
The Growing-Tree Sorting Algorithm

SHERENAZ AL-HAJ BADDAR, SAMI SERHAN, HAMED ABDEL-HAQ

 Department of Computer Science

University of Jordan

Queen Rania St., Amman

JORDAN

s.baddar@ju.edu.jo

Abstract: - In this paper, a new sorting algorithm called the Growing-Tree Sorting Algorithm (GTSA) is

proposed to sort a vector of items in a linear time. It implements a structured tree that stores the digits of each

input integer and retrieves the integers in the correct order. If d is the maximum number of digits per input

number and n is the input size, then it can be shown that the GTSA algorithm requires θ(dn) time to sort both

in its best and worst-case scenarios. It can be also shown that the best-case memory complexity of GTSA is

θ(d) and that the worst-case memory complexity is θ(dn). To evaluate the performance of GTSA, it was

compared with the radix and counting sort algorithms in terms of the memory they consume and their

corresponding execution times. The experiments showed that GTSA was, in general, more memory-

conservative than counting sort and radix sorting algorithms. The experiments also showed that the GTSA was

faster than the radix and counting sort algorithms when the input size was relatively large and the input range

was relatively small.

Key-Words: - Non-comparative sorting, linear-time sorting, tree, post-order traversal.

1 Introduction
A sorting algorithm receives a sequence A

of n numbers such that A = <a1,a2,…,an>, and

outputs a permutation of the input sequence

<a'1,a'2,…,a'n> such that a'1 ≤ a'2 ≤ …≤ a'n [1]. To

achieve its goal, a sorting algorithm may use the

comparison operator to rearrange the input numbers

into the desired order. In this case, the sorting

algorithm is said to be comparative. The class of

comparative sorting algorithm includes, but is not

limited to: quick sort [2], heap sort [3], merge-sort

[4], and Shell sort[5] algorithms. Another class of

sorting algorithms produces the sorted permutation

without using comparisons at all. Instead, these

algorithms make certain assumptions about the size

and the range of the input numbers to help sort

them. This class of sorting algorithms is referred to

as non-comparative, and mainly includes: counting

sort [4], radix sort [4], and bucket sort [1]. The

proposed Growing-Tree Sorting Algorithm (GTSA)

is a non-comparative sorting algorithm as well.

 To evaluate the performance of a given

sorting algorithm, two metrics are usually

considered: the execution time, and the memory

consumption. A decision-tree model can be used to

show that any comparative sorting algorithm must

make Ω (nlog n) comparisons, in the worst case, to

sort n numbers [1]. Non-comparative sorters, on the

other hand, produce the sorted permutation of n

numbers using O(n) operations. This implies that

non-comparative sorters are usually faster than their

comparative counterparts.

 Some sorting algorithms are referred to as

in-place sorters, since they require a constant

number of inputs to be stored in extra memory

locations, and hence have a memory consumption

complexity of O(1). Heap sort, insertion sort and

quick sort are in-place sorting algorithms, whereas

merge-sort requires O(n) locations to sort n

numbers[1]. Counting sort is not an in-place sorter

either, since it consumes O(k+n) locations to sort the

n numbers that fall in the range 0 to k inclusive[1].

 In this paper, a new non-comparative, not-

in-place, liner-time sorting algorithm is introduced.

The development of GTSA was motivated by the

limitations of the widely-used liner-time sorters.

Consider counting sort for instance, despite its

simplicity it consumes a relatively large amount of

memory as the range of input numbers increases.

This makes it impractical for applications with

relatively large input range. Radix sort also suffers

from some drawbacks. It requires all input numbers

to have the same number of digits, and if that is not

the case, then padding with extra zeros must be

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 275 Issue 7, Volume 8, July 2011

done. Besides, radix sort's execution time

significantly grows as the number of digits in input

numbers grows. An additional drawback is that

neither counting sort nor radix sort can naturally

handle signed inputs and/or floating point numbers.

This work aims at developing a liner-time sorting

algorithm that consumes a relatively smaller amount

of memory and can handle not only positive

integers, but also negative and floating-point

numbers as well.

