
Efficient Lower Bounding Procedures with Application in the 
Allocation of Virtual Machines to Data Centers  

 
JÜRGEN RIETZ, RITA MACEDO, CLÁUDIO ALVES, JOSÉ VALÉRIO DE CARVALHO  

Departamento de Produção e Sistemas 
Universidade do Minho 

Campus de Gualtar, 4710-057 Braga 
PORTUGAL 

juergen_rietz@gmx.de; {rita, claudio, vc}@dps.uminho.pt 
 
 
Abstract: -  
Cloud computing is becoming an alternative model for delivering computing resources and services to end-
users and companies. The configuration of the clouds raises many issues that come from the need to manage 
efficiently the available resources in the data centers and from the agreements on the quality of the service that 
must be delivered to the clients. One of the key issues in the operation of the clouds consists in determining 
how the workload should be distributed among the physical machines such that the utilization of the computing 
resources in the cloud computing data centers is maximized. In this paper, we address this latter problem. We 
describe in particular a set of new and fast procedures for computing lower bounds on the number of physical 
machines that are required by a cloud provider to execute efficiently a set of user applications (virtual 
machines).  

To compute the bounds, we formulate this virtual machine allocation problem as a bin-packing problem 
and we address some of its variants. All our lower bounding procedures are polynomial-time algorithms that 
rely on the use of maximal dual-feasible functions. These functions are parameter dependent. We describe the 
best set of parameters when the 1-dimensional variant of the problem is considered, and we discuss the 
complexity of the lower bounding procedures that are proposed. We report also on extensive computational 
experiments conducted on benchmark instances of the literature. The results of these experiments show the 
strength of the lower bounds described in this paper. 
 
Key-Words: - Combinatorial optimization; Lower bounds; Maximal dual-feasible functions; Polynomial 
complexity; Virtual machine allocation problem; cloud computing. 
 

1 Introduction 
Cloud computing is a recent computing paradigm 
based on making available a set of shared 
computing resources and services to end-users and 
companies. The resources and services of the clouds 
are accessed by the clients through a network and on 
an on-demand basis. The business models 
underlying the deployment and operation of the 
clouds are diverse, as are the types of clouds that are 
currently available and which range from public to 
virtual private clouds [20]. However, in essence, all 
these variants share a common fundamental 
objective which is to offer a service to meet the 
computing needs of their clients.   

A cloud is characterized by its ability to serve 
simultaneously different end-users from a single 
data center [20]. Among the various characteristics 
that distinguish the cloud computing model, the 
possibility that the end-users have to use 
dynamically the computing resources of the clouds 
is clearly one of the most important. This feature of 

the clouds allows the clients to reduce their 
operational costs by acquiring only the resources 
which are really needed at a given point in time. It is 
also the expression of the pay-as-you-go model on 
which the cloud computing paradigm is based.  

One of the reasons for the advent of cloud 
computing is the significant increase in the 
computing needs brought by the explosion of 
Internet services. Furthermore, all the advantages 
that the cloud computing paradigm brings to the 
companies such as a more efficient maintenance of 
the infrastructures and a better management of the 
costs (investment and utilization) justify the current 
shift to cloud computing [2].  

The configuration and management of the clouds 
raise many challenges which have been summarized 
recently in [20]. In this paper, we consider in 
particular the problem related to the consolidation of 
servers in a cloud computing data center. This 
problem began to be addressed only very recently 
[20]. One of the key objectives of this consolidation 
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is to ensure that the available resources are used 
efficiently so that the energy consumption is 
minimized. 

The increase of the demand for computing 
resources has led to the deployment of cloud 
computing data centers and to a corresponding and 
significant increase of the total energy consumed by 
these infrastructures. In [8,10], the authors report on 
the magnitude of the costs involved and on the 
impact for the environment caused by these levels of 
energy consumption. The expected rate of growth of 
these indicators is also impressive [8, 10]. 
Meanwhile, the average utilization of the resources 
in the data centers remains typically low (15% to 
20% on average [19]). A solution to this issue 
consists in performing the aforementioned server 
consolidation through an efficient balancing of the 
workload across the physical machines of the data 
centers.  

Server consolidation is achieved through the 
virtualization technology which is one of the 
foundations of cloud computing. In this context, the 
elementary processing component is the virtual 
machine which encapsulates the user applications. 
The data centers relying on virtualization are also 
referred to as virtualized data centers [11]. The 
virtualization technology allows for a flexible 
management of the computing resources available in 
the cloud computing data centers through the 
allocation of many virtual machines to the same 
physical server. This allocation aims at balancing 
the workloads assigned to each server to an optimal 
energy point avoiding idle energy wastage. 

A virtual machine can be characterized through a 
set of hardware metrics representing resource 
consumptions at the physical server hosts. Examples 
of these resources are the amount of allocated RAM, 
the number of CPU cores, the network bandwidth or 
the disk size. The number of different resources to 
consider when allocating virtual machines to 
physical servers can be treated as a different 
dimension of a bin-packing problem. It is therefore 
possible to address the virtual machine allocation 
problem as a multi-dimensional bin-packing 
problem, where the number of dimensions depends 
on the considered resource constraints. 

As mentioned above, the virtual machine 
allocation problem has been pointed out by many 
authors [11, 18, 20] as an important issue in the 
management of cloud computing data centers. The 
research on this field is very recent. In [18], the 
authors describe a set of integer programming based 
algorithms for the placement of virtual machines 
under several constraints defined by the user. These 
procedures are embedded in a general approach for 

cloud brokering. A different approach for the 
management of virtualized data centers was 
proposed in [11]. In the latter, the problem of 
scheduling tasks in a data center (and thus allocating 
them to physical machines) is formulated as a multi-
objective optimization problem. To forecast the 
workload, the authors resort to predictions made 
through a fuzzy method. Complexity results are 
provided together with a set of experimental results. 

The virtual machine allocation problem has been 
addressed by many authors who formulated it as a 
bin-packing problem [1, 8, 12, 16, 17]. Given the 
inherent complexity of these combinatorial 
optimization problems, and the requirement for a 
fast allocation of the virtual machines in real data 
centers, it is not surprising that all the contributions 
described in the literature focus exclusively on 
heuristic approaches. In this paper, we provide 
several lower bounding procedures to compute the 
minimum number of physical machines required to 
serve a given set of virtual machines. These 
procedures can be used within these heuristics to 
improve the quality of the generated solutions or 
simply to evaluate how far these solutions are from 
an optimal solution.  

In [17], a private cloud management system is 
presented. The authors describe a system that 
integrates different mechanisms for allocating 
virtual machines to physical hosts, for managing 
congruent configurations and for the bootstrapping 
of blank physical machines and virtual machines. 
The allocation of the virtual machines is performed 
by considering three resources: the RAM, the 
number of CPU cores and the type of architecture. 
In fact, the latter is considered as a constraint on the 
subset of physical machines that can effectively 
handle some of the virtual machines. Given that 
each virtual and physical machine has usually a 
single type of architecture, the problem is 
decomposed into n different subproblems, one for 
each different architecture. Each subproblem only 
considers the machines of compatible architecture 
types. Hence, the problem reduces to a 2-
dimensional bin-packing problem. The authors 
describe a heuristic for this problem based on the 
well-known first-fit decreasing algorithm.  

