
General properties of staircase and convex dual feasible functions 
 

JÜRGEN RIETZ, CLÁUDIO ALVES, J. M. VALÉRIO de CARVALHO 

Centro de Investigação Algoritmi da Universidade do Minho, Escola de Engenharia 

Dept. Produção e Sistemas, 

Universidade do Minho 

4710-057 Braga 

PORTUGAL 

juergen_rietz@gmx.de, {claudio, vc}@dps.uminho.pt 
 

 

Abstract: Dual feasible functions have been used successfully to compute lower bounds and valid inequalities 

for different combinatorial optimization problems. In this paper, we show that some maximal dual feasible 

functions proposed in the literature are dominated by others under weak prerequisites. Furthermore, we explore 

the relation between superadditivity and convexity, and we derive new results for the case where dual feasible 

functions are convex. Computational results are reported to illustrate the results presented in this paper. 
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1 Introduction 

Dual feasible functions were proposed originally by 

Johnson in [7]. Since then, different functions were 

defined and used to compute lower bounds and valid 

inequalities for general problems including cutting 

and packing, vehicle routing, and scheduling 

problems [1, 2, 3, 4, 11]. 

A function   ,   -  ,   -
 

is called a dual 

feasible function (DFF), if for any finite set 
*         + of nonnegative real numbers, the 

following holds 

 

∑      ∑ (  )   

      

  

 

 Given a DFF   ,   -  ,   - and an instance 

  (       ) of the one-dimensional cutting 

stock problem (1D-CSP) with     items of 

lengths       to be cut in the order demands 

     from initial material of length     

(       ), a valid lower bound for the optimal 

objective function value of the continuous relaxation 

(and therefore for the integer problem too) is 

 

 , -   ∑    4
  
 
5

 

   

  

 

A DFF   is a maximal dual feasible function 

(MDFF), if there is no other DFF   ,   -  ,   - 
with  ( )   ( ) for all   ,   -. A MDFF 

  ,   -  ,   - is extreme [8], if MDFFs 

    ,   -  ,   - with   ( )   ( )   ( ) for 

all   ,   - are necessarily identical with  .  

To obtain high values for the bound  , -, 
obviously only MDFFs   should be used. Moreover, 

if       are MDFFs with        then   , -  
 , -   , -, hence  , -     * , -  , -+. 
Therefore extreme MDFFs should be preferred. 

A first characterization of MDFFs was given in 

[4]. A function   ,   -  ,   - is a MDFF, if and 

only if 

 

 ( )       (1) 

 

  is symmetric, i.e. 

 

 ( )   (   )    for all   [    ⁄ ]  (2) 

 

and the following superadditivity condition holds: 

 

 (     )   (  )   (  ) for all          

with          
 

To prove that a function   ,   -  ,   - is a 

MDFF, the superadditivity needs to be shown for 

        
 

 
 and       

 

 
 only (see [8]). 

In [5], the authors surveyed the different DFFs 

described in the literature. In the sequel, we recall 
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the formal definition of the functions that will be 

explored in this paper. The parameters will be 

omitted when it is possible.  

o      , proposed by Fekete and Schepers in [6], 

with     * +:  
 

     (   )  {

     (   )      
⌊(   ) ⌋

 
           

 

 

 

o      , obtained from a function proposed 

originally in [11], using a procedure to make it 

maximal [5], for any     *   +: 
 

     (   )  

{
 

 
   *  ⌈  ⌉   +

   
      

 

 
 

  ⁄         ⁄  
       (   )         ⁄  

 

 

 

o       , proposed by Carlier, Clautiaux and 

Moukrim in [3], for any     and    : 

 

      (   )  {

⌊  ⌋ ⌊ ⌋         ⁄⁄
  ⁄         ⁄  

        (   )      
 

 
 
 

 

 

o      , proposed by Burdett and Johnson in [2], 

with     and    : 

 

     (   )  
⌊  ⌋     {  

    (  )      ( )
      ( )

}

⌊ ⌋
  

 

 

This function is continuous on ,   - and yields 

for     * + the identity function. 

