/SW partitioning of

FFT and JPEG-FDCT applications in such a way as

to minimize both the area and execution time of the

partition. Embedded system involves the design of

functions that may be implemented in hardware

using hardware blocks or Verilog code or as

software by writing program to run on an embedded

processor. The decision to partition sections into

HW/SW is dependent on the determination of the

cost values for the functionality of the embedded

systems. The hardware implementation costs consist

of hardware resources (also called data-path

resources), control logic, registers, and

communication structures like bus and multiplexer

circuits. The software costs for each task may be

estimated from memory latency, channel (bus)

speed, total amount of data on the edge and the

number of tokens for each firing.

Altera Quartus II FPGA design environment is used

for the estimation of cost parameters such as the

hardware area, the software area, the hardware time

and the software time. Two data dominated

applications related to DSP and image processing

are partitioned using the multi-objective

optimization algorithms WSGA, ENGA and

MOPSO-CD.

2 HW/SW Design Flow

Fig.1 shows the HW/SW design flow of the

embedded system consisting of implementation of

the system functions in the hardware and the

software, and the merging of the results to evaluate

the performance of the total system. The first step in

the design is to decide what parts of the complete

system are done in hardware using the hardware

packages, HDL code and what parts are done by

writing a program to run on a given processor. This

is a manual or semi-manual process and is the most

difficult system design phase.

The hardware part of Fig.1 as in Zainalabedin

Navabi [1] becomes a description of various

hardware modules that are described in an HDL or

are available as predefined hardware modules.

Using tools and design environments, a hardware

designer can choose to code parts of the design in

Verilog/VHDL or use parts from a library of pre-

defined modules. The hardware design

environments include configurable parts for

commonly used components such as arithmetic

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 430 Issue 11, Volume 8, November 2011

functions, register banks and counters. The software

part describes the memory contents of the processor

that runs the program. The designer may choose to

code the part in a high-level language and compile it

or directly code it in assembly or machine language.

C/C++ is generally used to describe the part of the

design that is to be implemented in software part.

The middle of the diagram shows a block that

specifies interconnection of the hardware and the

software parts. The interconnection may be done

using simple shared bus, interconnection wires, or a

complex switch structure. Usually, embedded

system design environments have their own bus

structures. Handshaking, timers, block transfer

hardware and other high-level transactions take

place in this bus.

Fig. 1. Hardware/Software System Design Flow

The target architecture assumed in this work is a

single hardware module and a single software

processor. The Altera Quartus II is used for

implementation of the tasks in hardware module and

the NIOS II processor is used for implementation of

the tasks in software processor. The Altera Quartus

II design environment provides a complete, multi-

platform design environment that easily adapts to

the design needs.

2.1 ALTERA QUARTUS II Design Environment

The Altera Quartus II is a comprehensive

environment for System-On-a-Programmable-Chip

(SOPC) design. The Quartus II software includes

solution for all phases of FPGA and CPLD design.

The Quartus II includes the modules such as

analysis and synthesis, partition merge, fitter,

assembler, timing analyzer, so on and so forth.

Quartus II synthesis generates various report and log

files showing the details of compiler settings, device

settings, elapsed time and the resources used. The

hardware information generated by the compiler

includes diagram showing FPGA utilized areas,

interconnections, and the logic diagrams. An

important part of the information provided by the

synthesis tool is the timing information. This

includes the setup and the hold time of registers, the

maximum clock frequency and the worst-case

delays. This is obtained in the timing analyzer

section of the compilation report (Quartus II

handbook version 9.1).

2.2 NIOS II Integrated Development

Environment

The Altera Quartus II has an inbuilt soft core called

NIOS II processor, which is equivalent to a 32-bit

micro controller. The NIOS II processor is a

general-purpose RISC processor and a configurable

soft-core processor. In this context ‘configurable’

means that features can be added or removed on a

system-by-system basis to meet the performance or

the price goals. Soft-core comes in ‘soft’ design

form (i.e., not in silicon) and can be targeted to any

Altera FPGA family. The term “NIOS II processor

system” refers to NIOS II processor core, a set of

on-chip peripherals, on-chip memory, and interfaces

to off-chip memory, all implemented on a single

Altera chip. Altera uses Integrated Development

Environment (IDE) for the development and testing

of the software programs (C/C++ programs) that run

on the processor of the embedded system. NIOS II

IDE provides several project management tasks that

speed up the development of embedded

applications. It includes C compiler, necessary

program entry and test utilities. This phase

compiles the C program and generates memory

contents for the program memory of NIOS II. The

SOPC builder Graphical User Interface (GUI)