In [8], the authors propose an algorithm for the 
virtual machine allocation problem based on the ant 
colony optimization meta-heuristic. Again, their 
approach is based on a formulation of the problem 
as a multi-dimensional bin-packing problem. The 
focus of their contribution is on the generation of 
solutions that minimizes the number of physical 
machines used in order to decrease the energy 
consumed by the data centers. Their algorithm was 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 158 Issue 4, Volume 8 April 2011



compared to the standard first-fit decreasing 
heuristic. The results reported in their paper show 
that their swarm intelligence based approach 
outperforms this greedy heuristic. 

In [1], the authors address the virtual machine 
allocation problem by focusing on a single type of 
resources, namely the memory of the physical 
machines in the data centers. Hence, the problem 
reduces to a classical 1-dimensional bin-packing 
problem. They describe online algorithms for this 
problem that are extensions of other approaches 
described in the literature, and they show that the 
approximation ratio of their approach remains 
similar to those of the original approaches. 

Li et al. describe in [12] the EnaCloud approach 
for allocating virtual machines to physical servers 
with a focus on energy saving. They propose a so-
called energy-aware heuristic that indicates 
dynamically how the applications encapsulated into 
virtual machine should be placed within the physical 
servers. Their approach is further improved by 
considering an over-provisioning method that 
addresses the variability related to the resource 
requirements of the applications. 

In [16], Mastroianni et al. present an approach 
for the adaptive allocation of virtual machines to 
physical servers based on statistical procedures. A 
physical machine is selected to receive a virtual 
machine through Bernouilli trials by giving 
preference to those servers that are already highly 
loaded. The authors further consider the possibility 
of live migration of the virtual machines both to 
avoid the occurrence of servers with small 
workloads and to avoid the possible overloading of 
the servers which may result in a violation of the 
service agreements. The authors report on 
computational experiments from which it transpires 
that their method tends to be decentralized and self-
organizing in part due to the adaptive nature of their 
migration approach. 

In this paper, we contribute to the resolution of 
the virtual machine allocation problem by 
describing fast lower bounding procedures that 
allows to determine a bound on the minimum 
number of physical machines that are required to 
handle a given set of virtual machines. The 
remainder of the paper is organized as follows. In 
Section 2, we formalize the problem and we discuss 
its relations with the family of cutting and packing 
problems. In Section 3, maximal dual-feasible 
functions are introduced, and some important 
families are reviewed. In Section 4, their application 
to the 1-dimensional cutting stock problem (a 
problem that is equivalent to the bin-packing 
problem as shown in the next section) is analysed. 

In Sections 5 and 6, the 2-dimensional guillotine 
cutting stock problem with 2 stages is discussed, in 
the exact and the inexact case, respectively, and we 
show how to derive new lower bounds for those 
cases. We address the computation of lower bounds 
for the non-guillotine case in Section 7, and then we 
present computational results in Section 8 for ten 
classes of test instances from the literature [15]. 
Some conclusions are finally drawn in Section 9.  

 
 

2 The Virtual Machine Allocation 
Problem 
Given a set of physical machines (or physical 
servers) and a set of virtual machines, the virtual 
machine allocation problem consists in determining 
the best assignment of the virtual machines to the 
physical ones so as to minimize a given criterion. In 
most of the cases, the criterion that is considered is 
the number of physical machines that are effectively 
used. This criterion allows for the minimization of 
the energy consumption of the data centers as 
mentioned in the previous section. In the literature, 
the virtual machine allocation problem is sometimes 
referred to as the virtual machine placement 
problem.   

The virtual machine allocation problem can be 
formulated as a bin-packing problem (BPP). Bin-
packing problems belong to the class of cutting and 
packing problems. They can be generally stated as 
the problem of assigning a set of items to a set of 
larger objects, usually called bins, such that the total 
number of bins that are used is minimized. In the 
virtual machine allocation problem, the set of virtual 
machines can be seen as the set of items to be 
allocated to the set of physical machines, which may 
in turn be considered as the bins. The assignment of 
the items to a bin must be such that the capacity of 
the bin is never exceeded in none of its dimensions. 
In the virtual machine allocation problem, these 
capacities correspond to the levels of the resources 
that are considered.  

In its general form, the virtual machine allocation 
problem is a multi-dimensional vector bin-packing 
problem. In the 1-dimensional case, this problem 
reduces to a standard 1-dimensional bin-packing 
problem (1D-BPP) as illustrated in Figure 1. In the 
2-dimensional case, the problem can be seen as 2-
dimensional bin-packing problem (2D-BPP) with 
guillotine cuts and cardinality constraints (Figure 2). 
In this paper, we consider these two equivalent 
formulations of the problem, and we provide fast 
(polynomial-time) procedures to compute lower 
bounds for each one. Although we are addressing 
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the cases where one or two resources are considered 
simultaneously, our lower bounding procedures can 
be easily extended to higher dimensions by 
considering either each dimension or each pair of 
dimensions (resources) separately, and then by 
choosing the smallest value of the generated bounds.  

 
 

 

Figure 1:  Virtual machine allocation problem as a 

1D-BPP 

 
 

 

Figure 2: Virtual machine allocation problem as a 

2D-BPP 

 
In the cutting and packing terminology, the 

designation of bin-packing problem refers usually to 
those instances in which all the items are different in 
terms of their sizes (resource consumptions in the 
case of virtual machine allocation). If different items 
have the same sizes in all the dimensions, the 
problem is referred to as a cutting stock problem 
(CSP). The counterpart of a bin in the terminology 

of cutting stock problems is a stock sheet (or simply 
a stock), while the packing operation is seen 
equivalently as a cutting operation. For the sake of 
generality, from this point forward, we will refer to 
the cutting stock problem since we do not impose 
any special requirement on the resource 
consumptions of the virtual machines (i.e. we 
consider that different virtual machines may 
consume the same amounts of resources).  

The 1-dimensional cutting stock problem (1D-
CSP) is NP-hard in the strong sense [14]. Hence, its 
2-dimensional counterpart (the 2D-CSP) is also NP-
hard. Most of the approaches proposed in the 
literature to solve these combinatorial optimization 
problems rely on heuristics, see e.g. [7, 13]. In this 
paper, we resort to dual-feasible functions to derive 
efficient lower bounding procedures for different 
variants of the 2D-CSP. The bounds generated by 
these procedures are valid lower bounds for the 
corresponding virtual machine allocation problem. 
Our computational results reported at the end of this 
paper show that these procedures generate strong 
lower bounds very efficiently, i.e. with a low 
polynomial complexity. 

