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Abstract: - In this paper, a new sorting algorithm called the Growing-Tree Sorting Algorithm (GTSA) is 

proposed to sort a vector of items in a linear time. It implements a structured tree that stores the digits of each 

input integer and retrieves the integers in the correct order. If d is the maximum number of digits per input 

number and n is the input size, then it can be shown that the GTSA algorithm requires θ(dn)  time to sort both 

in its best and worst-case scenarios. It can be also shown that the best-case memory complexity of GTSA is 

θ(d) and that the worst-case memory complexity is θ(dn).  To evaluate the performance of GTSA, it was 

compared with the radix and counting sort algorithms in terms of the memory they consume and their 

corresponding execution times. The experiments showed that GTSA was, in general, more memory-

conservative than counting sort and radix sorting algorithms. The experiments also showed that the GTSA was 

faster than the radix and counting sort algorithms when the input size was relatively large and the input range 

was relatively small. 
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1 Introduction 
A sorting algorithm receives a sequence A 

of n numbers such that A = <a1,a2,…,an>, and 

outputs a permutation of the input sequence 

<a'1,a'2,…,a'n> such that a'1 ≤ a'2 ≤ …≤ a'n [1].  To 

achieve its goal, a sorting algorithm may use the 

comparison operator to rearrange the input numbers 

into the desired order. In this case, the sorting 

algorithm is said to be comparative. The class of 

comparative sorting algorithm includes, but is not 

limited to: quick sort [2], heap sort [3], merge-sort 

[4], and Shell sort[5] algorithms. Another class of 

sorting algorithms produces the sorted permutation 

without using comparisons at all. Instead, these 

algorithms make certain assumptions about the size 

and the range of the input numbers to help sort 

them. This class of sorting algorithms is referred to 

as non-comparative, and mainly includes: counting 

sort [4], radix sort [4], and bucket sort [1]. The 

proposed Growing-Tree Sorting Algorithm (GTSA) 

is a non-comparative sorting algorithm as well.  

 To evaluate the performance of a given 

sorting algorithm, two metrics are usually 

considered: the execution time, and the memory 

consumption. A decision-tree model can be used to 

show that any comparative sorting algorithm must 

make Ω (nlog n) comparisons, in the worst case, to 

sort n numbers [1]. Non-comparative sorters, on the 

other hand, produce the sorted permutation of n 

numbers using O(n) operations. This implies that 

non-comparative sorters are usually faster than their 

comparative counterparts. 

             Some sorting algorithms are referred to as 

in-place sorters, since they require a constant 

number of inputs to be stored in extra memory 

locations, and hence have a memory consumption 

complexity of O(1). Heap sort, insertion sort and 

quick sort are in-place sorting algorithms, whereas 

merge-sort requires O(n) locations to sort n 

numbers[1]. Counting sort is not an in-place sorter 

either, since it consumes O(k+n) locations to sort the 

n numbers that fall in the range 0 to k inclusive[1]. 

              In this paper, a new non-comparative, not-

in-place, liner-time sorting algorithm is introduced. 

The development of GTSA was motivated by the 

limitations of the widely-used liner-time sorters. 

Consider counting sort for instance, despite its 

simplicity it consumes a relatively large amount of 

memory as the range of input numbers increases. 

This makes it impractical for applications with 

relatively large input range. Radix sort also suffers 

from some drawbacks. It requires all input numbers 

to have the same number of digits, and if that is not 

the case, then padding with extra zeros must be 
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done. Besides, radix sort's execution time 

significantly grows as the number of digits in input 

numbers grows. An additional drawback is that 

neither counting sort nor radix sort can naturally 

handle signed inputs and/or floating point numbers. 

This work aims at developing a liner-time sorting 

algorithm that consumes a relatively smaller amount 

of memory and can handle not only positive 

integers, but also negative and floating-point 

numbers as well. 

               A sorting algorithm is said to be stable if 

and only if the input numbers with the same value 

appear in the sorted output array in the same order 

as they do in the input array. Sorting stability is 

necessary to achieve whenever satellite data are 

associated with each input number[1]. Counting, 

radix, bucket and are stable sorters. The GTSA 

sorter described here is stable too. 