 A sorting algorithm is said to be stable if

and only if the input numbers with the same value

appear in the sorted output array in the same order

as they do in the input array. Sorting stability is

necessary to achieve whenever satellite data are

associated with each input number[1]. Counting,

radix, bucket and are stable sorters. The GTSA

sorter described here is stable too.

 Section 2 of this paper highlights the most

widely-used liner-time sorters. Section 3 describes

the GTSA, illustrates it via the means of a numerical

example, and establishes its time and memory-

complexities. Section 4 describes the GTSA

implementation together with the experiments

carried out to compare the performances of radix

sort, counting sort, and GTSA. It also analyzes the

results and emphasizes the improvements achieved

by GTSA over radix and counting sorts. Finally, the

conclusions drawn together with the future work are

depicted in section 5.

2 Literature review

Counting sort is a stable sort that was

developed by H. H. Seward back in 1954 to sort

positive integers [4]. This algorithm restricts the

range of the input to some value, say k, which

implies that all input numbers will fall in the

range[0,k]. To sort an input element x, counting sort

counts the number of input elements less than x.

This helps place x in its correct location in the

output array. The process is repeated for all input

elements to complete the sorting of the input array.

Figure 1 depicts the pseudocode of the counting sort

algorithm.

Based on Fig. 1, the counting sort time

complexity is θ(k + n) , where n is the input size. If k

is O(n), then counting sort will sort in θ(n) time. The

memory complexity of this algorithm is also θ(k+n),

which means that memory consumption of count

sort increases significantly as the input range

increases.

 Radix sort was published in paper by L. J.

Comrie in 1929 [4]. Originally, radix sort was used

in card-sorting machines. The radix sorting

machines organized the n d-digit numbers in d

columns and sorted all numbers based on the ith

digit in each iteration, starting from the least

significant digit. Radix sort, as described in Fig. 2,

uses a stable sort like counting sort in the ith

iteration. The time it takes radix sort to accomplish

its task is θ(d(n+k)) and its memory complexity is θ

(k+n), where each digit is in the range[0,k].

 Bucket sorting is another stable non-

comparative sorting algorithm that was developed

Radix sort(A,d)

Input: unsorted integer-list A

Output: sorted integer-array A

For i = 1 to d do

 Use a stable sort to sort

array A on digit i

Fig. 2 Radix Sort pseudocode[1].

Counting sort(A,B,k)

Input: unsorted integer-list

A: kaA,a 0

Output: sorted integer-array

B

For i = 0 to k do

 C[i] = 0

For j= 1 to length(A) do

 C[A[j]] = C[A[j]] + 1

For I = 1 to k do

 C[i] = C[i] + C[i-1]

For j = length(A) downto 1

do

{

 B[C[A[j]]] = A[j]

 C[A[j]] = C[A[j]] - 1

}

Fig. 1 Counting Sort pseudocode[1].

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 276 Issue 7, Volume 8, July 2011

by E. J. Isaac and R. C. Singletonin 1956[1].

Bucket sort assumes that the input is drawn from a

uniform distribution and that it is generated by a

random processes that produces numbers in the

interval [0, 1) uniformly. The input would be split

into n equally-sized buckets, and each of the inputs

would be placed in its corresponding bucket. To

produce the sorted output, the buckets would be

traversed in order after sorting the numbers within

each bucket. Bucket sorting runs in linear expected-

time and requires θ(n) memory to sort n real

numbers in the range [0, 1). Figure 3 describes the

bucket sort algorithm.

Bentley et al describe a sorting algorithm that blends

quick sort and radix sort in [6]. Wang proposed a

non-comparative sorting algorithm, called Self-

Indexed Sorting (SIS) in [7]. The SIS algorithm

carries out the sorting task by directly mapping each

input element into a relative offset based on its

value. Some effort was invested in developing

algorithms that sort in linear space. Consider, for

example, the work in [8] which describes a linear-

space sorting algorithm that takes O(n log log n log

log log n) time to accomplish its task. Yan et al

improved this algorithm even further and came up

with a linear-space integer sorter than runs in

O(nn loglog) expected time[9]. A comprehensive

survey on sorting algorithms is depicted is [10].

