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Department of Computer Science
Iuliu Maniu 50, 500091, Braşov
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Abstract: This paper is an extended version of the paper [9] regarding to the rectangular three dimensional bin
packing problem, where a bin is loaded with a set of rectangular boxes, without overlapping but with possible gaps.
One of the most popular restriction for the solution of the 3D-bin packing problem is the guillotine restriction. The
guillotine restriction requires that the packing patterns should be such that the boxes can be obtained recursively
by cutting the bin in two smaller bins, until each bin will contains only one box and no box has been intersected
by a cut. Our objective is to find a method to verify if a 3D bin-packing pattern has the guillotine constrains or not.
For this purpose we use a weighed graph representations of a solution of the problem, the generalisation of this
kind of representation obtained by us for 2D cutting-stock problem in [10, 11, 12].
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1 Introduction
The bin packing problem is one of the well-known
combinatorial NP-hard problems in which box-shaped
objects of different sizes must be placed into a finite
number of bins in a way that minimizes the number
of the bins used. In [4] H. Dyckhoff presented many
kinds of bin packing problems, one dimensional, two
dimensional and three dimensional with many kinds
of constrains depending on technological restrictions.
Of course the difficulty of the problem is increasing
in three-dimensional bin-packing problem compar-
ing to the difficulty of fewer dimensional bin-packing
problems, but holds special and important applica-
tions. So are 3D rectangle optimal packing, container
packing and container loading optimization, pallet
building and truck loading, air cargo load planning
software, transportation software, warehouse manage-
ment systems, package design software, other appli-
cations concerning the orthogonal 3D space arrange-
ment, space optimization and volume utilization with
rectangular shaped boxes, including odd shaped con-
tainers.

In the three-dimensional bin-packing problem
each object and bin exists in three dimensions. These
objects and bins represent triplets containing three
values: width, length, and height. Each box should
fit into a bin or bins most efficiently. 3D bin-packing
may involve a single bin or multiple bins. The singular
bin-packing problem involves only one bin with either

definite or infinite volume. Like 2D bin-packing, each
box must retain stay orthogonal, or maintain its orien-
tation in the packing. Like all bin-packing problems,
extra constraints may be added to the problem to cre-
ate a more real-world-like problem. Such constrains
are: gravity, weight distribution or delivery time and
so-called guillotine constraint. That means that the
packing patterns should be such that the boxes can be
obtained by sequential face-to-face cutting plane par-
allel to a face of the bin.

Many models and algorithms are developed for
bin packing problem such as: formulation as a mixed
integer program, which can solve the small sized in-
stance to optimum [5], genetic algorithms [6], or ap-
proximation algorithms [7, 8]. While an approxima-
tion algorithm become a guide that attempts to place
objects in the least amount of space and time, a mixed
integer program gives solution as the position of the
boxes in the bin. If a robot is used for packing the
boxes in the bin it is not enough to have a packing
pattern but it is necessary to have a plan for pack-
ing. This plan means that every new box is positioned
in front of, right of, and above the packed boxes.In
[13] it is presented a method to determine this kind
of order for packing the boxes in the bin. Here we
are looking for another problem, the problem of the
guillotine constrains. While there are a lot of algo-
rithms for packing patterns determination for the gen-
eral three dimensional bin packing problem , exact
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algorithms or approximation algorithms, the general
problem with guillotine restrictions is more difficult
to solve. For example R.R. Amossen, D. Pisinger [1]
solve a general packing problem, where in each step
they test for satisfaction of guillotine constraints. Us-
ing some graph representations defined by us in [13],
we present now another guillotine test for the threee
dimensional bin packing patterns, by generaling the
results obtained in [10, 11] for the two dimensional
cutting-stock patterns. This test is based on theoreti-
cal results from [9].

2 Problem formulation
We consider a 3D bin-packing problem where a three
dimensional rectangular bin B, a container with length
L, width W , height H is filled with k rectangu-
lar boxes C1, C2, . . . Ck without overlapping but with
possible gaps. Every box Ci has length li , width wi,
height hi.

Definition 1 A rectangular 3D-bin packing pattern is
an arrangement of the k rectangular boxes Ci in the
container B, so that the faces of the boxes Ci be par-
allel with the faces of the container B.