               Section 2 of this paper highlights the most 

widely-used liner-time sorters. Section 3 describes 

the GTSA, illustrates it via the means of a numerical 

example, and establishes its time and memory-

complexities. Section 4 describes the GTSA 

implementation together with the experiments 

carried out to compare the performances of radix 

sort, counting sort, and GTSA. It also analyzes the 

results and emphasizes the improvements achieved 

by GTSA over radix and counting sorts.  Finally, the 

conclusions drawn together with the future work are 

depicted in section 5. 

 

 

2 Literature review 

Counting sort is a stable sort that was 

developed by H. H. Seward back in 1954 to sort 

positive integers [4]. This algorithm restricts the 

range of the input to some value, say k, which 

implies that all input numbers will fall in the 

range[0,k]. To sort an input element x, counting sort 

counts the number of input elements less than x. 

This helps place x in its correct location in the 

output array. The process is repeated for all input 

elements to complete the sorting of the input array. 

Figure 1 depicts the pseudocode of the counting sort 

algorithm. 

Based on Fig. 1, the counting sort time 

complexity is θ(k + n) , where n is the input size. If k 

is O(n), then counting sort will sort in θ(n) time. The 

memory complexity of this algorithm is also θ(k+n), 

which means that memory consumption of count 

sort increases significantly as the  input range 

increases. 

            Radix sort was published in paper by L. J. 

Comrie in 1929 [4].  Originally, radix sort was used 

in card-sorting machines. The radix sorting 

machines organized the n d-digit numbers in d 

columns and sorted all numbers based on the ith 

digit in each iteration, starting from the least 

significant digit. Radix sort, as described in Fig. 2, 

uses a stable sort like counting sort in the ith 

iteration.  The time it takes radix sort to accomplish 

its task is θ(d(n+k)) and its memory complexity is θ 

(k+n), where each digit is in the range[0,k]. 

          Bucket sorting is another stable non-

comparative sorting algorithm that was developed 

Radix sort(A,d) 

Input: unsorted integer-list A  

Output: sorted integer-array A 

For i = 1 to d   do 

      Use a stable sort to sort 

array A on digit i 

Fig. 2  Radix Sort pseudocode[1]. 

 

Counting sort(A,B,k) 

Input: unsorted integer-list 

A: kaA,a  0  

Output: sorted integer-array 

B 

For i = 0 to k do 

   C[i] = 0 

For j= 1 to length(A) do 

   C[A[j]] = C[A[j]] + 1 

For  I = 1 to k do 

   C[i] = C[i] + C[i-1] 

For  j = length(A) downto 1 

do 

{ 

   B[C[A[j]]] = A[j] 

   C[A[j]] = C[A[j]] - 1 

}  

Fig. 1  Counting Sort pseudocode[1]. 
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by E. J. Isaac and R. C. Singletonin 1956[1].  

Bucket sort assumes that the input is drawn from a 

uniform distribution and that it is generated by a 

random processes that produces numbers in the 

interval [0, 1) uniformly. The input would be split 

into n equally-sized buckets, and each of the inputs 

would be placed in its corresponding bucket. To 

produce the sorted output, the buckets would be 

traversed in order after sorting the numbers within 

each bucket. Bucket sorting runs in linear expected-

time and requires θ(n) memory to sort n real 

numbers in the range [0, 1). Figure 3 describes the 

bucket sort algorithm. 

Bentley et al describe a sorting algorithm that blends 

quick sort and radix sort in [6]. Wang proposed a 

non-comparative sorting algorithm, called Self-

Indexed Sorting (SIS) in [7]. The SIS algorithm 

carries out the sorting task by directly mapping each 

input element into a relative offset based on its 

value.  Some effort was invested in developing 

algorithms that sort in linear space. Consider, for 

example, the work in [8] which describes a linear-

space sorting algorithm that takes O(n log log n log 

log log n) time  to accomplish its task. Yan et al 

improved this algorithm even further and came up 

with a linear-space integer sorter than runs in 

O( nn loglog )  expected time[9]. A comprehensive 

survey on sorting algorithms is depicted is [10]. 

