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Abstract: - This paper studies the characteristics of an Ultra-Wideband (UWB) communication system 
employing Impulse Radio techniques and, specifically, the effects of the matched filter of a correlator receiver 
in the performance of such a system. Such effects are evaluated in terms of the Bit Error Rate (BER) for a 
Binary Pulse Position Modulation (BPPM) scheme, in an indoor multipath propagation channel and in the 
presence of additive white Gaussian noise (AWGN). The case of imperfect channel estimation is taken into 
account, while comparisons with perfect channel estimation are performed. The dependence of BER on 
parameters such as the signal to noise ratio (SNR), the number of estimation pilot pulses and correletor taps, is 
finally derived. It is shown that there is an optimum number of correlator taps for best BER performance 
depending on the channel estimation procedure. 
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1 Introduction 
UWB communications have attracted considerable 
interest, targeting applications in high-speed data 
transfer wireless communication systems [1], [2]. A 
major benefit of such systems is the achievement of 
high data rates, with low power consumption and 
low system implementation cost. UWB systems are 
characterized as systems with spectral bandwidth 
greater than 500 MHz or with a fractional 
bandwidth greater than 20% [1]. One of the 
techniques employed in UWB communications is 
the Impulse Radio (IR), which uses trains of pulses 
of very short duration (of the order of a 
nanosecond). Due to the large bandwidth used, a 
special design in both transmitters and antennas is 
required [3], [4]. Various modulation schemes can 
thereafter be employed, including on–off keying 
(OOK), pulse amplitude modulation (PAM), pulse 
position modulation (PPM) and phase shift keying 
(PSK) [5], [6]. In this paper, for the purpose of the 
system performance characterization, BPPM is 
selected and equalization at the receiver is 
performed via the use of a filter matched to the 
waveform of pulses as they arrive at the receiver. 
BER calculation is carried out with the help of a 
simulation program, whereby the impact of 
propagation through the multipath channel is 
included, whilst imperfect channel estimation is 

assumed. The article is organized as follows: 
Section 2 describes the signal model; in Section 3 
we analyze theoretically the error probability; 
finally, in Section 4 numerical results are presented 
and discussed. The article is concluded in Section 5. 
 
 

2 Signal Model Description 
The transmitted pulses have the form of a Gauss 
monocycle, i.e. the first derivative of a standard 
Gauss pulse. Fig. 1 shows a schematic presentation 
of a BPPM modulated transmitted signal. The bit 
(frame) period corresponding to the period of data 
transfer is denoted by fT  and the time offset ∆  

represents the modulation index. 
 

 
 
Fig.1 BPPM signaling 
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A logic “0” transmits a pulse at the nearest multiple 
of the period fT , while sending a “1” is delayed in 

time by ∆  relative to the nearest multiple of fT . 

Hence, the modulated pulses waveform ( )s t can be 
expressed by  

1

0

( ) ( )
N

b f j
j

s t E w t jT b
−

=

= − − ∆∑   (1) 

where ( )w t is the pulse shape (first derivative of a 
Gaussian pulse) normalized to have unity total 

energy, i.e. 
2

( ) 1w t dt
+∞

−∞

=∫ , bE is the energy per bit, , 

jb is the j-th bit, and N is the total number of 

transmitted pulses. The form of the monocycle pulse 
is expressed by   
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where A  is the normalization factor and it can be 

found to  equal to 
3

2

w

A =
σ π

. On the other hand, 

wσ  is related to the pulse width via the relationship 

2p wT = πσ , where pT represents the width of the 

pulse, which encloses  the 99.9% of the total pulse 
energy. The modulation index ∆  is chosen to 
satisfy the orthogonality property of the transmitted 

symbols, i.e. ( ) ( ) 0w t w t dt
+∞

−∞

− ∆ =∫ . We choose ∆  

greater than the pulse duration, i.e. pT∆ >
.  

