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Abstract: The calculation of derivatives of a function mostly takes up a great deal of time and even in some 
cases, such as the existing problems in engineering and optimization, is impossible to be evaluated directly. 
Accordingly, an accurate derivative-free class of three-step methods is suggested for solving 푓(푥) = 0. The 
proposed three-step technique comprises four evaluations of the function per iteration. The analytical proof 
of the main contribution is given. And finally, the accuracy of the developed techniques is tested 
numerically by solving numerical examples. 
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1. Prerequisites 
Approximating the solution of 푓(푥) = 0 is a 
classical problem. A practical tool to study the 
solution of such nonlinear equations is the use of 
iterative processes which are derivative-free [2] or 
derivative-involved [1] in essence. Beginning from 
an initial guess 푥  successive estimations (until 
some predetermined convergence criterion is 
satisfied) 푥  are computed for any 푛 =  1, 2, ⋯  
with the help of a certain iteration function 휑: 푋 →
푋 as follows: 푥 = 휑(푥 ).  

Solving such equations by these iterative 
processes has so many applications. In engineering 
and optimization problems, we use the iterative 
processes to find the critical points of the given 
function. Newton’s method is perhaps the best 
known method for finding the root of a nonlinear 
equation or for minimizing a general nonlinear 
function. To illustrate more, Newton's method can 
be used to find stationary points (such as local 
maxima and minima) of 푓(푥), as such points are the 
roots of the derivative function 푓′(푥) = 0.  

This method, also known as the Newton-
Raphson method, can be traced back to Isaac 
Newton (1669) and Joseph Raphson (1690). Both 
Newton and Raphson appear to have derived 
essentially the same method independently. Newton 
based his derivation on a linearization of a higher-
order polynomial and he showed how the method 
could be used to solve a particular cubic equation. 
Raphson’s scheme on the other hand, more closely 
resembles what we now know as Newton’s method. 
In its basic form, Newton’s method is easy to 
implement and requires only the ability to compute 

a function and its first derivative (and second 
derivatives in optimization problems).  

In practice, however, Newton’s method 
needs to be modified to make it more robust and 
computationally efficient. With these modifications; 
Newton’s method (or one of its many variations) is 
arguably the method of choice for a wide variety of 
problems. Mentioning that the geometric 
interpretation of the Newton's method in 
optimization problems is that at each iteration one 
approximates 푓(푥) by a quadratic function around 
푥 , and then takes a step towards the 
maximum/minimum of that quadratic function. Note 
that if 푓(푥) be a quadratic function, then the exact 
extremum is attained in one step.  

As an another application-oriented example 
of iterations in solving nonlinear equations we can 
mention, if 푎 is a number for which 푓(푎) vanishes 
mod 푝, it is often possible to lift 푎 to a p-adic zero 
of 푓(푥). The standard technique for doing this is the 
p-adic analog of Newton's scheme, occasionally 
called Hensel's lemma. In numerical computation, 
one often replaces Newton's method by other 
schemes, chosen to avoid computation of 
derivatives to converge in very few iterations, or 
have other desirable properties, however see [3] for 
further information on the application of iterative 
root-solvers in Number Theory.  For more 
application-oriented topics of root solvers in 
engineering problems, refer to the first chapter of 
[7]. 

In 1974, Kung and Traub [4] conjectured on 
the optimality of multi-point iterative schemes as 
comes next. An iterative method without memory 
for solving single variable nonlinear equation 
푓(푥) = 0, with 푛 + 1 evaluations per iteration 
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reaches to the maximum order of convergence 2  
and the optimal efficiency index 2 /( ). 
Consequently, the efficiency of a p-th order method 
could be given by 푝 /( ) where 푛 + 1 is the 
whole number of evaluations per iteration.  

Optimization problems defined by functions 
for which derivatives are unavailable or available at 
a prohibitive cost are emerging more and more 
frequently in computational science and 
engineering. Due to these, nowadays algorithms in 
which no derivative evaluation is needed are more 
in concentration by many researchers. 