An instance of the 2D-CSP can be described by 
the length L  and width W  of the stock sheets, the 
number m  of (different) items to be cut, and their 
sizes ii w×l  and order demands ib , mi ,1,= K . All 
input data are assumed to be positive and integer. 
The length L and width W correspond to the 
available amount of the resources in the virtual 
machine allocation problem, while the sizes li and wi 
denote the corresponding consumption of each of 
these resources by the virtual machine i. We assume 
that the items cannot be rotated since that will imply 
exchanging the resource requirements of a virtual 
machine. This situation will certainly lead to 
solutions that are infeasible for the virtual machine 
allocation problem. Furthermore, we will assume 
without loss of generality that the first cut is 
horizontal and that Li ≤l  and Wwi ≤ , for all 

},{1, mi K∈ . The so-called material bound is 
computed in the following way:  

 

,=
1∑ = ×

××m

i

iii
M WL

wb
z

l

      (1) 

 
Clearly, ⌈zM ⌉ is a lower bound for the 2D-CSP.  
Indeed, if B ∈ IR is a lower bound, then ⌈ B ⌉ is a 
lower bound too. 

The majority of the authors addressed the 
computation of lower bounds for 2D non-guillotine 
CSP, as for instance [7]. A guillotine cut is a cut 
from one edge to the opposite edge of the stock 
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sheet that divides it into two parts. By definition, a 
lower bound for the 2D non-guillotine CSP is a 
valid lower bound for the variant with guillotine 
cuts. Similarly, both bounds are valid for the virtual 
allocation problem. One of the objectives of this 
paper is to show that better bounds can be obtained 
for the 2D guillotine CSP with 2 stages. 
Furthermore, we show how to choose good 
parameters for some families of maximal dual-
feasible functions with low complexity.  

 
 

3 Dual-Feasible Functions 
Dual-feasible functions  were  introduced by  
Johnson in [9]. Since that time, many other  
functions were found and analysed. An exhaustive 
survey is given in [5]. 
  
Definition 1: A function +→ IRf [0,1]:  is called a 
dual-feasible function (DFF), if for any finite set 

}:{ IiIRxi ∈∈ +  of nonnegative real numbers, the 
following holds: 
  

1.)(1 ≤⇒≤ ∑∑
∈∈ Ii

i
Ii

i xfx  

 
If f is a DFF, then it follows that 0=(0)f , and 

nxf 1/)( ≤  for all ][0,1/ {0},\ nxIN ∈ . Moreover, 
for an integer programming problem with a 

knapsack constraint of the form 1≤∑
i

ii xa , and all 

coefficients [0,1]∈ia , we have that 1)( ≤∑
i

ii xaf  

is a valid inequality, because 

.1)(=)(=
1=1= 1=1= 1=1=

≤⇒ ∑∑∑∑∑∑ i

n

i
i

n

i

ix

k
i

n

i

ix

k
i

n

i
ii xafafaxa   

Dual-feasible functions became very important 
for deriving lower bounds for many integer linear 
optimization problems, and also to compute valid 
inequalities for these problems. Because the above 
definition allows a lot of non-interesting functions, 
stronger definitions were introduced to characterize 
the non-dominated DFFs. These functions are called 
maximal DFFs. The formal definition of maximality 
is given next.  
 
Definition 2: A dual-feasible function 

[0,1][0,1]: →f  with 1=(1)f  is called a maximal 
dual-feasible function (MDFF), if there is no other 
dual-feasible function [0,1][0,1]: →g  with 

.[0,1],)()( ∈∀≥ xxfxg  
 

Note that any composition or convex combination 
of MDFFs is again a MDFF.  

Our lower bounding procedures rely on a set of 
strong DFFs proposed in the literature, and surveyed 
recently in [5]. From this point forward, we will 
denote by frac(.) the non-integer part of the real 

argument, i.e. −= xxxfrac )( . These functions 
are defined as follows.  

 
• ,0MTf  (defined implicitly by Martello and Toth in 

[14]) for (0,1/2]∈λ :  
 









−≤≤
.,1

,1,

,<,0

=)(,0

otherwise

xifx

xif

xf MT λλ
λ

 
 

• ,1CCMf  [4] for any 1≥λ  with IR∈λ :  

 









≤−−

≤

.1<1/2,)(11

,1/2=,1/2

,1/2<0,/

=)(

,1

,1

xifxf

xfor

xifx

xf

CCM

CCM

λλ
 

 
• ,1BJf  [3] for 1≥λ and IN∉λ :  

 

,/
)(1

)()(
0,max=)(,1 


















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λ
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• ,1DGf  [6] for INkIN ∈∉  and   ,1> λλ , with 

≥ )1/(λk :  
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• ,2LLf  [5] for ∉ )(1/:= and  1,> λψλλ fracIN : 
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)(1

)()(
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=)(

,2
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xif
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x
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λ

 

 
• ,1FSf  [7] for any {0}\INk ∈ :  

 





+

∈+
.,/1)(

,1)(,
=)(,1 otherwisekxk

INxkifx
xf FS  

 
• ,2VBf  [5] for any :{0,1}\INk ∈  

 









−−

−−

.1/2>,)(11

,1/2=,1/2

,1/2<,1)1}/({0,max

=)(

,2
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xif
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3 1D-CSP and Best Parameter Choice 
In this section, we review how the MDFFs should 
be used to generate lower bounds for the 1-
dimensional case. For this purpose, let  
 

[0,1][0,1]: →f  
 

be a MDFF, and  
 

);;;(:= blLmE  
 
an instance of the 1D-CSP with a stock length 

{0}\+∈ IRL , {0}\INm ∈  items whose lengths 

and order demands are given in the vectors mIRl ∈  

and mINb∈ , respectively, with Lli ≤<0  for 
mi ,1,= K . The surrogate instance is the following 

instance Ef : 
 

);))/(,),/((;1;(:= 1 bLfLfmE mf
Τ

lKl . 

 
Any lower bound for the optimal solution value of 

fE  is a lower bound for E  too.  

If f  is chosen optimally, then )( fM Ez  equals 

the continuous relaxation bound given by the 
column generation model of E . In fact, the optimal 
dual solution of the column generation model 
provides a dual-feasible function for E. The 
complexity of computing the column generation 
bound for E is well-known to be high, and so will be 
the complexity of finding an optimal MDFF.  

In order to find a good MDFF with low 
complexity, we will resort only to the functions 
described in the previous section.  

Finding the best parameter for fMT,0 requires first 
that the items are sorted by their lengths. This step 
has a complexity of at least )ln( mmO . After that, 
the complexity of the corresponding  Martello and 
Toth lower bound is only linear in m . This bound 
can be computed by considering the pairs of items 
that do not fit together. The corresponding lower 
bounding algorithm is given below. 
 
Algorithm MT_Original 
Input: Instance );;;(= blLmE  of the 1D-CSP. 

Output: Martello and Toth lower bound )( MTB  for 
the optimal solution value 
1. Sort all items by their length such that 

mlKl ≥≥1 .  