3 The GTSA algorithm
Here we develop an integer variant of the

GTSA that can be compared with the other non-

comparative linear-time integer sorters. The

growing-tree sorting algorithm proceeds in two

phases. The first phase is the growing-tree

construction phase, in which all the input numbers

get inserted in their proper locations in the tree. The

second phase is the growing-tree traversal phase, in

which all the input numbers get retrieved and

inserted in their corresponding locations in the

sorted output array. In this section we describe these

two phases.

3.1 The Growing-Tree Construction Phase
 The root of the growing tree is a sign node

that has two child-nodes as described in Fig4.(a).

The left child-node points to the negative sub-tree,

i.e. the sub-tree of negative input numbers, whereas

the right child-node points to the positive sub-tree,

i.e. the sub-tree of positive integers. The root of the

Bucket sort(A)

Input: unsorted integer-array A

Output: sorted integer-array A

n = length(A)

For i = 1 to n do

 insert A[i] into list

B[nA[i]]

For i = 0 to n-1 do

 sort list B[i] with

insertion sort

concatenate the lists B[0],

B[1], …, B[n-1]together in

order and copy the answer to

array A

Fig. 3 Bucket Sort pseudocode[1].

Sign

– +

 Negative digit

…. 1 k k-1

 Positive digit

…. k 1 2

 (a) (b) (c)

 Negative value

3 2 1 0 5 4 6 7 9 8

 Positive value

6 7 8 9 1 2 3 4 5 0

(d) (e)

 Frequency

 Frequency value

(f)

Fig. 4 The nodes that compose a growing tree

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 277 Issue 7, Volume 8, July 2011

negative sub-tree is the negative digit-node, which is

described in Fig. 4(b). This node is an array of

pointers, where the i
th
 pointer is the root of the sub-

tree of all negative input numbers with i digits. The

pointers of the negative digit-node are ordered in a

way that would help retrieve the negative numbers

in the correct order during the growing-tree traversal

phase. Similarly, the positive digit-node is the root

of the sub-tree of all positive input numbers. This

node, as depicted in Fig.4(c) is an array of pointers

where the i
th
 pointer is the root of the sub-tree of all

positive input numbers with i digits. The negative

value-node, as described in Fig.4(d), is an array of

10 pointers, each of which designates a digit

between 0 and 9. Again, the order of the pointers in

the negative-value node helps retrieve the negative

numbers in the correct order during the second

phase of this algorithm. Similarly, a positive-value

node, as depicted in Fig. 4(e), is an array of 10

pointers. The ith pointer designates a digit with

value i, where i in the range 0 to 9 inclusive. Each

path in the growing tree designates an input number

and is terminated by a leaf node, called the

frequency node. This node records the occurrences

of that number in the input and is described in

Fig.4(f). Now, assume that you want to insert an i-

digit positive integer, called x, into the growing tree

for the first time. The integer would be inserted into

the positive subtree rooted at the ith pointer in the

positive-digit node. To do so, x would be split into

the digits composing it, and each digit would get

inserted in its corresponding positive value node

starting with the most significant digit. This would

create a path in the growing tree that designates x.

The frequency node is appended to this path as a

leaf node and assigned the value of one. For all the

subsequent occurrences of the same integer, if any

exist, the path would be traversed all the way down

to the frequency node which would have its value

incremented by one to account for each occurrence

of x. Figures 5(a) and 5(b) describe the growing-tree

construction phase.

3.2 The Growing-Tree Traversal Phase
In this phase, post-order tree traversal is

used to retrieve the integers in the sorted order. In

the post-order tree traversal, the left sub-tree is

visited first, then the right sub-tree is visited next,

and finally the root is visited. Each of the

Growing_Tree_Construction (A,D,T)

Input: unsorted integer-array (A),the maximum number of digits per

input number (D)

Output: Growing-tree of the input numbers T

Begin

Create a Sign Node and denote it by SN

Create a negative digit-node with D pointers, denote it by ND

Create a positive digit-node with D pointers, denote it by PD

Let prt be a pointer to a value node

SN.left_child = ND

SN.right_child = PD

For i = 1 to length(A) do

d = number of digits in A[i]

if(A[i]> 0)

if(PD[d] == null)

create a Positive-value node, PV

PD[d]= PV

ptr = PD[d]

Insert (A[i], T, ptr)

else

if(ND[d] == null)

create a Negative-value-node, NV

ND[d]= NV

ptr = ND[d]

Insert (A[i], T, ptr)

End

Fig. 5(a) The Growing-Tree Construction Phase

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 278 Issue 7, Volume 8, July 2011

aforementioned sub-trees is traversed, recursively,

in a similar fashion. The pointers in the digit nodes

as well as the value nodes are ordered properly.