 

Note that the non-integer part of a real value   is 

denoted by     ( ), i.e.     ( )    ⌊ ⌋, for 

   . 

All these functions are maximal, but not always 

extreme [8], e.g.             and        are extreme 

for all possible parameters, while      (   ) is 

extreme if and only if            [9]. 

Although       and       are extreme, we will 

show in the following section that in the 

computation of valid lower bounds for the 1D-CSP 

these functions are dominated by others, i.e. they 

can be replaced by others without getting worse 

results, if all data in the given instance are integer. 

That is a very weak prerequiste, because usually all 

data are rational, hence multiplying them by the 

smallest common multiple of the denominators 

yields an equivalent instance with integer data only. 

In Section 3 we will discuss functions, which are 

convex on 0  
 

 
1. It comes out that these functions 

easily lead to MDFFs. Section 4 contains 

computational tests. Conclusions and summary are 

given in Section 5. 

 

 

2 Dominance between MDFFs 

The characteristic mark of a MDFF   ,   -  
,   - is by definition, that there is no other DFF 

  ,   -  ,   - with  ( )   ( ) for all   
,   -, i.e. there is no dominance relation on the 

entire interval between both functions. Nevertheless, 

sometimes one MDFF   (even if it is extreme) can 

be replaced by another MDFF   in the calculation 

of the lower bound  , - for the optimal objective 

function value of an instance of the 1D-CSP, such 

that  , -   , - is obtained. This is possible, 

because the arguments for the functions belong only 

to a discrete set. 

 

2.1       versus       

The following proposition shows a dominance 

between the Fekete and Schepers function and the 

one by Burdett and Johnson [2]. On the contrary, 

there is no such relation with respect to the function 

by Carlier, Clautiaux and Moukrim [3]. Moreover, 

we will present an example, where  [     ] (with a 

certain parameter choice) cannot be achieved by 

 [     ] for any possible parameter. 

 

Proposition 1. For any         * +    , the 

choice    
(   )   

    
 leads to      .

 

 
  /  

     .
 

 
  /. A similar relation does not exist 

between      (   ) and       (   ) for any    . 

 

Proof. Both functions       and       are MDFFs, 

hence the assertion needs to be verified for   
 

 
 

 

 
 only. Since       * + that allows the 

assumption    . 

Let     with     and 
 

 
 

 

   
. Since 

     
    

    
 (     ) one obtains 
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     .
 

 
/

 
⌊(   )       ⌋     {  

(    )     .
(   )   
    

/     

   }

 
  

 

Three cases have now to be distinguished: 

 

1.   
  

   
   yields 

(   )   

    
 

   

    
 

    
      

    
 (     ), hence 

     .
 

 
/  

.       2  
           

   
3/  ⁄  

.    
     

   
/  ⁄  

      

(   )  
 

 

   
 

     .
 

   
/       .

 

 
/  

 

2.   
  

   
 : since         are integers, it 

follows that   
    

   
. We get   

    

(   )  
 

  (    )

    
     

        

    
 

(     ), because the nominator of the 

last fraction equals   (   )      

        . Therefore,      .
 

 
/  

     .
    

(   )  
/  

.       2  
             

   
3/  ⁄  

.       2  
   

   
3/  ⁄  

   

 
 

⌊  
 

 
⌋  ⁄       .

    

(   )  
/. 

 

3.   
  

   
 : we get   

    

   
 and   

    

(   )  
 

  (    )

    
   

   

    
 

,     ,, and hence      .
 

 
/  

     .
    

(   )  
/  

.     2  
        

   
3/  ⁄  

.     2  
  (   )  

   
3/  ⁄  

 

 
 

⌊  
 

 
⌋  ⁄       .

    

(   )  
/. 

 

We get for 
  

   
   

  (   )

   
 from the 

combination of the second and third case 
 

 
 

     .
 

 
/  

     

 
, hence      .

 

 
/  

 

 
 and 

analogously 
 

 
      .

 

 
/ because of the monotony. 