Definition 2 A rectangular bin packing pattern has
guillotine restrictions if the bin can be recursively sep-
arated in two new bins by a cutting plane which is
parallel with a face of the original bin, until each bin
contains only one box.

We presented in [15, 14, 13] a representation for
a bin packing pattern by means of some graphs of ad-
jacency. Now we complete the graphs of adjacency
by adding a value for each arc of these graphs like in
[10, 11].

We consider a bin OABCDEFG and a coordi-
nate system xOyz so that the corner O is the origin of
the coordinate system like in Figure 1.

The following notations are used:

- ABCO is the bottom face of the bin

- GDEF is the top face of the bin

- OADG is the West face of the bin

- OCFG is the North face of the bin

- EBCF is the East face of the bin

- ABDE is the South face of the bin

- O−Ci is the O-corner of the box Ci of coordinates
xi, yi, zi

Figure 1: The position of box Ci in the bin

We mention that in Figure 1, [AB] is the length
L, [BC] is the width W and [AD] is the height H .
We will use the adjacency relations [13] to express
the connections between two boxes Ci and Cj from
the bin packing pattern.

Definition 3 The box Ci is adjacent in Ox direction
with the box Cj in the bin packing pattern of B (Figure
2), if the South face of Ci and the North face of Cj

have at least three non-collinear common points.

Similarly we can define the adjacency relations in the
direction Oy and Oz.

Figure 2: The adjacency of Ci with Cj in Ox direc-
tion

Remark 4 In the following we consider only the bin-
packing pattern where the boxes are not situated
above, to the East directions and to the North direc-
tions of an empty space. That means every box Cj is
adjacent with at least three boxes: one situated down,
one to the West and one to the South, or Cj is situated
on the down face, respectively West face, or on the
South face of the bin. Otherwise we will push the box
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S downwards, either towards the South or the West
directions, like in Figure 3 until S will satisfy these
conditions.

Figure 3: The moving directions

Starting from the three kinds of adjacency we
have defined in [13] three kind of graphs: GOx- the
graph of adjacency in direction Ox, GOy- the graph
of adjacency in direction Oy and GOz- the graph of
adjacency in direction Oz.

Now we complete these graphs by adding the val-
ues for every arc from the graphs which represent
a bin packing pattern with respect to the restrictions
from Remark 4.

Definition 5 The weighed graph of adjacency
in Ox direction for the bin-packing pattern is
GOx = (C ∪ RX , ΓOx), where the vertices are the
boxes from C = C1, C2, ...Ck, RX represents the
face GOCF situated on the yOz plane, and

ΓOx(Ci) 3 Cj only if Ci is adjacent in
direction Ox with Cj

ΓOx(X) 3 Ci only if the North face of Ci

touches the yOz plan
V alue(U, Cj) = wj , ∀U ∈ C ∪RX and Cj ∈ C

Similarly we can define a graph of adjacency in
Oy direction and another of adjacency in Oz direc-
tion, using wj respectively hj for the every value of
an incoming arc of Cj .

From the Remark 4 and from [15, 14] it follows
that all of the three weighed graphs of adjacency are
strongly quasi connected.

Example 1. We consider a bin-packing pattern de-
scribed in the Figures 4 and 5 where the bin has the
dimensions L = 3, W = 3, H = 4 and the boxes are
of the dimensions (li, wi, hi) like in the following:

- the box A of dimension (1, 3, 2)

- the box B of dimension (1, 1, 1)

- the box C of dimension (1, 1, 2)

- the box D of dimension (1, 1, 1)

- the box E of dimension (2, 2, 2)

- the box F of dimension (3, 1.5, 2)

- the box G of dimension (2, 1.5, 2)

- the box H of dimension (1, 1.5, 2)

Figure 4: A pattern view from the top-right-front cor-
ner for Example 1.

Figure 5: A pattern view from the bottom-left-back
corner for Example 1.

Then the GOx, GOy and GOz are the weighed
graphs from Figures 6 and 7.

We observe that the bin-packing pattern from Fig-
ures 4 and 5 has guillotine restrictions. Similar with
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Figure 6: Graph GOx for Example 1.