 

 

3 The GTSA algorithm 
Here we develop an integer variant of the 

GTSA that can be compared with the other non-

comparative linear-time integer sorters. The 

growing-tree sorting algorithm proceeds in two 

phases. The first phase is the growing-tree 

construction phase, in which all the input numbers 

get inserted in their proper locations in the tree. The 

second phase is the growing-tree traversal phase, in 

which all the input numbers get retrieved and 

inserted in their corresponding locations in the 

sorted output array. In this section we describe these 

two phases. 

 

 

3.1 The Growing-Tree Construction Phase 
              The root of the growing tree is a sign node 

that has two child-nodes as described in Fig4.(a). 

The left child-node points to the negative sub-tree, 

i.e. the sub-tree of negative input numbers, whereas 

the right child-node points to the positive sub-tree, 

i.e. the sub-tree of positive integers. The root of the 

Bucket sort(A) 

Input: unsorted integer-array A  

Output: sorted integer-array A 

n = length(A) 

For i = 1 to n do 

     insert A[i] into list 

B[  nA[i] ]  

For i = 0 to n-1 do 

     sort list B[i] with 

insertion sort 

concatenate the lists B[0], 

B[1], …, B[n-1]together in 

order and copy the answer to 

array A 

 

Fig. 3  Bucket Sort pseudocode[1]. 

 
Sign 

–           + 
    

  Negative digit 

 .....…. 1 k k-1 

  

  Positive digit 

 .....…. k 1 2 

 
                       (a)                                                       (b)                             (c) 

 

 Negative value 

3 2 1 0 5 4 6 7 9 8 

       

 Positive value 

6 7 8 9 1 2 3 4 5 0 

 
(d)                                            (e) 

 

 Frequency 

 Frequency value 
 

(f) 

Fig. 4 The nodes that compose a growing tree 
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negative sub-tree is the negative digit-node, which is 

described in Fig. 4(b). This node is an array of  

pointers, where the i
th
 pointer is the root  of the sub-

tree of all negative input numbers with i digits. The 

pointers of the negative digit-node are ordered in a 

way that would help retrieve the negative numbers 

in the correct order during the growing-tree traversal 

phase. Similarly, the positive digit-node is the root 

of the sub-tree of all positive input numbers. This 

node, as depicted in Fig.4(c) is an array of pointers 

where the i
th
  pointer is the root of the sub-tree of all 

positive input numbers with i digits. The negative 

value-node, as described in Fig.4(d),  is an array of 

10 pointers, each of which designates a digit 

between 0 and 9. Again, the order of the pointers in 

the negative-value node helps retrieve the negative 

numbers in the correct order during the second 

phase of this algorithm. Similarly, a positive-value 

node, as depicted in Fig. 4(e), is an array of 10 

pointers. The ith pointer designates a digit with 

value i, where i in the range 0 to 9 inclusive. Each 

path in the growing tree designates an input number 

and is terminated by a leaf node, called the 

frequency node. This node records the occurrences 

of that number in the input and is described in 

Fig.4(f). Now, assume that you want to insert an i-

digit positive integer, called x, into the growing tree 

for the first time. The integer would be inserted into 

the positive subtree rooted at the ith pointer in the 

positive-digit node. To do so, x would be split into 

the digits composing it, and each digit would get 

inserted in its corresponding positive value node 

starting with the most significant digit. This would 

create a path in the growing tree that designates x. 

The frequency node is appended to this path as a 

leaf node and assigned the value of one.  For all the 

subsequent occurrences of the same integer, if any 

exist, the path would be traversed all the way down 

to the frequency node which would have its value 

incremented by one to account for each occurrence 

of x. Figures 5(a) and 5(b) describe the growing-tree 

construction phase. 
 