 
 

3 Theoretical Analysis 
In order to evaluate the BER, we consider the 
transmission and reception system model shown in 
Fig. 2. The transmitted signal, ( )s t , described 
above, propagates through a multipath channel with 
impulse response ( )h t . Therefore, the signal at the 
receiver can be written as   

( ) ( ) ( ) ( ) ( ) ( )r t x t n t s t h t n t= + = ∗ +   (3)  
where ( )∗  denotes convolution and  ( )n t  denotes 
AWGN. The noise has a mean value of zero and a 
double side power spectral density 0 / 2N , i.e. 

2 2 0( ) (0, ),
2n n

N
n t N σ σ =∼ . 

The channel impulse response is given by the IEEE 
802.15.3a model [7], [8], and is expressed as 
follows: 

, ,( ) ( )i i k l l k l
l k

h t X t T= α δ − − τ∑∑  (4) 

 
 
Fig.2 System transmission-reception model. 
 
where ,k l  denotes the rays and clusters 

respectively, ,k lα  are the multipath gain coefficients, 

lT  is the delay of the l-th cluster, ,k lτ  is the delay of 

the k-th component relative to the l-th cluster, iX  
represents the lognormal fading with i  denoting the 
i-th channel realization. If we merge the delays of 
the paths we can describe the multipath channel 
more conveniently as  

1

0

( ) ( )
L

l l
l

h t t
−

=

= α δ − τ∑    (5) 

whereL  is the number of resolvable paths, lα  and 

lτ  are the amplitude and delay of the thl  path, 

respectively, and ( )tδ  is the Dirac delta function.  
The matched filter in the receiver consists of a 
double correlator. The estimator of Fig. 2 presents 

the correlators with the template waveforms, �0( )x t  

and �1( )x t , which are the estimated received 
waveforms for transmitted bits “0” and bit “1”, 
respectively. The output of the correlators is 
sampled every fT  seconds and the decision metric 

( D ) defined by Eq. (11) below is compared with 
zero. We assume perfect time synchronization for 
reception and that there is no interference between 
sequential frames (IFI), thus the period fT must be 

greater than the largest delay lτ  of the channel. 
From this point on, and without loss of generality, 
we continue the process of reception of the first bit 
( 0 ft T< < ). The input signal in the matched filter is 

expressed as follows: 

1

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
L

l l
l

r t x t n t s t h t n t

s t n t
−

=

= + = ∗ + =

= α − τ +∑
 (6) 

Prior to the correlation procedure, an estimation of 
the received waveform, ( )x t , has to be performed. 
This is done by sending a number of pilot pulses 
carrying no information, e.g. only zeros.  
In particular, if we transmit K  pilot pulses, one 
every fT  seconds, then the estimated waveform is 
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obtained by averaging the received pulses. The 
template waveforms are respectively given by 

�
1 1

0 0 0
0 0

1 1
( ) ( ) ( ( ) ( ))

K K
j j j
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x t r t x t n t
K K

− −

= =

= = +∑ ∑         (7) 

 
and 

� �
1 0( ) ( )x t x t= − ∆   (8) 

Assuming that the multipath channel is time-
invariant during the estimation process and perfect 
synchronization, Eq. (7) becomes, 
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The second term in the above equation 0( )n t  is 
noise, normally distributed, with zero mean and 

variance 
21
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Similarly the estimated waveform for “1” is, 
�

1 0 0 1 1( ) ( ) ( ) ( ) ( )x t x t n t x t n t= − ∆ + − ∆ = +     (10) 
The decision metric D  in Fig. 2 can then be 
expressed as follows, 
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where, the noise term ( )xn t is the total noise of the 
two correlators and has variance, 

2 2 2 0 0
0 1 2

2x

N N

K K
σ = σ + σ = =       (12) 

Hence, if a “0” is transmitted, the decision metric 
becomes  
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 The terms 1 2,N N in Eq. (13) represent noise at the 
output of a linear filter and, hence, they are 
Gaussian r.v.’s defined as 