2. Calculate the material bound Lbz ii

m

i
M /=

1=

l∑  for 

E .  
3.  Set MzB := , MMT zB := , 1:=i , mj := .  
4.  while i≤ j do 

if li + lj < L then 
B:=B-bj lj/L; j:=j-1; 

end 
else  

B:=B+bi (1-li/L); i:=i+1; 
if B>BMT then BMT:=B; 

end 
 
This bound BMT is never worse than the material 

bound zM. Furthermore, it can yield very tight results 
if E has items greater than /2L . Hence, it is a good 
idea to combine this bound with the other functions, 
as long as the complexity remains low, e.g. )(mO  
for trying a MDFF after the sorting. Since any 
MDFF is monotonous, the sorting can be done first.  

In the sequel, we describe a new variant of the 
previous algorithm that avoids storing the modified 
item sizes given by the DFFs. These values may be 
used at the steps 2 and 4 of the algorithm 
MT_Original instead of the original values li. This 
variant is particularly useful when composing DFFs, 
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and it may speedup the computation of the lower 
bounds. 

 
Algorithm MT_Online 
Input: Instance );;;(= blLmE  of the 1D-CSP with 

0>1 mL lKl ≥≥≥  and a MDFF f . 
Output: Martello and Toth lower bound for the 
corresponding instance fE . 

The auxiliary vector 6IRd ∈  contains the largest 
remaining item, the smallest remaining one, the 
actual material bound, the difference between the 
Martello and Toth lower bound and the material 
bound, and in the 5th and 6th it contains auxiliary 
values. The order demands of the remaining largest 

and smallest item are stored in 2INr ∈ . The indices 
kji ,,  belong to the largest or smallest remaining 

item while {1,2}∈n  is used to decide if the largest 
or the smallest item is replaced.  
 
Set d:=o (the zero vector), i:=1, j:=m+1, k:=1, 
n:=1 and r:=(0,0)T. 
repeat 

d3:=d3+d6; 
dn:=f (lk/L); rn:=bk; 
d6:=dn . rn; 
if d1+d2≤1 then 

n:=2; d5:=d5-d2 . r2; 
j:=j-1; k:=j; 

end 
else 

n:=1; d5:=d5+(1-d1) . r1; 
if d5>d4 then d4:=d5; 
i:=i+1; k:=i; 

end 
until i>j; 
return d3+d4. 
 

If a lower bound IRB∈  was given, then the last 
line could be replaced by “if Bdd >43 +  then 

43:= ddB + ”, so as to update that bound. 
To obtain strong lower bounds for the 1D-CSP, it 

is important to choose a good set of parameters. The 
decision on the parameter can be done regarding a 
single item in E . The aim is to let the rounding-
down in the functions do as few as possible for the 
selected item. Trying all the m  items yields 
therefore m  calls of the above algorithm for each of 
the functions  , , , ,1,1,1 DGBJCCM fff and ,2LLf . The 

functions ,1FSf  and ,2VBf  are more complicated.  

Choosing the parameters depending on the length 

il  of the i -th item can be done with a suitable 

small 0>ε  as follows:   
 

• ,1CCMf : if /2< Lil , then let iL l/:=λ  else 

)/(:= ελ +− iLL l ; 
 
• ,1,1, DGBJ ff  and ,2LLf : if the λ  for ,1CCMf  is not 

integer, then this λ  is suitable for , , ,1,1 DGBJ ff  and 

,2LLf  too.  

 
• ,1FSf : Fekete and  Schepers [7] found that using 

only this function yields a worst case performance 
ratio of 3/4, i.e. that there is a sequence of bad 
instances such that the ratio of the obtained bound 
and the optimal solution value tends to 3/4 even if 
all possible parameter values {0}\∈k  are tried. 

Nevertheless, some values k  can be tried such that 
the fractional part of Lk i /1)( l+  becomes very 

small. Such suitable values k  can be computed with 
continued fractions, where iL l/  is approximated by 
rational numbers with smaller denominators as 
follows: 
 
Let a:=0; b:=1; y:=li / L; 
repeat 

y:=1/frac(y); 
c:=

  y . b+a; 
a:=b; b:=c; 

if frac(b . li/L) < 0.5 and b > 2 then  
Use k:=b-1 as parameter for fFS,1; 

until frac(y)=0. 
 
The value 1=k  yields the identity function, and 

hence it is clearly not an interesting value for the 
parameter. In the loop, the number of parameter 
values that are tried is )(ln LO . Therefore, the 

complexity of the loop is )ln( LmO , and hence it is 
linear in m (note that applying one of the functions 
to all the items requires clearly linear complexity).  

In order to prevent to apply one parameter k  
arising from different lengths il  more than once for 

the function ,1FSf , all obtained values k  can be 

stored in a binary search tree, for instance in a red-
black tree. These trees guarantee that finding and/or 
inserting a node requires a complexity of )(ln nO , if 

the tree contains 0>n  nodes. If the value k  is not 
found in the tree, then it is inserted in the tree, and 
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the bound is computed using ,1FSf  with parameter 

k . Otherwise, the calculation can be omitted. 
Because )ln( LmO  values of the parameter k  can 
be in the search tree, a trivial searching structure 
cannot be recommended, since looking for every 
found parameter value in the structure would 

increase that complexity to 2)ln( LmO . That would 
be more expensive than not using any check, if that 
value k  was already tried or not, which would 

cause a total complexity )ln( 2 LmO . If all 

)ln( LmO  possible values for k  are stored in a red-
black tree, then the total complexity for searching 
these nodes is around ))ln(lnln( LmLmO , and the 

entire effort for using ,1FSf  becomes )ln( 2 LmO . 

The latter dominates the first expression.  
 

• ,2VBf : here, the same idea as for ,1FSf  can be used.  

In conclusion, a lower bound for the 1D-CSP can 
be computed with quadratic complexity in the 
number m  of items as follows:   
1.  Sort all items by their size such that 

mL lKl ≥≥≥ 1 ; 
2.  Compute the Martello and Toth lower bound for 
the instance, i.e. using idMT ff o,0 , with xxf id =)(  
being the identity function; 
3. For all },{1, mi K∈ , choose suitable parameters 
as described above and apply the functions together 
with ,0MTf .  

 
 

4 2D Guillotine CSP with 2 Stages: 
the Exact Case 
In the exact case, horizontal strips with widths 
belonging to },,{ 1 mww K  are cut in the first stage, 
while in the second stage, these strips are cut to the 
desired items. No additional cuts are allowed. In this 
paper, we will assume that neither the stock sheets 
nor the items can be rotated. The lower bound 
obtained for this 2D-CSP is valid for the virtual 
machine allocation problem introduced above.  

In this problem, the gap between the optimal 
solution value of the integer problem and its linear 
relaxation can increase affine-linearly with m . 
Therefore, the difference between the obtained 
lower bound and an upper bound, found e.g. by a 
heuristic like the worst-fit-decreasing heuristic 
(WFD), can rise beyond any constant. A lower 
bound for the problem can be obtained using the 
following procedure:   

 
1. Sort all the items such that mww ≥≥K1 . If 

ji ww =  and ji < , then sort items i and j such that
 

ji ll ≥ ; 

2.  For each item width, compute the number of 
necessary strips by applying MDFFs as described in 
the previous section. Take the maximum value for 
the bound and round it up to the next integer; 
3.  Compute the number of required stock sheets 
regarding the obtained numbers of strips 
analogously.  
 