 

3.2 The Growing-Tree Traversal Phase 
In this phase, post-order tree traversal is 

used to retrieve the integers in the sorted order.  In 

the post-order tree traversal, the left sub-tree is 

visited first, then the right sub-tree is visited next, 

and finally the root is visited. Each of the 

Growing_Tree_Construction (A,D,T) 

Input: unsorted integer-array (A),the maximum number of digits per 

input number (D) 

Output: Growing-tree of the input numbers T 

Begin 

Create a Sign Node and denote it by SN 

Create a negative digit-node with D pointers, denote it by ND 

Create a positive digit-node with D pointers, denote it by PD 

Let prt be a pointer to a value node 

SN.left_child = ND 

SN.right_child = PD 

For i = 1 to length(A) do 

d = number of digits in A[i] 

if( A[i]> 0) 

if(PD[d] == null) 

create a Positive-value node, PV 

PD[d]= PV 

ptr = PD[d] 

Insert (A[i], T, ptr) 

else 

if(ND[d] == null) 

create a Negative-value-node, NV 

ND[d]= NV 

ptr = ND[d] 

Insert (A[i], T, ptr) 

End 

Fig. 5(a) The Growing-Tree Construction Phase 
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aforementioned sub-trees is traversed, recursively, 

in a similar fashion.  The pointers in the digit nodes 

as well as the value nodes are ordered properly. 

Thus, post-order tree traversal allows us to retrieve 

the nodes that actually have smaller values before 

the ones with larger values. When a frequency node 

is reached, the retrieved integer would get copied to 

the output array as many times as recorded in the 

frequency node. Figure 6 describes the growing-tree 

traversal phase. 

 

 

3.3 A Numerical Example 
In this section, we illustrate the GTSA 

algorithm described in section 3 via the means of an 

example. Assume you want to sort the numbers: 

5117, -102, 675, 3, -194, and 3 via GTSA. It is quite 

obvious that the maximum number of digits per 

input number is 4. Firstly, each number in the input 

needs to be inserted into the growing tree. Figure 7 

depicts the growing tree after inserting 5117, and 

Fig. 8 describes the growing tree after inserting the 

remaining numbers. 
             In order to retrieve the sorted output, the 

growing tree depicted in Fig.8 would be traversed in 

a post-order fashion. Thus, the first number that 

would be retrieved is -194 followed by -102. Next, 

number 3 would be traversed twice since its 

frequency is 2 resulting in the sub-array 3, 3. 

Afterwards, the number 675 would be traversed 

once, followed by the number 5117. The resulting 

sorted output array is -194, -102, 3, 3, 675, 5117. 

 

 

3.4 The GTSA Time and Memory 

complexities 
           The time and memory complexities of the 

GTSA algorithm are depicted in theorems 1 and 2 

respectively. 

 

Theorem 1 

It takes the GTSA algorithm θ(dn) time to 

sort n d-digit numbers in both the best and worst-

case scenarios. 

Proof 

               Let F(n) denote the time complexity of the 

GTSA algorithm. Also, let f(n) denote the time 

complexity of the growing-tree construction phase, 

and let g(n) denote the time complexity of the 

growing-tree traversal. Obviously, F(n) = f(n) + 

g(n). 

             Let us first consider the best-case scenario, 

which happens when the n d-digit numbers are the 

same number which we will call x. In this case, it 

would take θ(d) time to insert the d digits of x. Then, 

the constructed path would be traversed all the way 

to the frequency node to increment its value for the 

remaining occurrences of x in the input. Thus, the 

construction procedure would take θ(dn) time to 

accomplish its job in the best-case.  