Thus, post-order tree traversal allows us to retrieve

the nodes that actually have smaller values before

the ones with larger values. When a frequency node

is reached, the retrieved integer would get copied to

the output array as many times as recorded in the

frequency node. Figure 6 describes the growing-tree

traversal phase.

3.3 A Numerical Example
In this section, we illustrate the GTSA

algorithm described in section 3 via the means of an

example. Assume you want to sort the numbers:

5117, -102, 675, 3, -194, and 3 via GTSA. It is quite

obvious that the maximum number of digits per

input number is 4. Firstly, each number in the input

needs to be inserted into the growing tree. Figure 7

depicts the growing tree after inserting 5117, and

Fig. 8 describes the growing tree after inserting the

remaining numbers.
 In order to retrieve the sorted output, the

growing tree depicted in Fig.8 would be traversed in

a post-order fashion. Thus, the first number that

would be retrieved is -194 followed by -102. Next,

number 3 would be traversed twice since its

frequency is 2 resulting in the sub-array 3, 3.

Afterwards, the number 675 would be traversed

once, followed by the number 5117. The resulting

sorted output array is -194, -102, 3, 3, 675, 5117.

3.4 The GTSA Time and Memory

complexities
 The time and memory complexities of the

GTSA algorithm are depicted in theorems 1 and 2

respectively.

Theorem 1

It takes the GTSA algorithm θ(dn) time to

sort n d-digit numbers in both the best and worst-

case scenarios.

Proof

 Let F(n) denote the time complexity of the

GTSA algorithm. Also, let f(n) denote the time

complexity of the growing-tree construction phase,

and let g(n) denote the time complexity of the

growing-tree traversal. Obviously, F(n) = f(n) +

g(n).

 Let us first consider the best-case scenario,

which happens when the n d-digit numbers are the

same number which we will call x. In this case, it

would take θ(d) time to insert the d digits of x. Then,

the constructed path would be traversed all the way

to the frequency node to increment its value for the

remaining occurrences of x in the input. Thus, the

construction procedure would take θ(dn) time to

accomplish its job in the best-case.

Insert(a,T,ptr)

Input: integer (a), growing-tree(T),

ptr: pointer to the node under which a should be inserted

Output: T after inserting integer a into it

Begin

Let a be equal to adad-1...a1 ,where d is the number of digits in a

For j = d downto 1 do

If(ptr[aj]==null and a >= 0)

Create new positive-value-node call it PV

ptr[aj] = PV

If(ptr[aj]==null and a < 0)

Create new positive-value-node call it PV

ptr[aj] = NV

ptr = ptr[aj]

if (ptr does not point to a frequency node)

append a frequency node

to ptr and initialize its value to one

else

increment the frequency value by 1

End

Fig. 5(b) The Growing-Tree Construction Phase(continued)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 279 Issue 7, Volume 8, July 2011

 In the worst-case scenario, the n d-digit

numbers are distinct. Notice that the amount of time

it takes to insert a digit is constant. Thus, it would

take θ(d) time to insert each input number and set its

frequency node value to one. This means that the

overall time it would take to insert the n d-digit

numbers would be θ(dn). As a consequence, f(n) is

θ(dn) both in the best-case and the worst-case

scenarios.

 The best-case scenario of the growing-tree

traversal phase happens when the same d-digit

number, called x, is repeated n times. Then, it would

take d operations to retrieve the digits composing x

from the growing tree and n operations to copy it

into the sorted array n times. Hence, it takes θ(d+n)

time to traverse the growing-tree in the best-case

scenario. The worst-case scenario occurs when the

input contains n distinct d-digit numbers. There, it

would take θ(d) time to retrieve each input number

from the tree and copy it into the sorted output

array. Thus, it would take θ(dn) time to perform the

growing tree traversal phase in the worst case

scenario. Therefore, g(n) is θ(d+n) in the best case

and θ(dn) in the worst case.