( )
1 1

22 2 2
1 0 10, , ( ) ( )N N nN N x t x t dt

+∞

−∞

σ σ = σ −∫∼    (14) 

2 2

22 2 2
2 0(0, ), ( )N N xN N x t dt

+∞

−∞

σ σ = σ ∫∼    (15) 

Since these two r.v.’s are independent and Gaussian 
distributed, their sum will also be a Gaussian r.v. 
with zero mean and variance equal to 

1 2

2 2
N Nσ + σ . In 

a vector representation, Eq. (13) can be written as 

0 g pD M N N= + +   (16) 
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The discrete signals are considered to be the 
corresponding continuous-time waveforms sampled 
by an analog to digital converter. In our case no A/D 
errors are taken into account [9]. , which is All 
vectors have length sL , the number of channel paths 
with the strongest amplitude in the estimation 
process. In Eq. (17) ( )T⋅ denotes transpose. It should 

be pointed out that the random variable pN  is not 

Gaussian, but it represents a sum of products of 
independent Gaussian zero mean r.v.’s. Its 
probability density function (PDF) can be calculated 
numerically, [10], [11] and it is given by 
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where, 0 0,
2n x

N N

K
σ = σ =  are the standard 

deviation of the random vectors n and xn , 
respectively. The form of the PDF is different 
depending on sL being even ( ( )ep x ) or odd 

( ( )op x ). In Eq. (18), ( )Γ ⋅  denotes the gamma 
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function and ( )mK ⋅  is the modified Bessel function 

of the second kind of order m. Fig. 3. plots the PDF 
defined above for different values of sL . For 

simplicity, we set 1n xσ = σ = . Note that when sL  is 
odd, the PDF is infinite for 0x = . The mean value 
of pN  is clearly zero. 

 
Fig.3 Probability Density Function for the sum of 
normal r.v.’s products p(x), as defined in Eq. (18). 
 
The decision metric is a r.v. with mean equal to0M . 
The PDF of the total additive noise 
( g pN N+ ),which determines the variance of the 

decision metric is the result of the convolution of 
the PDF of Eq. (18) and the Gaussian PDF, ( )g x  , 
namely  

( ) ( ) ( ) ( ) ( )f x g x p x g x z p z dz
+∞

−∞

= ∗ = −∫    (19) 

Then the probability of error when a “0” is 
transmitted is expressed as, 
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e
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−∞

= < = < − =

= =∫ ∫
  (20) 

where, 0M is defined by Eq. (17).  
Similarly, the decision variable if “1” is transmitted 
can similarly be expressed as, 
 

1 g pD M N N= + +   (21) 

where, 
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Evidently, 1 0M M= − if we assume that the received 

symbol for “1” is not truncated at ft T=  which is 

the case if the frame period is sufficiently long, i.e. 
max{ }f lT > τ + ∆ . Because of Eq. (8), we also have, 

0 0 1 1
T T=x x x x , which means that the two symbols 

have the same energy and that the noise terms gN  in 

Eq. (16) and Eq. (21) have variance equal to 
sigma_g. Similarly we can express the probability of 
error when an “1” is sent as follows, 

( )

1 0

,1 10 ( )

( ) ( )

e

M M

P P D P x M

f x dx f x dx
+∞ +∞

= > = > =

= =∫ ∫
  (23) 

Hence, if ones and zeros are transmitted with equal 
probability and considering Eqs. (20) and (23), the 
BER is expressed as follows, 

0

,0 ,1

1 1
( )

2 2e e

M

BER P P f x dx
+∞

= + = ∫  (24) 

Further, if f we assume perfect channel estimation, 
the term ( )xn t  in Eqs. (11) and (13) is zero. The 
total noise is, therefore, Gaussian with variance  

( ) ( )

22 2
0 1

0
0 1 0 1

( ) ( )

2

g n

T

x t x t dt

N

+∞

−∞

σ = σ − =

= − −

∫

x x x x

  (25) 

Thus, in case of perfect estimation, the BER is 
expressed as follows, 

0

g

M
BER Q

 
=   σ 

  (26) 

where, 0M  is defined at Eq. (17). 
 