enables hardware designers to configure NIOS II

processor systems with any number of peripherals

and memory interfaces. This generates software files

Common

Simulation

Environme

nt

Hardware/Software Partitioning

Embedded

System

Software

Inputs

C++

Code

C

 Code

Assembl

y Code

Hardware

Inputs

Use VHDL

Use

Discrete

Library

Modules

Configurab
le Parts

Compiler Hardware Synthesizer

I

n

t
e

r

c
o

n

n
e

c

t
i

o

n

Binder or Linker

Functions Functio

ns

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 431 Issue 11, Volume 8, November 2011

for the embedded software development such as a

memory-map header file and component drivers [2].

3 Determination of Cost Parameters

Most of the tasks in the benchmark DAG can be

realized using adders and registers or based on add

and shift operations. For example, multiplication

and division are estimated to consume two full

adders, whereas subtraction consumes one [3]. In

this research, the hardware area, software area,

hardware time and software time of 8 bit full adder

are determined using Altera Quartus II FPGA

design environment. The communication delay

between the hardware and the software tasks is

generated at random between one to twenty micro

seconds [4], [5].

The hardware implementation of a full adder is done

in Quartus II and programmed into Cyclone II

EP2C5T144C6. The size of a hardware

implementation is expressed in Look-Up Tables

(LUTs), using a specific library of gates required for

implementation of the hardware. The software

implementation is done in NIOS II and programmed

in C. The area of the software implementation is

expressed as the memory utilized by the tasks when

implemented in software. Table 1 lists the relevant

information for full adder that is determined from

the synthesis results in Quartus II design

environment.

3.1 Hardware Task Area

Hardware area is determined by synthesizing the

VHDL/Verilog code of the 8-bit full adder into

Quartus II EP2C5T144C6 device. From the

synthesis results, the number of LUTs occupied for

one 8-bit full adder is found to be 10. The area

consumed by any task of the DAG in an embedded

system is dependent on the accumulated number of

adders. Using the information from Table 6.1, an

estimate of the area required for multiplier task is

obtained as (2 x 10) = 20 LUTs and that of

subtractor task is same as that of the adder task. In

Altera FPGA, Cyclone III uses each LUT as a 512 x

1-bit RAM [6].

3.2 Hardware Execution Time

Hardware execution times of a task are estimated by

running Quartus II timing analyzer. The total

propagation delay of the gate/task encountered is

taken as the hardware execution time. It also refers

to the time taken for the output to reach from the

source input pin to destination output pin. From the

simulation results of the timing analyzer, the

hardware execution time of a full adder is found as

18.95 nano seconds. The hardware execution time

of the multiplier is calculated as twice the execution

time of a single full adder and the hardware

execution time of the subtractor is the same as the

execution time of a single full adder.

Table 1. Estimated Values for 8-bit Full Adder

S.

no

Parameter Value

QUARTUS II OUTPUT

1.
Logic element usage by

number of LUT inputs
10/4608

2.
Hardware Execution Time

(ns)
18.95

3. Family Cyclone III

4. Device EP2C5T144C6

NIOS II IDE OUTPUT

5.
Program size (code +

initialized data)
44KB

6. Bytes free for stack + heap 4092 bytes

7.
Software Execution Time

(µs)
2.09

3.3 Software Memory Analysis and

Execution Time Evaluation
The C program for the full adder is compiled using

NIOS II core. After the completion of the project

build, a report of the software is created in the

environment’s console. This report indicates the

memory usage of the program (program size) and

the free bytes available for the stack and heap. It

also indicates whether the allocated memory was

sufficient for the given software program. The

program memory specifies the software memory

required for full adder which provides the software

area for the system. The software area is found to be

44 KB. The software time is the time required to

compile the C program of full adder in NIOS II

environment which is found to be 2.09 micro

seconds.

4 WSGA for Hardware/Software

Partitioning
WSGA is similar to conventional GA. It uses a

classical approach of weighted sum of objectives

and is used to solve multi-objective optimization of

hardware/software partitioning problem. The steps

of optimization using WSGA is given below

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 432 Issue 11, Volume 8, November 2011

Step 1: Generate an initial population randomly

containing ‘N ’individuals in the population.