Based on the arguments above, it can be concluded

that F(n), i.e. the time complexity of the GTSA

algorithm, is θ(dn) both in the best-case and worst-

case scenarios. ■

Theorem 2

The space complexity of the GTSA in the

best case is θ(d) and is θ(dn) in the worst case.

Proof

 Let F(n) denote the space complexity of the

GTSA sorting algorithm. Also, let f(n) denote the

space complexity of the growing-tree construction

phase and let g(n) denote the space complexity of

the growing-tree traversal phase. Obviously, F(n) =

f(n) + g(n).

 In the best-case scenario of the growing-tree

construction phase, the same d-digit number, called

Sign

– +

digit

4 1 2 3

value

6 7 8 9 1 2 3 4 5 0

value

6 7 8 9 1 2 3 4 5 0

value

6 7 8 9 1 2 3 4 5 0

value

6 7 8 9 1 2 3 4 5 0

Frequency

 1

Fig. 7 Inserting 5117 in the growing tree

Traverse_Growing_Tree(T,A)

Input: Growing-tree(T)

Output: sorted output array(A)

Begin

Let D be the maximum number of digits per integer

For i = D downto 1 do

 Let ptr = ND[i]

 For each path, p, rooted at ptr

 Apply post-order traversal to p and retrieve the

corresponding integer, denote it by a

 Copy -a to A c times, where c is the value of the frequency

node appended to p

For i = 1 to D do

 Let ptr = PD[i]

 For each path, p, rooted at ptr

 Apply post-order traversal to p and retrieve the

corresponding integer, denote it by a

 Copy a to A c times, where c is the value of the frequency

node appended to p

End

Fig. 6 The Growing-Tree Traversal Phase

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 280 Issue 7, Volume 8, July 2011

x, appears n times. It takes θ(d) memory to store the

digits of x in their proper positions in the growing

tree and to append one frequency node that contains

the value of n. Thus, the growing tree contains one

path in this case and, consequently, f(n) is θ(d) . In

the worst case scenario, the input consists of n

distinct d-digit numbers. Each number requires θ(d)

memory locations to form its distinct path in the

tree. Consequently, f(n) is θ(dn) in the worst case.

 In the best and worst case scenarios, the

traversal phase only copies the retrieved numbers to

the output array using a small constant amount of

memory. Besides, we can copy the retrieved

integers back into the input array. Thus, g(n) is θ(1)

for both the best and the worst cases. Consequently,

F(n) is θ(d) in the best case and θ(dn) in the worst

case. ■

4 Experimentations

 In order to assess the performance of the

GTSA algorithm, a Java program was developed

together with two other enhanced Java

implementations for the radix and counting sorts.

The enhanced implementations augmented the

classical radix and counting sorting algorithms with

the instructions necessary for handling negative

integers as well. Table 1 summarizes the asymptotic

behaviors of the three non-comparative sorting

algorithms, where the input range, the number of

digits per input number, and the input size are

denoted by k, d, and n respectively.

 If we assume that k is proportional to n and

that d is a constant, then the three algorithms will

have comparable memory and execution times

complexities. However, this does not necessarily

guarantee that the three sorters are actually as good

as each other in terms of space and time.

Determining which algorithm is the best not only

depends on the asymptotic behaviors, but also on

the practicality of the implementations. The

complexity constants together with the

implementation details have profound effect on

determining the actual performance of any

algorithm. Here we try to figure out the

circumstances under which the GTSA would

actually excel and outperform both radix sort and

counting sort algorithms in terms of space and time.