For the second assertion let      and   

*     +. That yields the function values 0, 
 

 
 and 

 

 
 

for      .
 

 
  /. Suppose there is a     with 

      .
 

 
  /    and       .

 

 
  /  

 

 
. The first 

equation implies 
 

 
   , hence   

 

 
. The second 

demand yields     and     due to   
 

 
, 

leading to the contradiction       .
 

 
  /  

 

 
 

 

 
 

     .
 

 
  /.       

 

This proposition states mainly that results, which 

were calculated with      , can also be obtained with 

     . On the contrary, it will be shown in the 

following that sometimes       yields better bounds 

than       for any possible parameter  . 

For any instance (       ) of the 1D-CSP with 

integer data only, a valid lower bound for the 

optimal objective function value of the integer 

problem arising from the  Fekete and Schepers-

function       can be achieved also with a  Burdett 

and Johnson-function      . Since the latter function 

may give better results,       becomes superfluous 

for this purpose. To calculate the maximal possible 

value for  [     (   )], according to [10], only 

parameters need to be tested, which belong to the set 

   .2
   

  
 
   

    
   *     +           3  

 /  * +. Nevertheless, trying all these possibilities 

is impossible, because there are still infinite many 

elements in this set, and in spite of restricting   by a 

certain constant from above, the complexity would 

be too high. On the other hand, we can try to 

approximate  ̂   
(   )   

    
 by an element of   using 

continued fractions, i.e. we are looking for numbers 

      with       and 
 

 
 

 ̂

 
. The fraction  ̂ 

is never integer, because    divides the nominator, 

but not the denominator, hence the greatest common 

divider (gcd) of nominator and denominator equals 

   (        )          , since    . 

Therefore, the calculation can be done with the 

following simple algorithm: 

 

1. Initialize the numbers     ,      , 

     ,       (   ),      ,      , 

         and        ⁄ . Obtain the 

material bound      [     (   )]      ⁄ . 

 

2. If             ⁄  then calculate 

 [     (            ⁄ )] and update the 

best known lower bound if this bound is 

better than the current one. 
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3. Let       ,                ⌊ ⌋  
    ,                ⌊ ⌋       and 

        ( )⁄ . 

 

4. If            then go to the step 2. 

 

The numbers    increase exponentially, such 

that the loop is left after at most      √ 
 

   ( ) 

repetitions. In this way, good results can be 

achieved with small complexity, as illustrated in 

Section 4. 

 

2.2       ,        and the identity function 

Similarly to the previous subsection, the improved 

Vanderbeck function       is dominated by       , 

but there is no such dominance relation to      . 

Moreover,       dominates the identity function. 

 

Proposition 2. For any     with     and any 

    * +, the use of      
 

 
 leads to 

     .
 

 
  /        .

 

 
  / for all     with 

   . Additionally,      .
 

 
    /  

 

 
 holds for 

all these  . On the other hand,       cannot always 

be replaced in the same way by      . 

 

Proof. Since       and        are MDFFs, it is 

enough for the first and second part to verify the 

proposition for     
 

 
. Then, it follows that 

     .
 

 
/  ⌈

  

 
  ⌉ (   )⁄   and       .

 

 
/  

⌊
  

 
⌋ (   )⁄ . For any      , it holds that 

⌈   ⌉  ⌊ ⌋. One has 
  

 
 

  

 
 

 

  
 .

    

 
 
  

 
/, 

because     
 

 
. 

If      then      .
 

 
/  .

  

 
  / (   )⁄  and 

⌊
  

 
⌋  

  

 
   and therefore       .

 

 
/  

.
  

 
  / (   )⁄       .

 

 
/. 

If      then      .
 

 
/  ⌊

  

 
⌋ (   )⁄  

⌊
    

 
⌋ (   )⁄        .

 

 
/. 

The choice        yields      .
 

 
/  

⌈  
 

 
  ⌉  ⁄  

 

 
, because      . 

For the last assertion, choose any     with 

   . Let      and      . Suppose, there is a 

    with     and      .
   

  
  /  

     .
   

  
  / and      .