Step 2: Calculate the values of the cost and

execution time for the generated

individuals.

Step 3: Calculate the fitness F of each individual

∑
=

=
M

i

ii xFwxF
1

)()(

Weight vector ‘w’ is randomly generated

for each solution during selection phase of

each generation so that the search space is

widened in all direction instead of having a

fixed search direction, such that∑
=

=
M

i

iw
1

1.

M represents the number of objectives

considered for optimization.

Step 4: Select a pair of individuals using the

selection probability given as

∑
=

=
i

j

j

i

F

F
P

1

Step 5: For each selected pair apply crossover

operation to generate two new individuals

with a crossover probability.

Step 6: For each bit value of the individuals

generated, mutation operation is applied

with a mutation probability.

Step 7: Randomly remove old individuals from the

population and replace with new individuals

having optimal fitness value for the next

generation.

This approach aims to stipulate multiple search

directions in a single run without using any

additional parameters.

5 ENGA for Hardware/Software Partitioning

Genetic algorithms are capable of sampling large

and complex search spaces. For a multi-objective

optimization problem, a simple GA is not sufficient

because these algorithms are well suited only for

single-objective optimizations; hence, the multi-

objective evolutionary algorithm proposed by Deb

(2002) was used for the problem analysis. Elitist

Non-dominated GA differs from simple GA mainly

by fitness assignment procedure. Fitness assignment

in ENGA is done by two methods.

(i) Non-domination sorting of individuals and

identify the different non-domination

fronts.

(ii) Apply crowding distance strategy to

generate next generation population.

The overall ENGA procedure for hardware/software

partitioning is outlined in the following steps.

Step 1: Combine parent population (Pt) of size N

and offspring population (Qt) of size N

and create a population (Rt) of size 2N.

Step 2: Perform non-dominated sorting to Rt and

identify the different fronts Fi, i=1, 2…,

etc.

Step3: Set new population (Pt+1) empty and

initialize counter ‘i’ to one.

Until NFP it <+
+1 , perform Pt+1 =

Pt+1U Fi and increment the counter.

Step 4: Perform crowding sort procedure and

include the most widely spread solutions

into Pt+1. For each objective m=1, 2...M,

sort the individuals in the descending

order of fitness values and assign large

distance to the boundary solutions,

∞==
lII dd

1
 in each non-domination

fronts. For all other individuals, j = 2 to

(l-1), assign distances as given below

minmax

)1()1(

mm

I

m

I

m

II ff

ff
dd

m
j

m
j

m
j

m
j −

−
+=

−+

 The index Ij denotes the solution of the j
th
 member

in the non-domination front, ‘l’ represents the

number of solutions in the non-domination front.

Step 6: Create offspring population Qt+1from Pt+1

using crowding tournament selection,

crossover and mutation operators.

Step 7: Repeat step 1 until the number of

generations are reached.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 433 Issue 11, Volume 8, November 2011

The parameters fm
max

 for the first objective (time)

corresponds to the value of all-software

implementation. For second objective (cost), it

refers to the value of all-hardware implementation.

The parameter fm
min

 for the first objective

corresponds to the value of all-hardware

implementation and for the second objective; it

refers to the value of all-software implementation.

6 MOPSO-CD for Hardware/Software

Partitioning

MOPSO is based on the concept of PSO with slight

variations. In PSO (Kennedy and Eberhart, 1995), a

population (swarm) is initialized with random

individuals, called “particles”. All particles have

fitness values that are evaluated by the function to

be optimized. Each particle flies through the

problem space with a velocity, which is constantly

updated by the particle’s own experience and the

experience of the particle’s neighbors, to search for

optima iteration by iteration. Compared to genetic

algorithms, the advantages of PSO are that it is easy

to implement and there are fewer parameters to

adjust. The velocity of each particle is updated by

two best values. The first one is the best solution it

has achieved so far. This value is called pbest.