These calculations are a simple sequence of 
calculations of lower bounds for 1D-CSP instances. 
Therefore, the complexity to get the lower bound 

will be nearly )( 2mO . 
The WFD heuristic can be implemented 

efficiently using a priority queue. For each width, a 
sufficient number of strips is calculated, and then 
the strips are combined into stock sheets. Since 
these are again only 1D instances, this can be done 
in detail as follows:   

 
1.  Initialize a priority queue q  as empty. The head 
of q  shall always contain the largest stored value, if 
q  is not empty; 

2.  For each width },,{ 1 mwww K∈ : if q  is not 
empty, and the value at the head of q  is greater than 
or equal to the length of the item with width w , then 
use the represented strip of width w , otherwise use 
a new strip with size wL × . Put as much of the 
items into the strip as possible, regarding their order 
demands. Store the new or the changed strip in q . 
After putting all the items of the selected width w  
into the strips, the number of elements in q  equals 
the number of needed strips. Store this number for 
the next step and empty q .  
3. Obtain the number of needed stock sheets 
depending on the number of necessary strips of the 
different widths in the same way.  
 
The complexity for the entire WFD is then only 

)ln( mmO . 
 
 

5 2D Guillotine CSP with 2 Stages: the 
Inexact Case 
This problem differs from the previous in the fact 
that, for each item, one additional cut to remove 
waste is allowed. In practice, this variant allows the 
placement of items with different heights in the 
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same strip. This characteristic makes the calculation 
of good lower bounds a bit more complicated than 
in the exact case. The resulting bound remains 
feasible for the virtual machine allocation problem. 

Here, we propose the following lower bounding 
algorithm for this problem with a complexity 

)( 3mO . Let mINs ∈ , our algorithm states as 
follows: 

 
1.  Sort all the items like in the exact case. Let 

mi := ; 
2.  Compute the number of needed horizontal strips 
for all the items of },{1, iK , i.e. apply several 
MDFFs, take the maximum of the lower bounds and 
round it up to the next integer. Store this number in 
s ; 
3.  If mi < , then subtract the last obtained number 
in s  from the previous one; 
4.   Repeat 1:= −ii   until 1or  0= +≠ ii wwi ; 
5.   If 0>i , then goto Step 2.  
6. Compute the number of needed stock sheets 
according to the widths of the strips and their 
numbers stored in s .  
 

Since the bound for the 1D problem needs sorted 
items, it is necessary to sort a copy of the items of 

},{1, iK  in Step 2. The complexity )( 3mO  can be 
argued as follows: if all the items have different 
widths then for ,,11, ,= K−mmi  lower bounds for 
the number of strips with i  items must be 
calculated. The complexity for that is each time 

)( 2iO , and together )( 3mO . 
The following example shows that the lower 

bound for the 2-stage guillotine CSP can dominate 
the best lower bound for the non-guillotine 
counterpart. 

 
Example 1: Let L=W=m=3, l1=w2=b1=b2=2, and 

1===== 33312 bww ll . In the first step, items 
1 and 2 are exchanged during the sorting. That 
means that the items have now the sizes 21× , 12×  
and 11× . At the beginning, a lower bound for the 
number of all strips of widths greater than or equal 
to 1 is computed (Step 2). Since all the items are 
involved, the copied lengths (and order demands) 
have to be exchanged again such that 2=1l , 

1== 32 ll . The simple material bound yields 
1)/31122(2 ×+×+× , and hence three strips are 

necessary. In Step 4, the index variable i  decreases 
to 1 because in the sorted list of items after Step 1, 
the relations 1=>2= 21 ww  hold.  

Now, the strips with the next larger width 2 are 
analyzed. The only item is 2,1×  which is 
demanded twice. Therefore, one strip of width 2 can 
be enough. Since the total number of strips is (at 
least) 3, the lower bound for the number of stock 
sheets arises from one strip of width 2 and two strips 
of width 1. If strips of width 1 are changed to width 
2, then neither the whole number of strips nor the 
total number of stock sheets can decrease. 
Therefore, the subtraction in step 3 is correct. In 
Step 6 the material bound yields that at least 

1)/322(1 ×+× , and hence two stock sheets are 
necessary.  

Because there is a non-guillotine arrangement of 
all the items on one stock, this is an example where 
the obtained lower bound for the inexact case of 
guillotine cutting in two stages is higher than any 
valid lower bound for the non-guillotine packing. 
 
 

6 The Non-Guillotine 2D-CSP 
The strategy for obtaining lower bounds for this 
ordinary orthogonal cutting stock problem is the 
following. We apply a set of MDFFs to all the items 
in one direction and a set of the same or other 
MDFFs to all the items in the second direction. 
Then, the material bound Mz  for the changed 
instance is a lower bound for the original one. 
Because it is necessary to explore both directions at 
the same time, and not sequentially as in the 
previous sections, the complexity increases.  

Since in the 1D case the Martello and Toth lower 
bound was very successful when it was combined 
with the other MDFFs (except with ,2LLf  and 

,2VBf ), we resort again to the function ,0MTf  

together with idf , ,1CCMf , ,1BJf , ,1DGf  and ,1FSf . 

Note that the total area of an item (with its original 
size or after applying a MDFF) is very often less 
than half of the stock area, causing ,0MTf  to yield a 

function value 0. Therefore, it is not useful to 
compute the  Martello and Toth lower bound for the 
areas of all the items. Using the other MDFFs for 
the areas would also increase the complexity further 
without strong effect on the bounds. 

The details of the lower bounding procedure are 
described next.  

 
1. Construct vectors to sort all the items indirectly 
by their lengths and by their widths. Let 0:=B ;  
2. Construct a surrogate instance fE  with stock 

length 1=L′  and item lengths )/( Lf il , where f  is 
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the composition of idf , ,1CCMf , ,1BJf , ,1DGf  or 

,1FSf  and ,0MTf  according to the 1D case, and call 

an analogous procedure applied now to the item 
widths; 
3. For each combination of MDFFs, compute the 
material bound. If the returned value is larger than 
B , then update B  accordingly.  
 

The value B  is the desired lower bound. The 

complexity of this procedure is )lnln( 4 WLmO , 
since for each different item length a set of MDFFs 
is applied to all item lengths, and for each such 
surrogate instance, the widths must be handled 
analogously.  

Composing ,0MTf  with one of the other MDFFs 

does not increase the complexity. This can be 
confirmed as follows. Choosing the parameter for 
the MDFF brings a factor m  and eventually 
additionally Lln  or Wln . Applying the chosen 
function with the chosen parameter yields another 
factor m . After that, ,0MTf  is applied to the data 

which needs no additional factor m . Since the 
computation of the material bound can be done 
before using ,0MTf  in the second direction, and then 

changing the parameter in ,0MTf  can be regarded 

each time with constant complexity, the total effort 

)lnln( 4 WLmO  can be achieved. The factors Lln  

and Wln  come from the parameter search for ,1FSf  

(and ,2VBf ).  