 

  
  /       .

 

 
  /. The 

latter case yields      .
 

 
  /    ⌊

 

 
⌋, i.e. 

     , and 
 

 
     ( ). The case       

leads to     ( )      
 

 
, hence 

 

 
   , 

implying the contradiction    . Therefore, we get 

      and     ( )      
 

 
, hence 

 

 
    . One has      .

   

  
  /  ⌊

   

  
  ⌋  

   {  
    .

   

  
  /    

   
}       {  

   

  
      

   
}. 

Since     and 
 

 
    , one gets (   )  

(    )   , hence   (    )      , 

therefore   (    )          and 
   

  
      

   
 

  (   )       

   (   )
 

  (    )   

  (    )
 

 

 
 in 

contradiction to      .
   

  
  /  

 

 
.     

 

Here the same discussion as after Proposition 1 

applies. Moreover, the structure of        is less 

complex than the one of      . Computational tests 

to compare both functions are presented in Section 

4. The following example illustrates that  [      ] 

can be above every possible value of  [     ]. 
 

Example. One piece of length 7 and one of length 

15 have to be cut from initial material of length 21. 

That yields  [      (   )]        .
 

 
  /    

      .
 

 
  /  

 

 
     

 

 
. This value cannot be 

reached by       for any feasible parameter  , 

because     yields      .
 

 
  /    and of course 

     .
 

 
/   , while the choice     leads to 

     .
 

 
/  

 

 
 and      .

 

 
  /    

 

   
  . 

 

This dominance of        over       can only 

happen if there are items of sizes in .
 

 
  /. If there 

are only small pieces (shorter than   ⁄ ) then the 

highest values of   [      (   )] are found with a 

large non-integer part     ( ). In that case set 

   ⌈ ⌉. That leads to ⌊ ⌋      and ⌊  ⌋  

⌊  ⌋ for   .  
 

 
/ and finally       (   )  

     (   ), because if      then ⌊  ⌋       

due to    . 

 

Because of the negative assertions in the 

propositions 1 and 2, there is no dominance relation 
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between       and       , hence both functions 

should be used to calculate valid bounds. 

 

 

3 Convex functions 

In this section, a connection between superadditivity 

and convexity is developed and the resulting 

MDFFs are analyzed. If a real function   is 

continuous and obeys the equation  (   )  
 ( )   ( ) for all      , then   is necessarily 

linear. Since superadditivity allows also “greater 

than”, convex functions could be very useful for 

generating MDFFs under the prerequisite (1). 

 

Let     be a convex set. A function       

is convex if for all         and   (   ) it holds 

that  (     (   )    )     (  )  
(   )   (  ). 

 

Theorem 1. Let     be a constant. Any convex 

function   ,   -     fulfilling the condition (1) is 

superadditive in the entire domain ,   -. Moreover, 

if   ,   -     fulfills the conditions (1) and (2) 

and is convex on 0  
 

 
1 then   is a MDFF. 

 

Proof. Let               be given with 

               . First it is shown, that 

 (  )   (  ), where   describes the straight line 

through the points (    (  )) and (    (  )), i.e. 

 

 ( )   (  )  
 (  )   (  )

     
 (    )  

 

Since   is convex in the interval ,     -, one has 

 (  )   (  )  
 (  )  (  )

     
 (     ), hence 

 (  )   (  )

  (  )   (  )  
 (  )   (  )

     
 (     )

  (  )   (  )

 
 (  )  

 (  )   (  )
     

 (     )   (  )

     
 (     )   (  )   (  )  ( (  )   (  ))

    
 

In the same way,  (  )   (  ) can be shown. 

Taking       yields  ( )   ( )   . The 

straight line   can be written generally in the form 

 ( )       with certain      . For    

     this yields  (     )   (  )   (  )  
 (     )   (  )   (  )       ( )   , 

hence   is superadditive in the interval ,   -. 
To prove the second assertion, the 

superadditivity on the entire interval 1  
 

 
1 must be 

shown. For that purpose assume now         
 

 
          . Since f  is symmetric, one has 

 .
 