Another best value tracked by the optimizer is the

best value obtained so far in the neighborhood of

each particle. This best value is a local best and is

called lbest. If the neighborhood is defined as the

whole population, each particle will move towards

its best previous position and towards the best

position it has ever achieved in the whole swarm;

this version is called the gbest model. In this paper

multi-objective optimization, using MOPSO-CD

(Tsou et al., 2006) is applied for hardware/software

partitioning problem. The pseudo code is given

below

 Step 1: Initialization ()

 Step 2: generation ← 1

 Step 3: while generation < MAX GEN do

 Step 4: Flight ()

 Step 5: Calculate Objective Vector ()

 Step 6: Update Non-dominated Set ()

 Step 7: generation =generation + 1

 Step 8: end while

The steps used for the flight procedure is given

below

Step 1: Apply non-domination sorting for the

particles in the population and are stored

in an archive.

Step 2: Sort gbest particles based on crowding

distance

Step 3: If the particles are dominated by top 10%

less crowded area randomly select those

particles as gbest particles else select from

the rest of the archive, to fill up the

population.

Step 4: The velocities of all particles at the time

k+1 are updated using the particles

objective values, which are functions of

the particles current positions (
i

kx) in the

design space at time k. The objective

value of the particle determines which

particle has the best global value (
k

gp) in

the current swarm, and it determines the

best position (p
i
) of each particle over

time ∆t, i.e., in the current and all

previous moves. The velocity updating

formula uses these two data on the

particle in the swarm, along with the

effect of current motion (
i

kv), to provide a

search direction (
i

kv 1+) for the next

generation. Update the velocity of the

particle using

t

xp
randc

t

xp
randcwvv

i

k

g

k

i

k

i
i

k

i

k
∆

−
+

∆

−
+=

+

)()(
211

where w represents an inertia factor, c1 a

self confidence factor and c2 a swarm

confidence factor, and these values can be

adjusted to provide better results. Normally

w, c1 and c2 can be fixed at 0.5, 1.5 and 1.5,

respectively.

Step 5: Update position using tvxx i

k

i

k

i

k ∆+=
++ 11

7 Applications

7.1 Case Study 1: DSP Applications

FFT algorithm is chosen for implementation in DSP

applications. The algorithm is also efficient in the

sense of the extendibility of the problem size. It is

possible to extend from 8-point to 16-point FFT

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 434 Issue 11, Volume 8, November 2011

algorithm and beyond by increasing the number of

butterfly nodes. The 8-point FFT is first designed,

the DAG of which is shown in Fig. 2.

Fig. 2. DAG of 8-point FFT

Nodes 1, 2 and 3 are used for arranging the input

data and are implemented as software-only tasks.

Tasks 4 to 15 are butterfly computation nodes which

are allowed to be implemented in both hardware and

software. Butterfly node is assumed as a

combination of one adder, one subtractor and one

multiplier. The nodes 16 to 23 are dummy nodes for

inputting and outputting data and they are

implemented in software [7], [8]. The estimation of

HW/SW area and time for the tasks in DAG of FFT

is obtained using Quartus II development tools and

NIOS II core respectively and is summarized in

Table 2.

Table 2. 8-Point FFT Task Profile

Task Description

HW

execution

time (ns)

HW

area

(LUTs)

SW

execution

time (µs)

SW

area

(KB)

1,2,3 Input
Manipulator

3.00 3 1.00 11

4,5…
15

Butterfly
Node

75.70 40 8.36 176

7.1.1 Experimental Results

The butterfly node in the DAG of FFT is considered

to be constructed using two adders and one

multiplier task. The data in Table 1 are used for

obtaining the task profile for FFT. Table 2 shows

the task profile of 8-point FFT. The task profile of

16-point and 32-point FFT is generated based on 8-

point FFT. The HW/SW partitioning is performed

using multi-objective evolutionary algorithms

namely WSGA [9], [10], ENGA [9], [11], [12] and

MOPSO-CD [13] with the parameter settings

indicated in Table 3.

Table 3. Parameter Settings Used in Multi-Objective

Algorithms for FFT Benchmark

S.

No
Parameter WSGA NSGA

MOPSO

-CD

1. Population

Size

Number of

nodes

(Rounded)

Number of

nodes

(Rounded)

-

2. Crossover

Probability
0.9 0.9 -

3. Mutation

Probability
0.02 - -

4. Type of

Crossover
Two Point Two Point -

5. Number of

Generations
100 100 100

The results obtained using WSGA, ENGA and

MOPSO-CD algorithm are tabulated and compared

in Table 4. From the results obtained it is found that

ENGA and MOPSO-CD generates same optimal

mean area and mean execution time for 8 point FFT.