Insert(a,T,ptr) 

Input: integer (a), growing-tree(T), 

ptr: pointer to the node under which a should be inserted 

Output: T after inserting integer a into it 

Begin 

Let a be equal to adad-1...a1 ,where d is the number of digits in a 

For j = d downto 1 do 

If( ptr[aj]==null and a >= 0) 

Create new positive-value-node call it PV 

ptr[aj] = PV 

If( ptr[aj]==null and a < 0) 

Create new positive-value-node call it PV 

ptr[aj] = NV 

ptr = ptr[aj] 

if (ptr does not point to a frequency node) 

append a frequency node 

to ptr and initialize its value to one 

else 

increment the frequency value by 1 

End 

Fig. 5(b) The Growing-Tree Construction Phase(continued) 
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              In the worst-case scenario, the n d-digit 

numbers are distinct. Notice that the amount of time 

it takes to insert a digit is constant. Thus, it would 

take θ(d) time to insert each input number and set its 

frequency node value to one. This means that the 

overall time it would take to insert the n d-digit 

numbers would be θ(dn).  As a consequence, f(n) is 

θ(dn) both in the best-case and the worst-case 

scenarios.   

            The best-case scenario of the growing-tree 

traversal phase happens when the same d-digit 

number, called x, is repeated n times. Then, it would 

take d operations to retrieve the digits composing x 

from the growing tree and n operations to copy it 

into the sorted array n times. Hence, it takes θ(d+n) 

time to traverse the growing-tree in the best-case 

scenario. The worst-case scenario occurs when the 

input contains n distinct d-digit numbers. There, it 

would take θ(d) time to retrieve each input number 

from the tree and copy it into the sorted output 

array. Thus, it would take θ(dn) time to perform the 

growing tree traversal phase in the worst case 

scenario. Therefore, g(n) is θ(d+n) in the best case 

and θ(dn) in the worst case.  

Based on the arguments above, it can be concluded 

that F(n), i.e. the time complexity of the GTSA 

algorithm, is θ(dn) both in the best-case and worst-

case scenarios.                        ■ 

 

 

Theorem 2 

The space complexity of the GTSA in the 

best case is θ(d) and is θ(dn) in the worst case. 

Proof 

            Let F(n) denote the space complexity of the 

GTSA sorting algorithm. Also, let f(n) denote the 

space complexity of the growing-tree construction 

phase and let g(n) denote the space complexity of 

the growing-tree traversal phase. Obviously, F(n) = 

f(n) + g(n).  

           In the best-case scenario of the growing-tree 

construction phase, the same d-digit number, called 

 
Sign 

–           + 
 

digit 

4 1 2 3 

value 

6 7 8 9 1 2 3 4 5 0 

value 

6 7 8 9 1 2 3 4 5 0 

value 

6 7 8 9 1 2 3 4 5 0 

value 

6 7 8 9 1 2 3 4 5 0 

Frequency 

                 1 
 

 

Fig. 7  Inserting 5117 in the growing tree 

 

 

Traverse_Growing_Tree(T,A) 

Input: Growing-tree(T) 

Output: sorted output array(A)   

Begin 

Let D be the maximum number of digits per integer 

For i = D downto 1 do 

  Let ptr = ND[i] 

   For each path, p, rooted at ptr 

     Apply post-order traversal to p and retrieve the 

corresponding integer, denote it by a 

     Copy -a to A c times, where c is the value of the frequency 

node appended to p 

For i = 1 to D  do 

     Let ptr = PD[i] 

     For each path, p, rooted at ptr 

       Apply post-order traversal to p and retrieve the 

corresponding integer, denote it by a 

       Copy a to A c times, where c is the value of the frequency 

node appended to p 

End 

Fig. 6 The Growing-Tree Traversal Phase 
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x, appears n times.  It takes θ(d) memory to store the 

digits of x in their proper positions in  the growing 

tree and to append one frequency node that contains 

the value of n. Thus, the growing tree contains one 

path in this case and, consequently, f(n) is θ(d) . In 

the worst case scenario, the input consists of n 

distinct d-digit numbers.  Each number requires θ(d) 

memory locations to form its distinct path in the 

tree. Consequently, f(n) is θ(dn) in the worst case. 

           In the best and worst case scenarios, the 

traversal phase only copies the retrieved numbers to 

the output array using a small constant amount of 

memory. Besides, we can copy the retrieved 

integers back into the input array. Thus, g(n) is θ(1) 

for both the best and the worst cases. Consequently, 

F(n) is θ(d) in the best case and θ(dn) in the worst 

case.                                     ■                                                                                                               
 

 

4 Experimentations  
 

             In order to assess the performance of the 

GTSA algorithm, a Java program was developed 

together with two other enhanced Java 

implementations for the radix and counting sorts. 