 
/  

 

 
. Because   is convex on 0  

 

 
1, it holds 

that  .  
 

 
 (   )   /     .

 

 
/  (   )  

 ( ) for all   (   ), hence  (  ⁄ )    ⁄  for all 

  (   ). Therefore,  (  )    ,  (  )     and 

 (  )     (    )    (    )    , 

implying  (  )   (  )   (     ).    

 

Any convex function is continuous in the inner 

of its domain, but not necessarily differentiable, for 

instance     . Therefore, the prerequisite, that   

should be convex on 0  
 

 
1, is strong, but not too 

strong. This leads to a wide range of MDFFs. 

However, many of these functions will not be 

extreme as shown at the end of this section. 

 

Example. The following function    ,   -  ,   -  
is a MDFF: 

 

  ( )   {

                      

   
 

  ⁄             
 ⁄  

    (   )          

 (3) 

 

 

Proof.    fulfills the conditions (1) and (2) 

obviously. For     
 

 
 one obtains   

 ( )  

  ( )   
   and   

 ( )    ( )  ( 
       )  

 , hence    is strictly convex in .  
 

 
/. Since    is 

continuous, Theorem 1 can be applied.    

 

The following assertion will be used at the end of 

this section to simplify the proof of Proposition 4, 

where we show that there are only two extreme 

piecwise linear MDFFs, which are convex on 0  
 

 
1. 

 

Proposition 3. If an extreme MDFF   ,   -  
,   -, different from the  Fekete and Schepers-

function with    , is convex in .  
 

 
/, then   is 

continuous on ,   -. 
 

Proof. Due to the convexity in .  
 

 
/ it follows 

immediately that   is continuous in .  
 

 
/. Since 
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   ( )  
 

⌊  ⁄ ⌋
 for      , the continuity 

holds also at the spot 0. Let           ⁄  ( ). 

Clearly,     
 

 
 due to the restriction on  . If 

  
 

 
 would hold, then let       2  

 

  
3    and 

define functions     ,   -  ,   - as 

 

 

 ( )   {

   ( )            ⁄  

  ⁄          ⁄  
   ( )           

 

 

 ( )     ( )   ( )            
 

 

For     
 

 
 one has  ( )  (   )   ( ). 

The convexity of   in .  
 

 
/ implies in conjuction 

with       that     are convex in .  
 

 
/ too. 

Moreover     and     are MDFFs due to 

Theorem 1. Therefore,   would not be extreme. This 

contradiction proves     ⁄ , hence    is 

continuous at  
 

 
 too.       

 

A clue to disprove that a given differentiable 

function   like (3), which is constructed from a 

convex function according to Theorem 1, is 

extreme, is the following. Draw the tangents to the 

graph of   in the points (   ) and .
 

 
 
 

 
/. If   isn't 

the identity function, then both tangents have a 

unique common point (   ) with     
 

 
 

because of the convexity of   in 0  
 

 
1. Let 

 

 ( )

  {

    ( )           
 

 
 .  

 

 
/    .

 

 
/        ,     -

   (   )             

  (4) 

 

 

Then   ,   -  ,   - is obviously a MDFF. If 

the function   ,   -  ,   - with  ( )    
 ( )   ( ) for all   ,   - is superadditive, then 

  is not extreme. In the case of the function (3) one 

has   ( )    and   .
 

 
/   , hence   

 

 
. 

This approach needs not to work always. To 

show that, a special differentiable convex (but not 

strict convex) function   0  
 

 
1  0  

 

 
1 is 

constructed, which can be used with Theorem 1 as 

counter example. First choose a very small    . 

Let initially 

 

 ( )   {
  (  )⁄            

  ⁄    ⁄            ⁄  
     ⁄        ⁄      ⁄  

 

 

Now replace   in an environment of   
 

 
 by a 

strict convex function, such that   becomes 

differentiable in the whole interval .  
 

 
/. That 

yields   ( )    and   .
 

 
/   , hence   

 

 
. For 

some   .  
 