Accordingly, due to the vast need of 
derivative-free methods which are so useful when 
the calculations of derivatives of the given functions 
are impossible or difficult, in this study; we focus on 
optimal derivative-free methods without memory.  

The paper unfolds the contents as follows. 
According to the conjecture of Kung-Traub (1974) a 
new class of derivative-free methods containing four 
evaluations per iteration to reach the convergence 
order eight is given in Section 2 as the central 
contribution. This section is followed by Section 3 
wherein numerical reports and discussion on the 
comparisons with other famous derivative-free 
methods are presented. The conclusions have finally 
been drawn in Section 4. 
 
 
2. Derivation of the new class 
Let us consider the two-step cycle of Petkovic et al. 
[6] in which we have the Steffensen's method [8] in 
the first step and a modification of Newton's method 
in the second step as follows (훽 ∈ ℝ − {0}) 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧푦 = 푥 −

훽푓(푥 )
푓 푥 + 훽푓(푥 ) − 푓(푥 )

,                              

푥 = 푦                                                                               

−
훽푓(푥 )푓(푦 )

푓 푥 + 훽푓(푥 ) − 푓(푥 )
⎩
⎪
⎨

⎪
⎧ 1 + 푓(푦 )

푓(푥 )

1 − 푓(푦 )
푓 푥 + 훽푓(푥 ) ⎭

⎪
⎬

⎪
⎫

,

�  

 (1) 
 
with three evaluations of the function 푓(푥 ),
푓(푥 + 훽푓(푥 )), 푓(푦 ) per iteration. For simplicity, 
we assume that 푓(푥 + 훽푓(푥 )) = 푓(푤 ), that is 
푥 + 훽푓(푥 ) = 푤 . Now by performing a new 
Newton's iteration after the second step as comes 
next we try to build a higher order class: 
 

푥 = 푧 −
푓(푧 )
푓′(푧 ).                           (2) 

 

At this time, the main challenge is to 
approximate 푓′(푧 ) as efficiently as possible. 
Clearly, 푓′(푧 ) should be annihilated such as the 
order of convergence eight does not decrease. Thus, 
first we approximate it by an approximation through 
using the past three known data, i.e. 푓(푥 ), 푓(푦 ),
푓(푧 ). That is by taking into account of the 
following approximation function for 푓(푡) in the 
domain 퐷 as follows 
 
푓(푡) ≈ 푝(푡) = 푎 + 푎 (푡 − 푥 ) + 푎 (푡 − 푥 ) , (3) 

 
which its first derivative has the form 푝′(푡) = 푎 +
2푎 (푡 − 푥 ). Obviously, the unknown three 
parameters 푎 , 푎  and 푎  will be obtained by 
substituting of the known values in (3) as follows 
 

⎩
⎨

⎧
푎 = 푓(푥 ),                                                        

푎 =
푓[푦 , 푥 ] − 푓[푧 , 푥 ]

푦 − 푧
= 푓[푦 , 푥 , 푧 ],

푎 = 푓[푧 , 푥 ] − (푧 − 푥 )푎 .                      

�  (4) 

 
Hence, we have a more simplified three-step 

method without using any derivative in what 
follows by using weight function approach in the 
last step to keep the order at the highest level 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧푦 = 푥 −

푓(푥 )
푓[푥 , 푤 ],                                                 

푧 = 푦 −
푓(푦 )

푓[푥 , 푤 ]

1 + 푓(푦 )
푓(푥 )

1 − 푓(푦 )
푓(푤 )

,                      

푥 = 푧 −
푓(푧 )

푓[푧 , 푥 ] + 푓[푦 , 푥 , 푧 ](푧 − 푥 )
× {퐺(휑) + 퐿(휋) + 푃(휌) + 퐻(휏) + 퐾(휇)},

�  

 (5) 
 

wherein 푤 = 푥 + 훽푓(푥 ), 퐺(휑), 퐿(휋), 푃(휌), 
퐻(휏) and 퐾(휇) are five real valued weight functions 
with 휑 = ( )

( )
, 휋 = ( )

( )
, 휌 = ( )

( )
, 휏 = ( )

( )
 and 

휇 = ( )
( )

 (without the index 푛). Theorem 1 indicates 
that under what conditions the order of (5) is eight 
and hence, it is an optimal derivative-free class of 
without memory methods. 
 