The enhanced implementations augmented the 

classical radix and counting sorting algorithms with 

the instructions necessary for handling negative 

integers as well. Table 1 summarizes the asymptotic 

behaviors of the three non-comparative sorting 

algorithms, where the input range, the number of 

digits per input number, and the input size are 

denoted by k, d, and n respectively. 

              If we assume that k is proportional to n and 

that d is a constant, then the three algorithms will 

have comparable memory and execution times 

complexities. However, this does not necessarily 

guarantee that the three sorters are actually as good 

as each other in terms of space and time. 

Determining which algorithm is the best not only 

depends on the asymptotic behaviors, but also on 

the practicality of the implementations. The 

complexity constants together with the 

implementation details have profound effect on 

determining the actual performance of any 

algorithm.  Here we try to figure out the 

circumstances under which the GTSA would 

actually excel and outperform both radix sort and 

counting sort algorithms in terms of space and time. 

           Three sets of experiments were carried out to 

help determine the actual performance of the three 

 

Positive value 

6 7 8 9 1 2 3 4 5 0 

Frequency 

1 

Frequency 

1 
Frequency 

1 

Positive value 

6 7 8 9 1 2 3 4 5 0 

Positive value 

6 7 8 9 1 2 3 4 5 0 

Negative value 

3 2 1 0 5 4 6 7 9 8 

Positive value 

6 7 8 9 1 2 3 4 5 0 
Positive value 

6 7 8 9 1 2 3 4 5 0 

Negative value 

3 2 1 0 5 4 6 7 9 8 

Positive value 

6 7 8 9 1 2 3 4 5 0 
Positive value 

6 7 8 9 1 2 3 4 5 0 

Sign 
–           + 

 

Positive digit 

4 1 2 3 

Negative digit 

1 4 3 2 

Negative value 

3 2 1 0 5 4 6 7 9 8 

Positive value 

6 7 8 9 1 2 3 4 5 0 

Frequency 

2 

Negative value 

3 2 1 0 5 4 6 7 9 8 

Frequency 

1 

 
Fig. 8 The growing tree after inserting 5117, -102, 675, 3, -194,  and 3 

Table 1 The asymptotic behavior of counting, radix, 

and GTSA sorts 

Algorithm Worst-case 

memory 

complexity 

Worst-case 

time 

complexity 

Radix sort θ (k+n) θ (d(n+k)) 

Counting sort θ (k+n) θ (k+n) 

GTSA θ(dn) θ(dn) 
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sorters. The performance metrics considered were 

the memory consumptions (in Megabytes) and the 

execution time (in milliseconds). Firstly, Java was 

used to randomly generate 70 d-digit files. A d-digit 

file contains N positive and negative integers with 

no more than d digits per integer. The values of d 

varied between 1 and 10 inclusive, and the values of 

N were: 100, 500, 1000, 5000, 10000, 50000, and 

100000. The radix sort, count sort, and GTSA 

algorithms were all used to sort each of the 70 files 

10 times. The corresponding execution times and 

memory consumptions were recorded for each run. 

Then, the 10 execution times and memory 

consumption values recorded for sorting a given file 

were averaged and that process was repeated for 

every file.  

             Figure 9 describes the memory 

consumptions of the three sorters for the input sizes: 

100, 1000, 10000, and 100000, considering all the 

d-digit files, where d was in the range 2 to 7 

inclusive. The reason why d was limited to 7 is that 

the counting sort regularly generated heap-memory-

out-of-space exceptions whenever d exceeded 7. 

             Examining Fig.9 shows that the GTSA is, in 

general, more memory-conservative than its 

counterparts. Memory consumption of the GTSA is 

pretty close to the counting sort memory 

consumption for input sizes less than or equal to 

100.  For larger input sizes the GTSA algorithm 

consumes smaller amount of memory than counting 

sort for all examined input ranges. Similarly, the 

memory consumption of GTSA and radix sort are 

pretty comparable when the input sizes are less than 

or equal to 1000.  The same figure shows that 

GTSA consumes a smaller amount of memory than 

radix sort for all examined input sizes greater than 

1000 as long as d is less than 6.  