Table 4. Simulation Results Obtained using WSGA,

ENGA and MOPSO-CD for FFT Benchmark

Table 4. Run Time Comparison of Multi-Objective
Algorithms for FFT Benchmark

WSGA ENGA MOPSO-CD

Bench

mark

Circui

t

Mea

n

Area

(KB)

Mean

Execu

tion

Time

(µs)

Mea

n

Area

(KB)

Mean

Execu

tion

Time

(µs)

Mean

Area

(KB)

Mean

Executi

on

Time

(µs)

8-

Point

 FFT

236 36.83 80 7.23 80 7.23

16-

Point

FFT

2001 86.58 1001 21.71 1941 73.85

32-

Point

FFT

5894 257.20 3721 117.63 5593 217.90

Run Time (Seconds) Benchmark

Circuit WSGA ENGA MOPSO-CD

8-Point FFT 1.70 1.06 0.77

16-Point FFT 7.02 3.38 6.50

32-Point FFT 41.76 13.16 35.14

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 435 Issue 11, Volume 8, November 2011

For the other benchmark FFT DAGs, ENGA

obtain less mean area and mean execution time

with lesser run time compared to WSGA and

MOPSO-CD. Fig.3 shows the run time,

comparison plot derived on simulating the

multi-objective algorithms. It is proved that

ENGA generates pareto-optimal solutions faster

than WSGA and MOPSO-CD algorithms.

7.2 Case Study 2: Image Applications

JPEG is widely used as a compression standard

for both gray scale and color images. The DAG

of the JPEG compression algorithm shown in

Figure 4 consists of tasks such as Read-BMP,

RGB2YCbCr, Encoder and Write-JPEG are

forced to be implemented in software for

convenience as in Wiangtong [7]. The modules

namely Level Shifters, 2D-FDCTs (2

dimensional Fast Discrete Cosine Transform)

and Quantizers can be implemented on either

software or hardware. Among them FDCTs

consume about 81% of the over all timing when

implemented in software.

Fig. 3. Run Time Comparison Plot for FFT

Benchmark

HW/SW implementation for JPEG-FDCT is

carried out in this case study. Fig.5 shows the

hardware structure of FDCT. DAG of JPEG-

FDCT contains nodes with adder, subtractor,

multipliers and I/O registers and the number of

nodes and edges present in the DAG are 134

and 169 respectively.

Fig. 4. DAG of JPEG Compression

7.2.1 Experimental results

The values from Table 1 are used for HW/SW

partitioning of JPEG-FDCT benchmark. The

parameter settings used for the simulation of the

multi-objective algorithms for JPEG-FDCT

benchmark is shown in Table 6. Fig.6, Fig.7

and Fig.8 shows the optimal solutions obtained

by simulating WSGA, ENGA and MOPSO-CD

algorithms respectively for 30 and 100

generations. The graph was plotted against area

in kilo bytes and execution time in micro

seconds. Fig.9 shows the relative comparison of

the multi-objective algorithms for the JPEG-

FDCT benchmark DAG. It is found that ENGA

algorithm finds better optimal solutions than

WSGA and MOPSO-CD algorithms.

WSGA
ENGA

MOPSO-CD

8-point FFT

16-point FFT

32-point FFT

0

5

10

15

20

25

30

35

40

45

Run Time

Performance of Multi-objective Algorithms

8-point FFT 16-point FFT 32-point FFT

Read.

BMP

RGB2YCbCr

Level

Shifter
Level

Shifter

Level

Shifter

2D-

FDCT

2D-

FDCT
2D-

FDCT

Quantize

Quantize

Quantize

Zigzag &

Huffman

Encode

Write.

JPG

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 436 Issue 11, Volume 8, November 2011

The multi-objective optimization algorithms

WSGA, ENGA MOPSO-CD are simulated with

a uniform population size and are run for 30 and

100 generations. It is noted that ENGA searches

pareto-optimal solutions faster than WSGA and

MOPSO-CD and is shown in Table 7. This

proves that ENGA outperforms the other two

algorithms in terms of search time and in

generating better pareto-optimal solutions.