Theorem 1. Assume 푓 be a sufficiently continuous 
real function in the domain 퐷. Then the sequence 
generated by (5) converges to the simple root 훼 ∈ 퐷 
with eighth-order convergence and it satisfies the 
follow-up error equation 
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푒 = −
1

24푐
(푐 (1 + 푐 훽) (−푐 푐 + 푐 (3 

+푐 훽))(−24푐 푐 푐 (1 + 푐 훽)  
+12푐 푐 (1 + 푐 훽) 퐾′′(0) 
−24푐 푐 (푐 + 푐 푐 훽) −2 + (3 + 푐 훽)퐾′′(0)  
+푐 (72 + 108퐾′′(0) + 퐺( )(0) + 퐿( )(0) 

+푐 훽(−24(−2 + 푐 훽(2 + 푐 훽)) + 12(4 + 푐 훽)(6 
+푐 훽(4 + 푐 훽))퐾′′(0) 

+(2 + 푐 훽) 2 + 푐 훽(2 + 푐 훽) 퐿( )(0)))))푒  
+푂(푒 ),                                                        (6) 

 
when  

 

⎩
⎪
⎨

⎪
⎧퐺(0) = 1, 퐺 ′(0) = 퐺 ′′(0) = 0, 퐺 ′′′(0) = −18 − 24훽푓[푥 , 푤 ] − 6(훽푓[푥 , 푤 ]) , 퐺( )(0) < ∞,

퐿(0) = 퐿′(0) = 퐿′′(0) = 퐿′′′(0) = 0, 퐿( )(0) < ∞,                                                                                   
푃(0) = 푃′(0) = 0,                                                                                                                                              
퐻(0) = 0, 퐻′(0) = 1,                                                                                                                                        
퐾(0) = 퐾′(0) = 0, 퐾′′(0) < ∞.                                                                                                                 

�  (7) 

 
Proof. To prove that the order of (5) will arrive at 
eight by considering (7), we first consider 푐 =

( )( )
!

, 푗 ≥ 1, and 푒 = 푥 − 훼; now we should 
expand any terms of (2) around the simple root 훼 in 
the nth iterate. Thus, we write 
 
푓(푥 ) = 푐 푒 + 푐 푒 + 푐 푒 + 푐 푒 + 푐 푒  

+ ⋯ + 푂(푒 ),                                          (8) 
 
Accordingly, we attain 
 

푥 −
푓(푥 )

푓[푥 , 푤 ] = 훼 + 훽 +
1
푐

푐 푒  

+
푐 푐 (1 + 푐 훽)(2 + 푐 훽) − 푐 2 + 푐 훽(2 + 푐 훽)

푐 푒  

+ ⋯ + 푂(푒 ).          (9) 
 
Now, we should expand 푓(푦 ) around the simple 
root by using (9). We have 
 

푦 −
푓(푦 )

푓[푥 , 푤 ]
1 + 푓(푦 )/푓(푥 )
1 − 푓(푦 )/푓(푤 )

= 훼 −
푐 (1 + 푐 훽) −푐 푐 + 푐 (3 + 푐 훽)

푐
푒  

−
1
푐

(1 + 푐 훽)(푐 푐 (1 + 푐 훽)(2 + 푐 훽) 

+푐 푐 푐 (1 + 푐 훽)(2 + 푐 훽) + 푐 (3 + 푐 훽)(6 
+푐 훽(7 + 3푐 훽)) − 푐 푐 푐 (20 + 푐 훽(34 

+푐 훽(19 + 3푐 훽))))푒 + ⋯ + 푂(푒 ).         (10) 
 
Using (9), (10), we attain 
 

푓(푧 ) =
푐 (1 + 푐 훽) −푐 푐 + 푐 (3 + 푐 훽)

푐
푒  

−
1
푐

(1 + 푐 훽)(푐 푐 (1 + 푐 훽)(2 + 푐 훽) 