 
/ it follows that   ( )  

 

 
, but 

  ( )        ( ), where   is the function (4). 

Hence,   ( )   , yielding that the other function   

is not monotonous and therefore not a MDFF. 

Let   and   be metrical spaces with metrics   

and  , respectively. A  uniform continuous function 

      has the property that for each     there 

is a    , such that for any       with  (   )  

  it holds that  ( ( )  ( ))   . Any continuous 

function on a compact set is there uniformly 

continuous. If the domain of   is not compact, then 

this property of   is more than the point-by-point 

continuity where   may depend on the point   or  .  

In the following, sometimes a derivative    of a 

function   will be discussed on a closed interval 
,   -. In that case we mean that    exists in an open 

set, which contains ,   -. 
 

Theorem 2. Let   ,   -  ,   - be a MDFF, such 

that   is convex on 0  
 

 
1. If there is an  ̃  .  

 

 
/, 

such that   is twice continuously differentiable in an 

environment of  ̃ and if   ( ̃)   , then   is not 

extreme. 

 

Proof. Due to the continuity of    in an 

environment of  ̃ and   ( ̃)    there are numbers 

      with       
 

 
 and    , such that   

has a continuous second derivative on ,   - and 

  ( )    for all   ,   -. As a MDFF,   is 

monotonous, hence   ( )   . For an enough small 

  1  
√ (   )  

(   )   √   ( )
1, let 

 

 ( )   {
                   

            
 

 

and 

 

 ( )        .
   

   
/  
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The function   is once continuously 

differentiable, and it holds that    ( )  
 

  
 for all 

 , because           (    ) . 

The functions     are defined by 

 

 

 ( )   {
 ( ( ))          ⁄  

   (   )           
 

 

and 

 

 ( )     ( )   ( )  
 

hence  ( )   ( )   ( ) for   0  
 

 
1  (   ). 

Moreover,     are continuously differentiable on 
,   -, even twice in (   ). It remains to show that 

      are monotonously increasing on ,   - and 

   . 

For       one has   ( )             

and   ( )            , hence   has turning 

points at      
 

 
 

√ 

 
 with  (    )  

 

  
 and 

  (    )   
√ 

 
. Therefore,   ( )    

 

   
 
√ 

 
 

  
(   ) 

 (   )    √   ( )
 

 

 
, i.e.   is strictly 

monotonous, hence    ( )    for all   

,   -. Since   ( )    for     
 

 
, one has 

  ( )    ( ) for     
   

 
, i.e.    . Because 

of      ( )    for all   (   ) it follows for 

      that   ( )    ( ( ))    ( )  

  ( ( ))    ( )    .  
 

   
 
√ 

 
/  

 

(   ) 
 

  ( )    
 

(   )   √   ( )
 .

 

 
(   )    ( )  

√ /  
 

 
 , hence    is monotonously increasing on 

,   - due to the mean value theorem of differential 

calculus. 

Investigating  , one has first   ( )     ( )  

  ( ( ))  .  
 

   
 
√ 

 
/    ( )  

  

(   ) 
. Since 

   is uniformly continuous on ,   -, there is a 

constant    , such that    ( )    ( )  
 

 
 for 

all     ,   - with        . If       then 

  ( )       and therefore   ( ( ))    ( )  
 

 
, hence   ( )    .  

 

   
 
√ 

 
/  

 

 
 

.  
 

   
 
√ 

 
/    ( )  

  

(   ) 
 

 

 
 

4(   )  
√ 

 
    ( )5  

√  

(   )   √   ( )
  . 

The new restriction 

       2    
√ (   )  

(   )   √   ( )
3 guarantees 

  ( )    for all   (   ) and therefore also the 

monotony of   .       

 

One opportunity to avoid the prerequisites of 

Theorem 2 is the usage of piecewise linear 

functions, but that does not guarantee extremality, 

as the following proposition shows. 

 

Proposition 4. Let   ,   -  ,   - be a MDFF 

different from      (   ) and from the identity 

function, such that   is convex in .  
 

 
/ and 

piecewise linear. Then   is not extreme. 