 
 

7 Computational Results 
The algorithms described in the previous sections 
were tested on instances from the literature, namely 
on ten test classes by  Berkey and Wang and  
Martello and Vigo described in [15]. Each class is 
composed by 5 groups of 10 instances, one group 
for each value of m from 20 to 100. The instances 
can be obtained from 
www.or.deis.unibo.it/research_pages/ORinstances/2
BP.html.  

Our results are reported on Table 1 to 5. The 
entries in these tables have the following meaning: 
m  stands for the number of items, Mz  denotes the 
material bound for the original instances, the lower 
bound for the non-guillotine problem is denoted by 

NGB , inB  and exB  are the bounds inexact and exact 
case of the guillotine CSP, and WFD stands for the 
upper bound obtained with the worst-fit-decreasing 

heuristic for the exact 2D guillotine CSP in two 
stages.  

To derive the value of each of the bounds inB  

and ,exB  we used all the MDFFs described in 

Section 2, i.e. ,0MTff o  with ,,{ ,1CCMid fff ∈   

},,,, ,2,1,2,1,1 VBFSLLBJDG fffff , and then we took the 

largest value found. NGB  was calculated 

analogously except that the functions ,2LLf  and 

,2VBf  were omitted. Indeed, our preliminary 

experiments showed that these functions dominated 
the others only very rarely. 

Given the low complexity of our lower bounding 
procedures, the time required to compute the bounds 
is typically a few miliseconds for all the instances 
that were used. 

Table 4 and 5 report the exhaustive list of lower 
bounds obtained for each case. In 457 of the 500 
instances, our lower bounding procedure for the 
exact case of the 2D guillotine CSP was able to find 
the value of the optimal solution (exB is equal to the 
upper bound provided by WFD heuristic). For 347 
instances, the bound for the inexact case improved 
the material bound computed from the original 
instance. The average increase of the lower bound in 

the sense    ∑∑ MNG zB /  is given in Table 1 for 

the ten classes.  
The comparison with the results of  Martello and 

Vigo [15] shows that the lower bounds with dual-
feasible functions can yield better results. This can 
even happen if the number of large items is small as 
in class 10. In that class  Martello and  Vigo did not 

get better bounds than  Mz .  
Table 2 presents the average increase of the 

lower bounds ∑∑ NGin BB / , when comparing 

the non-guillotine 2D-CSP and the inexact 2 stages 
guillotine CSP. These results shows that the latter 
bounds can be sharpened for the inexact case too 
while the computational effort decreases. 

Table 3 contains an analogous comparison of the 

inexact and the exact case, i.e. inex BB ∑∑ / . It is 

not surprising that the lower bounds for the exact 
guillotine CSP with 2 stages rise very strongly 
compared with the inexact case, especially in Class 
6. Indeed, in the exact case, since each strip can be 
used only for the items of the same width, it can 
easily happen that the strips contain only one item 
but much waste. In contrast, the inexact case allows 
the combination of different items in one strip. 
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CLASS m=20 m=40 m=60 m=80 m=100 

1 69/64 131/120 200/185 275/253 317/305 
2 1 1 1 1 1 
3 47/44 92/82 136/125 188/173 221/205 
4 1 1 1 1 1 
5 60/54 116/101 177/157 243/215 279/259 
6 1 1 1 1 1 
7 53/47 109/97 156/140 224/197 269/238 
8 55/48 112/96 159/141 223/195 274/241 
9 143/94 275/180 435/276 574/371 693/450 

10 41/38 72/69 98/94 124/122 153/153 

Table 3: Comparing NGB  with Mz  

   ∑∑ MNG zB /  

 
CLASS m=20 m=40 m=60 m=80 m=100 

1  71/69  136/131 201/200 275/275 321/317 
2  10/10  20/19  27/25  33/31  40/39 
3  54/47  95/92  140/136 192/188 224/221 
4  10/10  20/19  26/23  33/30  39/37 
5  66/60  120/116 179/177 246/243 282/279 
6  10/10  19/15  22/21  30/30  34/32 
7  56/53  115/109 159/156 231/224 271/269 
8  59/55  113/112 162/159 225/223 279/274 
9  143/143 278/275 437/435 577/574 695/693 

10  45/41  75/72  103/98  129/124 159/153  

Table 4: Comparing  Bin with BNG: ∑∑ NGin BB /  

 
CLASS m=20 m=40 m=60 m=80 m=100 

1  86/71  157/136 230/201 304/275 348/321 
2  20/10  28/20  33/27  39/33  47/40 
3  85/54  147/95  203/140 267/192 301/224 
4  32/10  48/20  59/26  66/33  70/39 
5  102/66  193/120 286/179 387/246 432/282 
6  34/10  59/19  85/22  101/30  113/34 
7  135/56  241/115 324/159 406/231 450/271 
8  73/59  151/113 211/162 284/225 344/279 
9  158/143 316/278 474/437 623/577 746/695 

10  86/71  157/136 230/201 304/275 348/321 

Table 5: Comparing Bex with Bin: inex BB ∑∑ /
 

 
 

8 Conclusion 
In this paper, we proposed new and efficient 
procedures to compute good lower bounds for 2-
dimensional cutting stock problems. All the lower 
bounds described in this paper are feasible for the 
virtual machine allocation problem in data centers. 
Hence, they can be used to determine the minimum 
number of physical machines that are required for 
handling a set of virtual machines. Our procedures 
are based on maximal dual-feasible functions. In the 
first part of the paper, we described strategies for 
choosing the best set of parameters for these 
functions.  

We report on computational experiments 
conducted on instances from the literature. For 
many cases, it is important to emphasize that our 
procedures provided the optimal solution value. For 

many instances, we improved the results reported in 
the literature. 
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  CLASS 1 CLASS 2 CLASS 3 CLASS 4 CLASS 5 

m zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD 

20 6,5 7,2 8 8 8 0,7 0,7 1 2 2 4,3 5,0 6 9 9 0,7 0,7 1 3 3 5,4 6,8 8 11 11 

  4,3 4,5 5 8 8 0,5 0,5 1 2 2 2,6 2,8 4 7 7 0,4 0,4 1 3 3 3,2 3,6 5 9 9 

  6,5 7,9 9 10 10 0,7 0,7 1 2 2 4,4 5,0 6 10 10 0,7 0,7 1 4 4 5,5 6,4 7 13 13 

  4,7 4,8 6 7 7 0,5 0,5 1 2 2 3,1 3,3 4 9 9 0,5 0,5 1 3 3 3,9 4,2 5 9 9 

  5,3 5,4 6 8 8 0,6 0,6 1 2 2 3,5 3,7 5 7 7 0,6 0,6 1 3 3 4,4 4,6 6 8 9 

  7,4 8,5 9 11 11 0,8 0,8 1 2 2 4,8 5,9 7 9 9 0,8 0,8 1 3 4 6,0 8,0 9 11 11 

  5,3 5,5 6 8 8 0,6 0,6 1 2 2 3,4 4,0 5 8 8 0,5 0,5 1 3 3 4,3 4,8 6 10 10 

  5,1 5,9 6 7 7 0,6 0,6 1 2 2 3,2 3,7 5 8 8 0,5 0,5 1 3 3 4,0 4,7 5 9 9 

  6,2 7,3 8 10 10 0,7 0,7 1 2 2 4,2 4,6 5 9 9 0,7 0,7 1 4 4 5,3 6,8 7 12 12 

  6,6 7,7 8 9 9 0,7 0,7 1 2 2 4,6 6,3 7 9 9 0,7 0,7 1 3 3 5,8 7,0 8 10 10 

40 9,0 9,1 10 13 13 1,0 1,0 2 3 3 5,6 5,7 7 12 12 0,9 0,9 2 4 4 7,0 7,2 8 16 16 

  10,7 11,0 12 14 14 1,2 1,2 2 2 2 7,1 7,5 8 15 15 1,1 1,1 2 5 5 8,9 9,7 10 19 19 

  13,9 16,0 16 19 19 1,5 1,5 2 3 3 9,1 10,5 11 14 15 1,5 1,5 2 5 5 11,5 14,3 15 19 20 

  12,5 14,0 15 16 16 1,4 1,4 2 3 3 8,2 9,4 10 15 15 1,3 1,3 2 5 5 10,4 11,8 13 18 18 

  13,8 14,5 15 17 17 1,5 1,5 2 3 3 9,4 11,5 12 17 17 1,5 1,5 2 5 5 11,9 13,0 14 20 20 

  10,6 13,3 14 15 15 1,2 1,2 2 3 3 7,0 9,5 10 15 15 1,1 1,1 2 5 5 8,8 12,0 12 22 22 

  10,7 10,7 12 14 14 1,2 1,2 2 3 3 7,3 8,0 8 14 14 1,2 1,2 2 5 5 9,1 10,0 10 20 20 

  14,5 18,0 19 21 21 1,6 1,6 2 3 3 9,9 12,8 13 19 19 1,6 1,6 2 5 5 12,5 17,0 17 25 25 

  10,1 10,2 11 14 14 1,1 1,1 2 2 2 6,7 6,7 8 14 14 1,1 1,1 2 5 5 8,4 8,8 10 16 16 

  10,3 10,6 12 14 14 1,1 1,1 2 3 3 6,7 6,8 8 12 12 1,1 1,1 2 4 4 8,5 9,6 11 18 18 

60 20,1 22,1 23 26 26 2,2 2,2 3 4 4 13,5 15,8 16 23 23 2,2 2,2 3 6 6 17,1 19,5 20 31 31 

  17,7 18,1 19 23 23 2,0 2,0 3 4 4 11,4 12,0 13 18 19 1,8 1,8 2 6 6 14,4 15,8 17 27 28 

  18,2 21,0 21 24 24 2,0 2,0 3 3 3 12,3 12,8 14 20 20 2,0 2,0 3 6 6 15,5 18,5 19 30 30 

  18,2 21,8 22 25 25 2,0 2,0 3 3 3 12,3 14,2 15 22 22 2,0 2,0 3 6 6 15,5 19,3 20 33 33 

  16,5 18,1 19 21 21 1,8 1,8 2 3 3 10,9 11,1 12 18 18 1,7 1,7 2 5 5 13,7 14,6 15 25 25 

  16,6 16,8 18 21 21 1,8 1,8 2 3 3 11,1 11,3 12 18 18 1,8 1,8 2 6 6 13,9 14,9 16 24 24 

  14,8 15,0 16 18 18 1,6 1,6 2 3 3 10,0 10,8 12 18 18 1,6 1,6 2 6 6 12,5 13,8 14 23 24 

  18,8 20,7 21 24 24 2,1 2,1 3 3 3 12,8 14,3 15 20 20 2,0 2,0 3 6 6 16,1 18,3 19 29 29 

  17,4 17,4 18 21 21 1,9 1,9 3 3 3 11,6 12,5 13 18 19 1,9 1,9 3 6 6 14,5 15,8 16 29 30 

  21,1 23,5 24 27 27 2,3 2,3 3 4 4 14,6 17,0 18 28 28 2,3 2,3 3 6 6 18,4 23,0 23 35 35 

80 22,7 24,1 25 27 27 2,5 2,5 3 4 4 15,2 16,7 17 27 27 2,4 2,4 3 7 7 19,0 22,0 22 39 39 

  24,1 25,4 26 28 28 2,7 2,7 3 4 4 15,9 17,4 19 26 26 2,5 2,5 3 7 7 20,1 22,1 23 39 39 

  23,0 26,8 27 30 30 2,6 2,6 3 3 3 15,5 17,3 18 26 26 2,5 2,5 3 7 7 19,5 23,8 25 40 40 

  24,4 26,8 27 30 30 2,7 2,7 3 4 4 16,3 17,6 18 25 25 2,6 2,6 3 6 6 20,4 24,3 25 38 39 

  23,5 25,3 26 29 29 2,6 2,6 3 4 4 15,6 15,8 17 26 26 2,5 2,5 3 7 7 19,6 22,0 23 37 37 

  25,2 27,6 28 31 31 2,8 2,8 3 4 4 17,2 19,8 20 27 27 2,7 2,7 3 6 6 21,6 25,0 25 39 39 

  26,6 30,8 31 35 35 3,0 3,0 4 4 4 18,1 19,8 21 29 29 2,9 2,9 4 7 7 22,8 26,8 27 39 39 

  26,4 28,6 29 33 33 2,9 2,9 4 4 4 18,0 21,5 22 30 30 2,9 2,9 4 6 6 22,9 25,9 26 40 40 

  27,9 29,6 30 33 33 3,1 3,1 4 4 4 18,6 21,0 22 27 27 3,0 3,0 4 7 7 23,5 25,7 27 42 42 

  24,3 25,3 26 28 29 2,7 2,7 3 4 4 16,2 18,0 18 24 25 2,6 2,6 3 6 6 20,4 22,2 23 34 35 

100 27,3 27,5 28 30 31 3,0 3,0 4 4 4 18,0 18,1 19 26 26 2,9 2,9 4 7 7 22,6 23,0 24 40 41 

  30,4 30,6 32 35 35 3,4 3,4 4 5 5 20,8 21,6 23 30 30 3,3 3,3 4 7 7 26,2 27,7 29 43 43 

  26,7 28,5 29 32 32 3,0 3,0 4 4 4 17,6 18,0 19 28 28 2,8 2,8 3 7 7 22,2 23,1 24 39 40 

  28,8 29,9 31 34 34 3,2 3,2 4 5 5 19,1 19,1 20 27 28 3,1 3,1 4 7 7 24,0 25,5 26 42 42 

  30,2 31,5 32 35 35 3,4 3,4 4 5 5 20,2 21,5 22 30 30 3,2 3,2 4 7 7 25,4 27,3 28 43 44 