+푐 푐 푐 (1 + 푐 훽)(2 + 푐 훽) + 푐 (3 + 푐 훽)(6 
+푐 훽(7 + 3푐 훽)) − 푐 푐 푐 (20 + 푐 훽(34 

+푐 훽(19 + 3푐 훽))))푒 + ⋯ + 푂(푒 ).       (11) 
 
Additionally, we attain 
 
푓[푧 , 푥 ] + 푓[푦 , 푥 , 푧 ](푧 − 푥 ) = 푐  

−
푐 푐 (1 + 푐 훽)

푐
푒 + ⋯ + 푂(푒 ).   (12) 

 
Considering (10)-(12) results in the following error 
in the third step 
 

푓(푧 )
푓[푧 , 푥 ] + 푓[푦 , 푥 , 푧 ](푧 − 푥 ) 

× {퐺(휑) + 퐿(휋) + 푃(휌) + 퐻(휏) + 퐾(휇)} 

=
푐 (1 + 푐 훽) −푐 푐 + 푐 (3 + 푐 훽)

푐
푒 + ⋯ 

+푂(푒 ).                              (13) 
 
And finally by using (13) and again (7), we attain 
 

푒 = 푥 − 훼 = −
1

24푐
(푐 (1 + 푐 훽) (−푐 푐  

+푐 (3 + 푐 훽))(−24푐 푐 푐 (1 + 푐 훽)  
+12푐 푐 (1 + 푐 훽) 퐾′′(0) 
−24푐 푐 (푐 + 푐 푐 훽) −2 + (3 + 푐 훽)퐾′′(0)  
+푐 (72 + 108퐾′′(0) + 퐺( )(0) + 퐿( )(0) 
+푐 훽(−24(−2 + 푐 훽(2 + 푐 훽)) + 12(4 
+푐 훽)(6 + 푐 훽(4 + 푐 훽))퐾′′(0) 

+(2 + 푐 훽) 2 + 푐 훽(2 + 푐 훽) 퐿( )(0)))))푒  
+푂(푒 ).       (14) 

 
This shows that any method from our class (5)-(7) 
will end up in eighth order of convergence using 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS F. Soleymani

ISSN: 1790-0832 295 Issue 8, Volume 8, August 2011



 

 

only four pieces of information per iteration. In 
consequence, our class of derivative-free methods 
satisfies the Kung-Traub conjecture for building 
optimal multi-point methods without memory. This 
ends the proof. ∎ 

 
Some typical formats of the weight 

functions 퐺(휑), 퐿(휋), 푃(휌), 퐻(휏) and 퐾(휇) which 
satisfy the conditions of (7) are displayed in Table 1. 

 
Table 1: Some forms of the weight functions 퐺(휑), 퐿(휋), 푃(휌), 퐻(휏) and 퐾(휇), 휃 ∈ ℝ 
Weight Function Form 1 Form 2 
퐺(휑) 1 − (3 + 4훽푓[푥 , 푤 ] + 훽(푓[푥 , 푤 ]) )휑  1 − (3 + 4훽푓[푥 , 푤 ] + 훽(푓[푥 , 푤 ]) )휑 + 휃휑  
퐿(휋) 휋  휋 + 휃휋  

푃(휌) 휌 + 휃휌  
휌

1 − 휌 

퐻(휏) 휏 + 휏  
휏

1 − 휏 

퐾(휇) 휇 + 휃휇  
휇

1 − 휇 

 
As a simple but efficient case of our 

suggested class (5)-(7), we can provide the 
following three-step optimal eighth-order method in 
which no derivative evaluation per step is needed to 
proceed 
 

⎩
⎪⎪
⎪
⎨

⎪
⎪
⎪
⎧푦 = 푥 −

푓(푥 )
푓[푥 , 푤 ],                                                            

푧 = 푦 −
푓(푦 )

푓[푥 , 푤 ]

1 + 푓(푦 )
푓(푥 )

1 − 푓(푦 )
푓(푤 )

,                                 

푥 = 푧 −
푓(푧 )