 

4 Simulations and Numerical Results 
The above analysis is carried out assuming constant, 
time-invariant channel parameters. The expressions 
(24) and (26) are, therefore, valid for a channel with 
constant associate parameters , ,,k l k lα τ for the each 

path attenuation and delay. In order to obtain the 
error probability for time-varying, stochastic 
channel parameters, Eq. (4) is executed 1,000 times 
corresponding to different channel realizations, in 
order to obtain 1000 values of the BER. For each of 
the above runs we produce different random 
amplitudes and delays according to IEEE 802.15.3a 
model as defined in [5], [6]. The total BER, 
including small-scale fading, is thus obtained by 
averaging the 1000 different BERs with random 
channel parameters as described above.   
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For the simulations the channel model CM1 is 
selected. The pulse width is 300 secpT p=  and the 

frame period 100 secfT n= . The modulation index 

was set to 1 secn∆ = . Fig. 4 shows the BER vs. the 
ratio 0/bE N  for various number of pilot pulses K  
in the case of imperfect channel estimation. In the 
same graph, the case of perfect estimation is shown 
for comparison. The number of correlator taps is 

40sL = .  As we can see from Fig. 4, as the number 
of pilot pulses increase channel estimation becomes 
more precise and at large numbers, over 100, the 
estimation tends to be perfect. This is because the 
noise term in Eq. (13) ( )xn t  has variance that is 
inversely proportional to K  as defined by Eq. (12). 
The dependence of BER from K  is shown in Fig. 5, 
for various values of 0/bE N  with 60sL = . After a 
few tens (30-60) of pilot pulses, only a slight 
improvement in BER performance is achievable. 
 

 
Fig.4 BER vs. Eb/N0 with different number of 
pilot pulses (K) and in case of perfect channel 
estimation, with 40 correlation taps (Ls). 
 
Fig. 6 shows how the number of taps influences the 
BER, with several number of pilot pulses as a 
parameter. It is interesting to note that there is an 
optimum number of taps, for which BER is 
minimum, depending on the number of pilot pulses 
and this minimum value increases monotonically 
with K . This can be explained by examining Eq. 
(13). As the number of taps (sL ) increases, the 

value of 0M  also increases, resulting into a better 
SNR at the decision stage, if we consider only the 
noise term 1N . This is shown in the perfect 
estimation instance of Fig. 6. However, when the 
estimation is imperfect, the greater the number of 
taps the greater the variance of the noise terms 

2, pN N , which are strong enough to reduce the 

signal-to-noise ratio and result into a worse BER. 
However, this is the case when K  is not 
significantly large.  
 Fig. 7 shows the BER as a function of the ratio 

0/bE N  with sL  as parameter.  At areas with low 
SNR (below 6dB), BER does not significantly 
improve by increasing the number of taps. In this 
case,  we need as many pilot pulses (K ) as possible. 
In Fig. 7, 60 pulses were used.  At a higher SNR, a 
greater number for taps may be required. 
 

 
Fig.5 BER vs number of pilot pulses (K) with 60 
correlation taps (Ls). 
 
 

 
Fig.6 BER vs correlator taps (Ls). Eb/No=10dB. 
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Fig.7 BER vs. Eb/N0 with different number of 
correlator taps in case of imperfect (Κ=60) and 
perfect estimation. 
 
 

5 Conclusion 
In this paper, the performance of a correlator 
receiver in UWB-IR systems was investigated. We 
evaluated the BER of such a system for the cases of 
perfect and imperfect channel estimation, focusing 
primarily into the second case.  A simple channel 
estimation process has been described using a 
number of pilot pulses. Correlation is carried out 
using the strongest taps of the channel. We 
concluded that there is an optimum number of 
correlator taps that minimizes the BER of the 
system. Graphical representations of BER as a 
function of signal to noise ratio, correlator taps and 
pilot pulses for estimation were presented and 
discussed.  
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