Figure 7: Graphs GOy, GOz for Example 1.

[16, 17] it follows that it is possible to represent a
bin-packing pattern with guillotine restrictions using
a Polish expression with three operations:

1. ⊕ - the vertical concatenation, an operation for a
horizontal cutting plane;

2. 	 - the W-E concatenation, an operation for a
vertical cutting plane perpendicular on Ox;

3. � - the N-S concatenation, an operation for a ver-
tical cutting plane perpendicular on Oy.

For example, the cutting pattern from Figure 4
will be described by the following Polish expression:

⊕�A	 E �⊕BDC 	 F �HG.

3 Cuts determination

In the previous papers of us we presented two methods
for cuts determination in case of a 2D-cutting pattern
without overlapping: one for pattern without gaps [12]
and one for the pattern with gaps [10, 11].

Now we consider the 3D-bin packing pattern
without overlapping but with possible gaps, which re-
spect the conditions from Remark 4.

Following the way described in [10, 11] we in-
tend to find a connection between guillotine restric-
tions and the three weighed graphs of adjacency, GOx,
GOy and GOz .

First we will use the notation Lpd(RX , Ci) for
the length of the path from RX to Ci in the graph GOx.
Similarly we will use the notations Lpr(RY , Ci) for
the length of the path from RY to Ci in the graph
GOy, respectively Lpr(RZ , Ci) for the length of the
path from RZ to Ci in the graph GOz . We remark that
Lpd(RX , Ci) represents the distance from the north-
ern face of the bin B to the southern face of box Ci,
Lpr(RY , Ci) represents the distance from the west-
ern face of the bin B to the eastern face of box Ci and
Lpr(RZ , Ci) represents the distance from the bottom
face of the bin to the top face of bin Ci.

Remark 6 If a cutting-stock pattern has a horizontal
guillotine cutting plane (perpendicular on Oz) situ-
ated at a distance M from the down face of the bin B
then the set of the items, C, can be separated in two
subsets B1, the set of the items situated below this cut-
ting plane, and B2 the set of the items situated above
this plane. Of course in the weighed graph GOz we
have:

1. Lpd(RZ , Ci) ≤M for every Ci ∈ B1;

2. Lpd(RZ , Ci) > M for every Ci ∈ B2.

We obtain a similar result if the cutting-stock pat-
tern has a vertical cutting plane perpendicular on Ox
or a vertical cutting plane perpendicular on Oy.

The two conditions from the above remark are
necessary but are not sufficient, because it is possi-
ble the cutting plane to intersect some items from the
set B2. In the following we present necessary and suf-
ficient conditions for a guillotine cut.

Theorem 7 Let a 3D bin packing pattern with pos-
sible gaps and the weighed graph GOz attached to
this pattern. The bin packing pattern has a horizon-
tal guillotine cutting plane situated at the distance M
from the downwards face of the bin if and only if it is
possible to separate the sets of the items, C, in two
subsets, B1 and B2 so that:
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1. C = B1 ∪B2, B1 ∩B2 = ∅;

2. For every Cj ∈ C so that (RZ , Cj) ∈ Γz it fol-
lows that Cj ∈ B1;

3. Lpd(RZ , Ci) ≤M for every Ci ∈ B1;

4. If there is Cj ∈ B1 so that Lpd(RZ , Cj) < M
then all direct descendant of Cj will be in B1.

Proof:
i. Suppose that the bin packing pattern has a hor-

izontal guillotine cutting plane and let the weighed
graph GOz attached to the pattern. That means the
sets of items C can be separated in two subsets, B1,
the set of the vertices situated above the cutting plane,
and B2, the set of the vertices situated below the cut-
ting plane. From the Remark 6 it follows that the con-
ditions 1, 2 and 3 are fulfilled.