Fig. 5. Hardware Structure of JPEG-FDCT

Table. 6. Parameter Settings used for JPEG-

FDCT Benchmark

S.No Parameter WSGA NSGA
MOPSO-

CD

1. Population

Size

Number

of nodes

(Rounded)

Number

of nodes

(Rounded)

-

2. Crossover

Probability
1 1 -

3. Mutation

Probability
0.02 - -

4. Type of

Crossover
Two Point Two Point -

5. Number of

Generations
100 100 100

Fig. 6. Simulation Results Obtained using

WSGA

Fig. 7. Simulation Results Obtained using

ENGA

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 437 Issue 11, Volume 8, November 2011

Fig. 8. Simulation Results Obtained using

MOPSO-CD

Fig. 9. Comparison plot of multi-objective

Optimization Techniques for JPEG-FDCT

Benchmark

Table 7. Comparison of Run Times of Multi-

Objective algorithms for JPEG-FDCT

Benchmarks

Algorithm Run Time (Sec)

WSGA 66.48

ENGA 12.39

MOPSO-CD 16.89

8. Conclusion
This paper explains how Altera Quartus II design

environment is used for obtaining HW/SW cost

parameters such as the hardware area, the hardware

time, the software area and the software time.

HW/SW partitioning of FFT and JPEG FDCT are

derived using the multi-objective optimization

techniques WSGA, ENGA and MOPSO-CD

algorithms. In summary, ENGA is found to perform

better and generate pareto-optimal solutions faster

than WSGA and MOPSO-CD for both the

applications.

REFERENCES

[1] Zainalabedin Navabi, Embedded Core

Design with FPGAs, Tata McGraw Hill,

2008.

[2] Quartus II Handbook Version 9.1 :

http:www.altera.com

[3] Harkin, J., McGinnity, T. M. and Maguire,

L. P. “Partitioning methodology for

dynamically reconfigurable embedded

systems” IEE Proc. Computer Digital Tech.,

Vol. 147, No. 6, pp. 391-396, 2000.

[4] Wu Jigang and Thambipillai Srikanthan,

“Algorithmic aspects of hardware/software

partitioning: 1D search algorithms”, IEEE

Transactions on Computers, Vol. 59, No. 4,

pp. 532-544, 2010.

[5] Wu Jigang, Qiqiang Sun and Thambipillai

Srikanthan, “Multiple-choice

hardware/software partitioning: computing

models and algorithms”, in Proceedings of

IEEE, pp. V2-61 – V2-65, 2010.

[6] Brain Baldwin and William P. Marnane,

“An FPGA technologies area examination

of the SHA-3 hash candidate

implementations”, Cryptology ePrint

Archive: Report 2009/603.

[7] Theerayod Wiangtong, “Hardware/software

partitioning and scheduling for

reconfigurable systems”, Ph.D thesis,

Imperial College, London, 2004.
[8] Theerayod Wiangtong, Peter Y.K. Cheung

and Wayne Luk, “Tabu search with
intensification strategy for functional
partitioning in hardware-software co-
design”, in Proc. of the 10

th
 annual IEEE

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 438 Issue 11, Volume 8, November 2011

symposium on Field-Programmable Custom
ComputingMachines, pp. 297-298, 2002.

[9] Deb, K. “Multi-objective Optimization

using Evolutionary Algorithms”, John

Wiley, and Sons Ltd, 2002.

[10] Deb, K. and Goldberg, D. E. “An

investigation of the nichie and species

formation in genetic function optimization”,

in Proc. of Third International Conference

on Genetic Algorithms, pp. 42-50, 1989.

[11] Deb, K., Pratap, A., Agarwal, S. and

Meyarivan, T. “A Fast and elitist

multiobjective genetic algorithm: NSGA-

II”, IEEE Transactions on Evolutionary

Computation, Vol. 6, pp. 182-197, 2002.

[12] Blickle, T. “Theory of evolutionary

algorithms and applications to system

Synthesis”, Ph.D. thesis, Swiss Federal

Institute of Technology, Zurich, 1996.
[13] Tsou, C. S., Fang, H. H., Chang, H. H.

and Kao, C. H. “An improved particle
swarm pareto optimizer with local search
and clustering”, Lecture Notes in Computer
Science, 4247, pp. 400-406, 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS M. Jagadeeswari, M. C. Bhuvaneswari

ISSN: 1790-0832 439 Issue 11, Volume 8, November 2011