The results depicted in Fig. 9 show that GTSA 

becomes significantly more memory-conservative as 

the input size increases for most of the depicted 

values of d.  Consider, for instance, the memory 

consumptions of the three algorithms when N=1000 

and d = 4. In this case, GTSA uses almost 100% of 

the memory used by the two other algorithms to sort 

the input. When N is increased to 10000 and d 

remains 4, GTSA consumes 50% of the memory 

used by radix sort and by counting sort to 

accomplish the sorting task. For N=100000  and the 

same value of d, GTSA uses  30%  of the memory 

used by radix sort , and  22% of the memory  used 

by counting sort to accomplish the sorting task.   

            Figure 10 depicts the execution times of the 

three sorters for the input sizes: 100, 1000, 10000, 

and 100000, considering the d-digit files where d is 

between 2 and 7 inclusive. Again, d was limited to 7 

due to the fact that the counting sort regularly 

generated heap-memory-out-of-space exceptions 

wherever d exceeded the value of 7.  

             Fig. 10 shows that no specific sorter is faster 

than the others in all situations. Careful examination 

of the same figure, though, shows that GTSA 

outperforms the counting sort execution time when 

d exceeds 6 digits and when N is less than 100000. 

For N = 100000, the GTSA is faster than counting 

sort whenever d is greater than or equal to 7. Thus, 

GTSA is faster than the counting sort when the 

range of the input values is relatively large, 

regardless of the input size.   

 
Fig. 9 The memory consumption of the three linear-time sorters. 
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            Examining the same figure shows that 

GTSA is faster than radix sort only when the input 

size N exceeds 10000 and the number of digits per 

integer is no more than 5. Thus, GTSA runs faster 

than the radix sort only when the input size is 

relatively large and the range of input numbers is 

relatively small. 

 

 

4 Conclusion and Future Work  
Here we introduce the Growing-Tree Sorting 

Algorithm(GTSA), a non-comparative linear-time 

sorter that handles positive as well as negative 

integers. The GTSA proceeds in two phases: the 

construction phase and the traversal phase. In the 

construction phase each distinct integer gets inserted 

in the tree digit-by-digit forming a path. This path 

ends with the frequency node that contains the 

number of occurrences of the designated integer. In 

the traversal phase the growing tree is traversed in a 

post-order fashion, and all the integers get retrieved 

in the correct order and inserted into their 

corresponding slots in the sorted output array.  It can 

be shown that the GTSA runs in no more than θ(dn) 

time  and uses no more than θ(dn) memory. 

             A set of experiments was carried out to 

compare the GTSA with two enhanced versions of 

radix and count sorts that handled negative as well 

as positive integers. The experimentations showed 

that GTSA consumed fewer memory locations than 

radix sort when the maximum number of digits per 

input was 6 or less.  They also showed that GTSA 

consumed fewer memory locations than counting 

sort when the maximum number of digits per input 

was 4 or more. Besides, the experimentations 

showed that GTSA was faster than radix sort when 

the maximum number of digits per input varied 

between 1 and 5 digits for 10000 or more integers. 

The GTSA was found to be faster than counting sort 

when the maximum number of digits per integer 

exceeded 5 for all examined input sizes. 

     GTSA saves more memory and runs faster 

when the input numbers exhibit repetition. Hence, 

additional set of experiments that exploit inputs with 

this characteristic can be conducted. Also, a signed 

floating-point version of GTSA can be developed 

and compared with similar already-existing linear -

time sorters. These algorithms execution times and 

memory consumptions can be studied and 

contrasted under various input scenarios to 

determine the conditions under which GTSA would 

excel. Also, it would be interesting to develop a 

parallel version of GTSA and compare it with the 

already existing parallel liner-time sorters.  
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