Suppose that the condition 4 is not fulfilled. That
means there are two items Cj ∈ B1 and Ci ∈ B2 so
that Lpd(RZ , Cj) < M the item Ci is a direct succes-
sor of Cj and suppose that Ci ∈ B2. It follows that
Lpd(RZ , Ci) > M and a horizontal cutting plane sit-
uated on the distance M from the downwards face of
the bin will intersects the box Ci. It means that with-
out the condition 4 it is impossible to separate the set
of the items by a horizontal cutting plane. So our sup-
position that the condition 4 is not fulfilled is false.

ii. Suppose all the conditions 1-4 are fulfilled but
it is not possible to have a horizontal cutting plane at
the distance M in the cutting-stock pattern. It follows
that there is at least item Ci ∈ B2 which is intersected
by such a cut. It means that the distance from the bot-
tom face of the bin to the bottom face of the box Ci

is less than M and the distance from the downwards
face of the bin to the top face of the box Ci is greater
than M .

But from the Remark 6 it follows that the bottom
face of the box Ci is identical with the top face of
some box Cj , situated downwards Ci. That means
(Cj , Ci) ∈ Γz and Lpd(RZ , Cj) < M and so Cj ∈
B1. From condition 4, because Ci is a direct successor
of Cj , it follows that Ci must be in B1 in contradiction
with our hypothesis. That means that if the conditions
1-4 are fulfilled then there is a horizontal guillotine
cutting plane in the bin-packing pattern. ut

We obtain a similar result if we consider the
weighed graphs of adjacency in the directions Ox or
Oy.

4 Verification test for guillotine re-
strictions

The results from the previous theorem suggest an al-
gorithm for verification of the guillotine restrictions,
in case of a bin-packing pattern with gaps but without
overlapping.

Input data: The weighed graphs GOx or GOy or
GOz attached to a bin packing pattern.

Output data: The s-pictural representation of the
cutting pattern [16] like a formula in a Polish prefixed
form.

Method: Using a depth-first search method,the
algorithm constructs the syntactic tree for the Polish
expression representation of the cutting pattern, start-
ing from the root to the leaves (procedure PRORD).
For every vertex of the tree it verifies if it is possible
to make a guillotine cut by a cutting plane perpen-
dicular on Oz (procedure ZCUT) or perpendicular on
Ox (procedure XCUT) or perpendicular on Oy (pro-
cedure YCUT), using an algorithm for decomposition
of a set C of boxes in two subsets, B1 and B2.

We will use the following notations:
- G′

Ox, G′
Oy, G

′
Oz are the subgraphs of GOx|U , re-

spectively GOy|U and GOz|U where we can add, if it
is necessary, the root RX (RY , RZ) and the arcs start-
ing from RX (RY , RZ ).

- succ(Ci|G) is the set of successors of the box Ci

in the graph G.
The method ADD() is used for addition of the

next member in the Polish prefixed form.
The procedures ZCUT, YCUT (analogue XCUT)

are presented below:

4.1 Example

Let us have the covering pattern from Figures 4 and
5, with the weighed graphs GOx, GOy, GOz from Fig-
ure 6 and Figure 7. By examination of the weighed
graphs we observe that it is posible to make the first
horizontal cut by a cutting plane perpendicular on
Oz, procedure ZCUT. In Figure 8 it is presented this
first horizontal cut of the packing pattern that sepa-
rate the set of the boxes in two components, one set
{A, E, B, C,D} and the other set {H,F, G}. It can
be seen that on the graph GOz we did the cut at dis-
tance 2. In the syntactic tree, these components are
connected using the horizontal concatenation ⊕, an
operation for a horizontal cutting plane, Figure 9.

The prefix polish notation for this syntactic tree
from Figure 9 is: ⊕.

We continue to make horizontal, vertical N-S or
W-E cuts for the left and right components from the
syntactic tree until every components will contain

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Daniela Marinescu, Alexandra Baicoianu