푓[푧 , 푥 ] + 푓[푦 , 푥 , 푧 ](푧 − 푥 ) {푊 },

� 

 (15) 
 
with the following weight function 
 

푊 = 1 − (3 + 4푓[푥 , 푤 ] + (푓[푥 , 푤 ]) )
푓(푦 )
푓(푤 )  

+
푓(푦 )
푓(푥 ) +

푓(푧 )
푓(푥 ) +

푓(푧 )
푓(푤 ) +

푓(푧 )
푓(푦 ) ,   

(16) 
 
where its error equation is as comes next 
 

푒 = −
1
푐

((1 + 푐 ) 푐 ((3 + 푐 )푐  

−푐 푐 )((13 + 푐 (17 + 푐 (9 + 2푐 )))푐 − 2푐 (1 
+푐 )(2 + 푐 )푐 푐 + 푐 (1 + 푐 )푐 − 푐 (1 

+푐 )푐 푐 ))푒 + 푂(푒 ).                    (17) 
 

Another very efficient three-step without 
memory iteration in which no derivative evaluation 
is needed per full cycle can be written in the 
following structure  
 

⎩
⎪⎪
⎪
⎨

⎪
⎪
⎪
⎧푦 = 푥 −

푓(푥 )
푓[푥 , 푤 ],                                                           

푧 = 푦 −
푓(푦 )

푓[푥 , 푤 ]

1 + 푓(푦 )
푓(푥 )

1 − 푓(푦 )
푓(푤 )

,                                 

푥 = 푧 −
푓(푧 )

푓[푧 , 푥 ] + 푓[푦 , 푥 , 푧 ](푧 − 푥 ) {푊 },

� 

 (18) 
 
with the following weight function 
 

푊 = 1 − (3 + 4푓[푥 , 푤 ] + (푓[푥 , 푤 ]) )
푓(푦 )
푓(푤 )  

+
푓(푦 )
푓(푥 ) +

푓(푧 )
푓(푥 ) +

푓(푧 )
푓(푤 ) +

푓(푧 )
푓(푦 ) ,    (19) 

 
where its simple error equation is as follows 
 

푒 =
1
푐

 

× ((1 + 푐 ) 푐 (3 + 푐 )푐 − 푐 푐  
× (−3 + 푐 + 푐 )푐 − 2푐 (1 + 푐 )푐 푐 + 푐 (1 + 푐 )푐 )푒  

+푂(푒 ).  (20) 
 

In terms of computational point of view, 
each method from our proposed three-step class (5)-
(7) of derivative-free methods include four 
evaluations to reach the convergence order 8, which 
implies 8 / ≈ 1.682 as its optimal efficiency 
index. 
 
 
3. Numerical implementations 
The objective of this section is to compare the most 
important existing optimal derivative-free methods 
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with the novel methods under a fair circumstance. 
Liu et al. [5] gave an optimal quartically derivative-
free technique consisting three evaluations of the 
function per iteration. Kung and Traub in their 
pioneer paper [4] provided a family of three-step 
derivative-free family of methods (훽 ∈ ℝ − {0}) by 
using the Inverse Interpolation.  

To test the effectiveness of the new methods 
(15) and (18) from our classes of derivative-free 

methods, we have provided the test nonlinear 
functions in Table 2. The simple roots of each are 
listed in front of the nonlinear test function up to 15 
decimal places when their simple roots are not 
integer.  

For comparisons in this section, we have 
chosen the method of Steffensen (SM2) [8], the 
method of Liu et al. (LM4), the optimal Kung-
Traub family with 훽 = 1 (KT8).  

 
Table 2: The examples considered in this study 
Test Functions Zeros 
푓 (푥) = (sin 푥) + 푥 훼 = 0 

푓 (푥) = (1 + 푥 ) cos
휋푥
2 + 1 − 푥 −

2(9√2 + 7√3)
27  훼 = 1/3 

푓 (푥) = (sin 푥) − 푥 + 1 훼 ≈ 1.404491648215341 
푓 (푥) = 푒 + sin(푥) − 1 훼 ≈ 2.076831274533113 
푓 (푥) = 푥푒 − 0.1 훼 ≈ 0.111832559158963 