 

Proof. Suppose that   is extreme. Then 

Proposition 3 states that   is continuous on ,   -. 
We have to distinguish several cases about the 

intervals of different slopes. 

 

A. Let us begin with the case of many such 

intervals, i.e. assume that there are 

                          with   

            
 

 
 and     

       

       
 for 

  *     +, such that          and 

 ( )     (    )     for all   
,       -,   *     +. The idea will be to 

replace   in the interval (     ) by two other 

piecewise linear functions, such that they 

remain convex in 0  
 

 
1. Let 

 

     {      (     ) 

    
(     )     (     )    

     
}   

 

Now      will be shown. Indeed, we have 

         (     )  (     )  
(     )    and      , hence 

(     )  (     )  (     )  
(     )   , implying (     )     
(     )     (     )     and again 

    . Define the functions     0  
 

 
1  

0  
 

 
1 by 

 

 ( )   

{
 
 

 
 

 ( )        (     ) 

   (    )  
    
     

        ,     - 

   (    )  
    
     

        ,     - 
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and 

 

 ( )

  

{
 
 

 
 

 ( )        (     ) 

   (    )  
        
     

        ,     - 

   (    )  
        
     

        ,     - 

 

 

Both functions     are convex, as shown 

next. They are piecewise linear and 

continuous. It remains to check the slopes: 

     implies 
    

     
 

     

     
 

     

     
 

    

     
 and       

        

     
. The 

definition of   yields the other two needed 

inequalities, namely    
    

     
 since 

        (     ), and       
(     )    (     )   

     
 implies 

        

     
 

        

     
 

(     ) (     )    (     )    (     )

(     ) (     )
  , as 

desired. Since  ( )   ( )   ( )    and 

    are convex on 0  
 

 
1, both functions can 

be used according to Theorem 1 to construct 

MDFFs different from  . Since it holds that 

  ( )   ( )   ( ) for all   0  
 

 
1 and 

 (  )        (  ), the function   is 

not extreme. To finish the proof, we need to 

check the situation of at most two intervals of 

different slopes in 0  
 

 
1. 

 

B. If there are                     with 

           
 

 
 and     

       

       
 for 

  *   +, such that         and 

 ( )     (    )     for   ,       - 
and   *   +, then the same proof can be 

used with      . 

 

C. If   has the same behaviour as in case (B.) 

except      instead of     , then we 

get     , such that   becomes the Burdett 

ad Johnson-function       with parameter 

  
 

    
 (   ). As proved in [9], 

Proposition 1,       is not extreme for 

     , hence   is not extreme in this 

case too. 

 

D. If   has a constant slope in the entire interval 

0  
 

 
1 and is continuous on ,   -, then   is 

the identity function, but this case was 

disclosed in the prerequisites. Therefore, all 

cases were checked.      

 

Theorem 2 and Proposition 4 imply that MDFFs, 

which are convex in .  
 

 
/, are generally not 

extreme. 

 

 

4  Computational tests 

To illustrate the observation that       dominates 

      in the 1D-CSP with integer data, fast feasible 

lower bounds for 54000 instances of 1D-BPP (with 

order demands 1 for all items, which may occur 

repeatedly) were calculated with very low 

complexity as described in Subsection 2.1. Each of 

the following classes contained 1000 instances: 

 

1. Container size       

 

a) all item sizes between 1 and 100 

A)       items 

B)       items 

C)        items 

 

b) like classes 1aA‒1aC, but item sizes 

between 20 and 100 

c) like classes 1aA‒1aC, but item sizes 

between 35 and 100 

 

2. Same instances as in classes 1aA‒1cC except the 

changed container size       

 

3. Same instances as in classes 1aA‒1cC except the 

changed container size       

 

4. Same instances as in classes 1aA‒1cC except the 

changed container size       

 

5. Same instances as in classes 1aA‒1cC except the 

changed container size       

 

6. Same instances as in classes 1aA‒1cC except the 

changed container size       

 

The only change between the classes 1.‒6. (for 

the same subclass) was the container size; the item 

sizes and their order demands were exactly the 

same. The idea for this approach was that the 
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instances of the classes 1cA‒1cC can be solved 

easily to optimality. Increasing the container size, 

such that three small items may fit in one container, 

makes the instances harder to solve them exactly. 