ISSN: 1790-0832 257 Issue 6, Volume 8, June 2011



PROCEDURE PRORD(G, C,L, W, H, ADD())
begin

ZCUT(GOz, C, L, W, H, err, Bl, B2, H1, H2);
if err = 0 then

if |C| = 1 then ADD(C)
else ADD(⊕);
PRORD(GOx, B1, L,W,H1, ADD());
PRORD(GOx, B2, L,W,H2, ADD());

end
else

XCUT(GOx, C, L, W, H, err, B1, B2, W1, W2);
if err = 0 then

if |C| = 1 then ADD(C)
else ADD(	);
PRORD(GOy, B1, L,W1, H, ADD());
PRORD(GOy, B2, L,W2, H, ADD());

end
else

YCUT(GOy, C, L, W, H, err, B1, B2, L1, L2);
if err = 0 then

if |C| = 1 then ADD(C)
else ADD(�);
PRORD(GOz, B1, L1, W, H, ADD());
PRORD(GOz, B2, L2, W, H, ADD());

end
else No guillotine restrictions

end
end

end

Figure 8: The first vertical cut of the bin-packing pat-
tern

Figure 9: The first syntactic tree

PROCEDURE
ZCUT(GOz, U, L, W, H, err, B1, B2, H1, H2) begin

err = 0; SUBGRAPH(GOz, G
′
Oz, U,ROz);

V :=
⋃
{Ci|Ci ∈ U, (ROz, Ci) ∈ ΓOz}, where all

the elements are unmarked
maxM := max{hi|Ci ∈ V }
Pi:= {hi|Ci ∈ V } while ∃Ci ∈ V unmarked do

mark Ci;
if Pi < maxM then

for Cj ∈ succ(Ci in the graph G′
Oz) do

V := V
⋃
{Cj | where Cj is

unmarked};
Pj := Pi + hj ;
if Pj > maxM then

maxM := Pj ;
end

end
end

end
maxM := max{Lpd(ROz, Ci)|Ci ∈ V }
if maxM = H then

err = 1;
end
else

H1 := maxM ; H2 := H −maxM ;
B1 := V ; B2 := U − V ;

end
end

PROCEDURE
YCUT(GOy, U, L, W, H, err, B1, B2, L1, L2) begin

err = 0; SUBGRAPH(GOy, G′
Oy, U,ROy);

V :=
⋃
{Ci|Ci ∈ U, (ROy, Ci) ∈ ΓOy}, where

all the elements are unmarked
maxM := max{li|Ci ∈ V }
Pi:= {li|Ci ∈ V } while ∃Ci ∈ V unmarked do

mark Ci;
if Pi < maxM then

for Cj ∈ succ(Ci in the graph G′
Oy) do

V := V
⋃
{Cj | where Cj is

unmarked};
Pj := Pi + lj ;
if Pj > maxM then

maxM := Pj ;
end

end
end

end
maxM := max{Lpd(ROy, Ci)|Ci ∈ V }
if maxM = L then

err = 1;
end
else

L1 := maxM ; L2 := L−maxM ; B1 := V ;
B2 := U − V ;

end
end
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only one item from the covering model, considering
the extracted subgraphs.

Now considering the component 1, we
have the three subgraphs R1X(A, E, B, D,C),
R1Y (A, E, B, D,C) and R1Z(A, E, B, D,C) from
Figure 10 and Figure 11, obtained by extracting only
the nodes from first set, {A, E, B, D,C}.

Figure 10: The subgraphs R1X(A, E, B, D,C) and
R1Z(A, E, B, D,C) derived from the first set

Figure 11: The subgraph R1Y (A, E, B, D,C) de-
rived from the first set

Applying the procedure YCUT we ob-
serve that we can make a vertical W-E cut on
R1Y (A, E, B, C,D), by a cutting plane perpendic-
ular on Oy, at distance 1 from top of the subgraph,
Figure 11. We extract two sets again, one containing
just {A} and another {E,B, C, D}, named com-
ponent 3. In the syntactic tree from Figure 12 we
see that the operation between box A and this new

component, 3, is � the notation for a cutting plane
perpendicular on Oy.

Figure 12: The syntactic tree. Step 2

The prefix polish notation for this syntactic tree
from Figure 12 is: ⊕�A.

We continue our algorithm using component 3,
by extracting the three subgraphs R3Y (E,B, C, D),
R3Z(E,B, C, D) and R3X(E,B, C, D), see Figure
13 and Figure 14.