푓 (푥) = 푥 + 8 sin
휋

푥 + 2 +
푥

푥 + 1 − √6 +
8

17 훼 = −2 

푓 (푥) = 푥 + 2푥 + 5 − 2 sin(푥) − 푥 + 3 훼 ≈ 2.331967655883964 

푓 (푥) = sin (푥 − 1) −
푥
2 + 1 훼 ≈ 0.594810968398369 

푓 (푥) = sin(푥) −
√2
2 (푥 + 1) 훼 ≈ 0.785398163397448 

푓 (푥) = tan(sin(푥 + cos(푥 − 1))) 훼 ≈ 1.505551425951896 
 

The results are provided in Table 3. In fact, 
the absolute value of the given test functions after 
some full iterations are listed there. All calculations 
were done with MATLAB 7.6 using 800 digits 
floating point (Digits: =800) with VPA Command. 
In examples considered in this article, the stopping 
criterion is the |푓(푥 )| ≤ 휀, where 휀 = 10 . 
Numerical results are in concordance with the 
theory developed in this paper. In most of the cases, 
the results obtained with our new methods are 
similar to the other optimal methods.  

It is preferable to have a process that 
requires lesser number of iteration to reach its final 
solution, like (15) and (18). In general, 
computational accuracy strongly depends on the 
structures of the iterative methods, the sought zeros 
and the test functions as well as good initial 
approximations. One should be aware that no 
iterative method always shows best accuracy for all 
the test functions. 
 
 
4. Conclusion and discussion 
Many mathematical applications involve the 
solution of a nonlinear equation 푓(푥)  =  0.  

There are many methods developed on the 
improvement of quadratically convergent 

Steffensen’s method so as to get a superior 
convergence order than Steffensen using multi-step 
(multi-point methods). Multi-step iterative methods 
have multiple step process to follow the 
computation route of each step which is generally 
cumbersome to deal with.  

In the language used thus far, a well-done 
three-step class which is free from any derivative-
evaluation per iteration was constructed. The 
analytical proof of the related theorem was given 
thoroughly to show the eighth-order convergence. 
The contributed methods from this class includes 
four evaluations of the function per iteration and 
subsequently agrees with the Kung-Traub 
Hypothesis for constructing optimal multi-point 
iterative methods without memory for solving single 
variable nonlinear equations and reaches the 
efficiency index 1.682. Finally, a comparison with 
some famous methods in the literature was provided 
for a couple of hard test functions to demonstrate 
the accuracy of the novel methods from our 
contributed classes in practice.  

Further investigation can be done in order to 
develop optimal 16th-order methods which are 
derivative-free and consistent with the Kung-Traub 
Hypothesis. However, interested readers may refer 
to [9-27] for understanding more on this topic. 
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Table 3: Results of convergence under fair circumstances for different derivative-free methods  
푓 & 퐺푢푒푠푠  SM2 LM4 KT8 (15) (18) 
푓 , 0.5 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.1e-89 0.1e-84 0.7e-167 0.5e-162 0.4e-210 
       
푓 , 0.6 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.7e-325 0.1e-197 0.1e-395 0.1e-363 0.7e-359 
       
푓 , 1.7 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.3e-99 0.2e-172 0.5e-137 0.1e-198 0.2e-220 
       
푓 , 4.5 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |f| 0.3e-272 0.5e-160 0.3e-301 0.8e-254 0.3e-349 
       
푓 , −0.2 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.1e-77 0.2e-101 0.3e-182 0.3e-138 0.4e-202 
       
푓 , −2.3 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.4e-337 0.5e-247 0.4e-460 0.1e-452 0.1e-476 
       
푓 , 1.6 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.1e-238 0.2e-178 0.1e-371 0.3e-324 0.4e-390 
       
푓 , 0.3 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.2e-243 0.7e-226 0.3e-466 0.1e-476 0.2e-507 
       
푓 , 1 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.2e-285 0.1e-192 0.1e-379 0.6e-307 0.1e-396 
       
푓 , 1.55 IT 8 4 3 3 3 
 TNE 16 12 12 12 12 
 |푓| 0.3e-470 0.1e-369 0.2e-771 0.3e-683 0.1e-773 
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