For each instance    (       ), the material 

bound          and the bounds  [     ] and 

 [     ] were calculated. The parameters for the 

MDFFs       and       were chosen on the base of 

continued fractions. 

The results presented in Table 1 were obtained in 

each class for the sum of the material bounds 

(∑  ), the sum    and the minimum    of the 

differences  [     ]    , i.e.     ∑( [     ]  

  ) and        { [     ]    }, and the sum    

and the minimum    of the differences  [     ]  

 [     ], i.e.     ∑( [     ]   [     ]) and 

       { [     ]   [     ]}. 
 

 

Class ∑               

2bB 238086.33 1355.49 0 23.21 0 

2bC 476101.21 1107.12 0 30.79 0 

3cA 44679.79 365.63 0 80.66 0 

3cB 223333.96 308.63 0 413.16 0 

3cC 446756.26 265.05 0 725.6 0 

Table 1: Computational results (part I) 

 

 

For the set of instances that are not reported in 

Table 1, the sum    was less than 20. Clearly, if 

there are DFFs   and   with  , -   , -, then 

multiplying the order demands by an integer above 

1 increases the difference between the found 

bounds. Therefore, the highest values of    could 

occur for large numbers   of items only. 

The function       clearly dominates      , 

particularly in the classes 3cC and 3cB, while the 

computational effort remained very small. That 

confirms the stated opportunity to replace       by 

     . 

The comparison between       and        is 

much more impressive (see Table 2). We used the 

same instances again. The parameter   was also 

chosen based on continued fractions. Let    denote 

the sum of the differences  [      ]   [     ], i.e. 

   ∑( [      ]   [     ]). The minimum 

   { [      ]   [     ]} was always zero. For 

ease of compactness, only classes with      are 

shown in Table 2. 

 

 

Class ∑   ∑ [     ]   

1aA 50005.53 51779.76 491.21 

2aA 40004.49 40408.82 266.87 

1aB 250165.18 254053.81 1194.78 

2aB 200132.25 200223 70.33 

1aC 500403.26 505836.81 1734.92 

1bA 59451.46 63513.37 671.39 

2bA 47561.2 48726.35 490.57 

1bB 297608.04 313255.01 1504.97 

2bB 238086.33 239440.62 582.77 

1bC 595126.43 624250.86 2219.16 

2bC 476101.21 477208.24 483.18 

1cA 67019.66 77215.5 1175.5 

2cA 53615.76 58627.08 1161.81 

3cA 44679.79 45049.56 88.45 

1cB 335001.04 382188.5 3341.5 

2cB 268000.73 288241.83 2669.9 

3cB 223333.96 223643.02 45.53 

1cC 670134.43 763144 5422 

2cC 536107.61 574557 3799.45 

Table 2: Computational results (part II) 

 

 

Of course, the largest difference between the two 

calculated bounds occurred normally, when the 

order demands were the highest, namely in class 

1cC. On the other hand, the effect of no dominance 

in the case of small items only (classes 4‒6) could 

also be verified. Then always  [     ]   [      ] 
was found. 

 

5  Conclusion 

In this paper, we proved that the MDFFs       and 

      are dominated by other MDFFs under the very 

weak prerequisite that all data are integer. 

Therefore, these functions can be replaced by others 

without getting worse results. On the other hand, 

none of the MDFFs       and        is dominated by 

the other, therefore both functions should be used to 

calculate valid bounds. Since it is impossible to try 

all feasible parameters for       to replace      , we 

proposed an algorithm to find useful parameters 

with very small complexity and tested it with 

success. 

Convex functions can be used to construct 

MDFFs. In this paper, we have shown that, except 

the identity function and      (   ), there is no 
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piecewise linear extreme MDFF, which is convex in 

.  
 

 
/. 
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