 Three sets of experiments were carried out to

help determine the actual performance of the three

Positive value

6 7 8 9 1 2 3 4 5 0

Frequency

1

Frequency

1
Frequency

1

Positive value

6 7 8 9 1 2 3 4 5 0

Positive value

6 7 8 9 1 2 3 4 5 0

Negative value

3 2 1 0 5 4 6 7 9 8

Positive value

6 7 8 9 1 2 3 4 5 0
Positive value

6 7 8 9 1 2 3 4 5 0

Negative value

3 2 1 0 5 4 6 7 9 8

Positive value

6 7 8 9 1 2 3 4 5 0
Positive value

6 7 8 9 1 2 3 4 5 0

Sign
– +

Positive digit

4 1 2 3

Negative digit

1 4 3 2

Negative value

3 2 1 0 5 4 6 7 9 8

Positive value

6 7 8 9 1 2 3 4 5 0

Frequency

2

Negative value

3 2 1 0 5 4 6 7 9 8

Frequency

1

Fig. 8 The growing tree after inserting 5117, -102, 675, 3, -194, and 3

Table 1 The asymptotic behavior of counting, radix,

and GTSA sorts

Algorithm Worst-case

memory

complexity

Worst-case

time

complexity

Radix sort θ (k+n) θ (d(n+k))

Counting sort θ (k+n) θ (k+n)

GTSA θ(dn) θ(dn)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 281 Issue 7, Volume 8, July 2011

sorters. The performance metrics considered were

the memory consumptions (in Megabytes) and the

execution time (in milliseconds). Firstly, Java was

used to randomly generate 70 d-digit files. A d-digit

file contains N positive and negative integers with

no more than d digits per integer. The values of d

varied between 1 and 10 inclusive, and the values of

N were: 100, 500, 1000, 5000, 10000, 50000, and

100000. The radix sort, count sort, and GTSA

algorithms were all used to sort each of the 70 files

10 times. The corresponding execution times and

memory consumptions were recorded for each run.

Then, the 10 execution times and memory

consumption values recorded for sorting a given file

were averaged and that process was repeated for

every file.

 Figure 9 describes the memory

consumptions of the three sorters for the input sizes:

100, 1000, 10000, and 100000, considering all the

d-digit files, where d was in the range 2 to 7

inclusive. The reason why d was limited to 7 is that

the counting sort regularly generated heap-memory-

out-of-space exceptions whenever d exceeded 7.

 Examining Fig.9 shows that the GTSA is, in

general, more memory-conservative than its

counterparts. Memory consumption of the GTSA is

pretty close to the counting sort memory

consumption for input sizes less than or equal to

100. For larger input sizes the GTSA algorithm

consumes smaller amount of memory than counting

sort for all examined input ranges. Similarly, the

memory consumption of GTSA and radix sort are

pretty comparable when the input sizes are less than

or equal to 1000. The same figure shows that

GTSA consumes a smaller amount of memory than

radix sort for all examined input sizes greater than

1000 as long as d is less than 6.

The results depicted in Fig. 9 show that GTSA

becomes significantly more memory-conservative as

the input size increases for most of the depicted

values of d. Consider, for instance, the memory

consumptions of the three algorithms when N=1000

and d = 4. In this case, GTSA uses almost 100% of

the memory used by the two other algorithms to sort

the input. When N is increased to 10000 and d

remains 4, GTSA consumes 50% of the memory

used by radix sort and by counting sort to

accomplish the sorting task. For N=100000 and the

same value of d, GTSA uses 30% of the memory

used by radix sort , and 22% of the memory used

by counting sort to accomplish the sorting task.

 Figure 10 depicts the execution times of the

three sorters for the input sizes: 100, 1000, 10000,

and 100000, considering the d-digit files where d is

between 2 and 7 inclusive. Again, d was limited to 7

due to the fact that the counting sort regularly

generated heap-memory-out-of-space exceptions

wherever d exceeded the value of 7.

 Fig. 10 shows that no specific sorter is faster

than the others in all situations. Careful examination

of the same figure, though, shows that GTSA

outperforms the counting sort execution time when

d exceeds 6 digits and when N is less than 100000.

For N = 100000, the GTSA is faster than counting

sort whenever d is greater than or equal to 7. Thus,

GTSA is faster than the counting sort when the

range of the input values is relatively large,

regardless of the input size.

Fig. 9 The memory consumption of the three linear-time sorters.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 282 Issue 7, Volume 8, July 2011

 Examining the same figure shows that

GTSA is faster than radix sort only when the input

size N exceeds 10000 and the number of digits per

integer is no more than 5. Thus, GTSA runs faster

than the radix sort only when the input size is

relatively large and the range of input numbers is

relatively small.