Figure 13: The subgraphs R3Y (E,B, D, C) and
R3Z(E,B, D,C) derived from the third set

Now we use the procedure XCUT that makes a
vertical N-S cut on R3X(A, E, B, C,D), at distance
2 from top of the subgraph, see Figure 14. We ex-
tract two sets, one containing just {E} and another
{B, C,D}, named component 4. In the syntactic tree
from Figure 15 we have the operation 	 for a verti-
cal cutting plane perpendicular on Ox between E and
component 4.

The prefix polish notation for this syntactic tree
from Figure 15 is: ⊕�A	 E.
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Figure 14: The subgraph R3X(E,B, D, C) derived
from the third set

Figure 15: The syntactic tree. Step 3

Using component 4, we extract the three
subgraphs R4X(B, C,D), R4Z(B, C,D) and
R4Y (B, C,D), see Figure 16 and Figure 17.

We can make a cut on R4Y (B, C,D), at distance
1 from top of the subgraph, by a cutting plane perpen-
dicular on Oy, see Figure 17. We extract two sets, one
containing just {C} and another {B, D}, named com-
ponent 5. In the syntactic tree from Figure 18 we have
the operation for a vertical cutting plane perpendicular
on Oy between C and component 5.

Making the same steps with component 5, we ob-
tained a vertical cutting plane perpendicular on Oz

and the syntactic tree from Figure 19.
The prefix polish notation for this syntactic tree

from Figure 19 is: ⊕�A	 E �⊕BDC.
Let’s turn to the set number 2, that one com-

posed from {H,F, G}. We have the subgraphs from
Figure 20 and Figure 21 and we’ve done a cut on
R2X(F,H, G), at the distance 1.5, by a cutting plane
perpendicular on Ox. The 2 sets are: {F} and
{H,G}.

The syntactic tree from Figure 22 has the compo-
nent 6 connected with F thru a W-E cut.

Using component 6, we have the last three sub-
graphs R6X(H,G), R6Z(H,G) and R6Y (H,G).

Figure 16: The subgraphs R4X(B, C,D) and
R4Z(B, C,D) derived from the fourth set

Figure 17: The subgraph R4Y (B, C,D) derived from
the fourth set

Figure 18: The syntactic tree. Step 4
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Figure 19: The syntactic tree. Step 5

Figure 20: The subgraphs R2Y (F,H, G) and
R2Z(F,H, G) derived from the second set

Figure 21: The subgraph R2X(F,H, G) derived from
the second set

Figure 22: The syntactic tree. Step 6

The final syntactic tree is in Figure 23.

Figure 23: The final syntactic tree

This syntactic tree corresponds to the prefix pol-
ish notation:

⊕�A	 E �⊕BDC 	 F �HG,

exactly the one that we considered in previous section.

4.2 Correctness and Complexity

The correctness of the algorithm follows from the
Theorem 7, that makes the connection between a guil-
lotine cut and the decomposition of a graph in two
subgraphs.

The procedure PREORD() represents a preorder
traversal of a graph, so the complexity is O(k) [2, 3],
where k is the number of the packed boxes. Also, in
the procedure ZCUT, respectively XCUT and YCUT,
we traverse a subgraph of the initial graph. So, the
complexity of the algorithm is O(k2).
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5 Conclusions
The three dimensional bin-packing problem holds im-
portance to many fields. Shipping and moving indus-
tries, architecture, engineering and design are all areas
where three dimensional bin-packing could apply. In-
dustry uses bin-packing for everything from schedul-
ing television programming to stacking cargo in a
semi-truck to designing automobiles and airplanes.
Many of the applications of the three dimensional bin-
packing problem need packing patterns with guillo-
tine restrictions. So a way of solving this is to use
some algorithms for packing patterns determination
and to use our algorithm for verifying if the patterns
have guillotine restrictions or not. This guillotine
test can be used also in a constraint programming ap-
proach for solving the packing problem. The test for
guillotine restrictions presented in this paper is based
to a representation of the bin packing pattern by three
weighed graphs of adjacency. These graphs, intro-
duced first for the two-dimensional cutting stock prob-
lem, was very useful to prove some properties of a
cutting or covering pattern [15, 14] or to find out an
order of packing for loading a container[13].

We remark that we can apply this algorithm for
guillotine determination also in case of a cutting-stock
pattern without gaps and, of course, in the case of cov-
ering pattern with or without gaps.
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