4 Conclusion and Future Work
Here we introduce the Growing-Tree Sorting

Algorithm(GTSA), a non-comparative linear-time

sorter that handles positive as well as negative

integers. The GTSA proceeds in two phases: the

construction phase and the traversal phase. In the

construction phase each distinct integer gets inserted

in the tree digit-by-digit forming a path. This path

ends with the frequency node that contains the

number of occurrences of the designated integer. In

the traversal phase the growing tree is traversed in a

post-order fashion, and all the integers get retrieved

in the correct order and inserted into their

corresponding slots in the sorted output array. It can

be shown that the GTSA runs in no more than θ(dn)

time and uses no more than θ(dn) memory.

 A set of experiments was carried out to

compare the GTSA with two enhanced versions of

radix and count sorts that handled negative as well

as positive integers. The experimentations showed

that GTSA consumed fewer memory locations than

radix sort when the maximum number of digits per

input was 6 or less. They also showed that GTSA

consumed fewer memory locations than counting

sort when the maximum number of digits per input

was 4 or more. Besides, the experimentations

showed that GTSA was faster than radix sort when

the maximum number of digits per input varied

between 1 and 5 digits for 10000 or more integers.

The GTSA was found to be faster than counting sort

when the maximum number of digits per integer

exceeded 5 for all examined input sizes.

 GTSA saves more memory and runs faster

when the input numbers exhibit repetition. Hence,

additional set of experiments that exploit inputs with

this characteristic can be conducted. Also, a signed

floating-point version of GTSA can be developed

and compared with similar already-existing linear -

time sorters. These algorithms execution times and

memory consumptions can be studied and

contrasted under various input scenarios to

determine the conditions under which GTSA would

excel. Also, it would be interesting to develop a

parallel version of GTSA and compare it with the

already existing parallel liner-time sorters.

References:

[1] Cormen, T.H., Leiserson, C.E., Rivest, R. L.

,and Stein, C. Introduction to Algorithms. The

MIT Press, USA, Third Edition, (2009).

[2] Hoare, C. A. Quicksort, Computer Journal.

Vo.5, No.1, 1962, pp. 10-15.

[3]Williams,J.W.,Algorithm232 (HEAPSORT).

Communications of the ACM, Vol.7, 1964, pp.

347-348.

Fig. 10 The execution times of the three linear-time sorters.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 283 Issue 7, Volume 8, July 2011

[4] Knuth, D. E. The Art of Computer

Programming Vol. 3: Sorting and Searching,

Addison-Wesley, Reading Mass., USA, Second

Edition, 1998.

[5] Shell, D. L.,A high-speed sorting procedure.

Communications of the ACM , Vol.2, No.7,

1959, pp. 30 – 32.

 [6] Bentley, J.L. and Sedgwick, R., Fast

Algorithms for Sorting and Searching Strings.

In Proceedings of the 8th Annual ACM-SIAM

Symposium on Discrete Algorithms, New

Orleans, USA, January 4
th

-January 7
th

, 1997,

pp. 36-369, SIAM, Philadelphia PA, USA.

[7] Wang, Y., A New Sort Algorithm: Self-

Indexed Sort. Communications of ACM

SIGPALN, Vol. 31, No. 3, 1996, pp. 28-36.

[8] Han Y., Improved fast Integer sorting in

linear space. In proceedings of the 12
th

ACM

SIAM Symposium on Discrete Algorithms,

Washington D.C., USA, January 7
th

-January 9
th

,

,2001, pp. 793-796, SIAM, Philadelphia PA,

USA.

[9] Han Y. and Thorup M. , Integer Sorting in

O(nn loglog) Expected Time and Linear

Space. Proceedings of the 43
rd

 Symposium on

Foundations of Computer Science, Vancouver,

BC, Canada, November 16
th

 –November 19
th

,

2002, pp. 135-144, IEEE Computer Society,

Washington, DC, USA.

[10] Martin, W.A. Sorting, ACM Computing

Surveys. Vol. 3, No. 4, 1971, pp. 147-174.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Sherenaz Al-Haj Baddar, Sami Serhan, Hamed Abdel-Haq

ISSN: 1790-0832 284 Issue 7, Volume 8, July 2011