  33,8 36,3 37 40 40 3,8 3,8 4 5 5 23,0 26,0 27 37 37 3,7 3,7 4 7 7 29,0 33,3 34 50 50 

  27,4 27,6 29 30 30 3,0 3,0 4 4 4 18,4 19,3 20 28 28 2,9 2,9 4 7 7 23,1 24,4 25 43 43 

  31,2 32,7 34 37 37 3,5 3,5 4 5 5 20,9 22,3 23 30 30 3,3 3,3 4 7 7 26,3 28,7 30 42 42 

  29,9 30,7 31 34 34 3,3 3,3 4 5 5 19,7 21,3 22 30 30 3,2 3,2 4 7 7 24,9 26,6 27 41 42 

  34,2 37,6 38 41 41 3,8 3,8 4 5 5 23,2 28,5 29 35 35 3,7 3,7 4 7 7 29,3 34,8 35 49 49 

Table 1: Comparison of the bounds for the different cases (part 1) 
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  CLASS 6 CLASS 7 CLASS 8 CLASS 9 CLASS 10 

m zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD 

20 0,6 0,6 1 4 4 4,4 4,7 5 13 13 4,8 5,8 6 6 6 11,1 18,5 19 19 19 5,0 6,0 7 8 8 

  0,4 0,4 1 3 3 3,8 4,6 5 15 15 4,6 6,0 7 11 11 7,6 12,5 13 17 17 2,4 2,5 4 9 9 

  0,6 0,6 1 4 4 3,9 4,1 5 12 12 4,4 4,7 6 7 7 9,2 13,5 14 16 16 3,5 3,8 5 8 8 

  0,4 0,4 1 3 3 5,1 6,4 7 15 15 5,0 6,2 7 9 9 8,8 16,0 16 18 18 3,4 4,0 5 8 8 

  0,5 0,5 1 3 3 4,6 5,4 6 14 14 4,2 5,0 6 6 6 9,9 16,0 16 16 16 3,2 3,6 4 6 7 

  0,7 0,7 1 4 4 4,4 4,8 6 13 13 4,7 5,4 6 7 8 9,8 14,0 14 16 16 3,0 3,1 4 7 7 

  0,5 0,5 1 3 3 3,3 3,6 4 13 13 3,4 3,9 5 6 7 6,5 9,0 9 11 11 3,9 4,4 5 9 9 

  0,4 0,4 1 3 3 4,7 5,7 7 16 16 4,2 4,8 5 7 7 8,4 14,0 14 15 15 1,9 2,0 3 6 6 

  0,6 0,6 1 4 4 4,8 5,5 6 12 12 4,9 5,4 7 9 9 10,2 15,0 15 17 17 4,4 4,7 5 9 9 

  0,6 0,6 1 3 3 3,4 3,8 5 12 12 3,1 3,6 4 5 5 7,7 12,5 13 13 13 2,0 2,0 3 6 6 

40 0,8 0,8 1 5 5 8,4 9,3 10 23 23 9,5 10,5 12 19 19 16,2 24,0 25 31 31 7,0 7,5 8 18 18 

  1,0 1,0 2 6 6 10,3 11,9 13 27 27 10,6 12,9 13 16 16 18,5 31,5 32 33 33 6,6 6,8 8 14 14 

  1,3 1,3 2 6 6 8,3 9,0 10 23 23 8,9 10,1 11 14 14 18,5 28,0 29 32 32 8,0 8,6 9 16 16 

  1,2 1,2 2 6 6 11,2 13,4 14 26 26 10,0 11,7 12 14 14 18,7 31,0 31 32 32 5,5 5,5 7 11 11 

  1,3 1,3 2 6 6 7,9 9,0 10 20 20 7,3 8,6 9 11 11 16,6 26,5 27 29 29 5,1 5,3 6 12 12 

  1,0 1,0 2 6 6 9,6 10,6 12 24 24 9,5 11,4 12 16 16 18,4 29,0 29 34 34 5,0 5,0 6 13 13 

  1,0 1,0 2 6 6 9,1 10,8 12 25 25 8,9 10,3 11 15 15 15,8 23,5 24 28 28 6,1 6,6 7 13 14 

  1,4 1,4 2 6 6 9,6 10,8 12 22 22 9,2 10,2 11 16 17 18,0 25,5 26 33 33 6,1 6,4 7 16 16 

  0,9 0,9 2 6 6 6,9 7,9 9 23 23 7,7 8,1 9 15 15 14,9 21,0 21 27 27 6,8 7,5 8 17 17 

  0,9 0,9 2 6 6 10,2 12,5 13 28 28 10,5 12,1 13 15 15 20,1 33,0 34 37 37 7,2 8,3 9 15 15 

60 1,9 1,9 3 9 9 14,7 16,5 17 36 36 14,6 16,5 17 20 20 29,3 45,5 46 48 48 10,3 10,6 12 19 19 

  1,6 1,6 2 8 8 12,4 13,2 14 30 30 14,4 16,2 17 21 21 29,3 44,0 45 49 49 10,9 11,6 12 21 21 

  1,7 1,7 2 9 9 14,1 16,4 17 33 33 14,0 15,5 17 21 22 29,7 46,0 46 50 50 10,3 10,4 12 19 19 

  1,7 1,7 2 9 9 12,8 14,1 15 30 30 12,5 14,7 15 21 21 26,2 44,0 44 51 51 6,9 6,9 8 18 19 

  1,5 1,5 2 7 7 12,1 13,8 15 33 33 12,2 13,5 15 22 22 24,7 40,5 41 46 46 7,2 7,2 8 17 18 

  1,5 1,5 2 8 8 12,1 14,6 15 32 32 12,9 14,3 15 21 22 24,2 37,0 37 41 41 11,1 12,5 13 24 24 

  1,4 1,4 2 7 7 12,4 14,4 15 30 30 12,1 13,2 14 20 21 24,7 40,0 41 47 47 9,0 9,0 10 19 20 

  1,8 1,8 2 9 9 14,5 16,6 17 32 32 14,7 17,0 17 24 24 27,9 46,5 47 49 49 9,0 9,2 10 21 21 

  1,6 1,6 2 9 9 12,7 13,8 15 32 32 13,7 15,7 17 20 20 27,0 44,5 45 47 47 7,9 7,9 9 17 17 

  2,0 2,0 3 10 10 16,2 17,8 19 36 36 15,0 17,6 18 21 21 28,9 45,0 45 46 46 7,3 7,5 9 15 15 

80 2,1 2,1 3 10 10 17,9 20,0 21 38 38 18,4 21,2 22 27 28 35,1 58,0 59 61 61 11,7 11,8 13 23 24 

  2,2 2,2 3 9 10 20,9 24,1 25 42 42 19,4 23,1 24 27 27 36,0 58,0 58 62 62 9,8 9,8 11 19 19 

  2,2 2,2 3 10 10 17,7 20,0 21 38 38 17,3 19,7 20 27 27 35,1 57,0 57 65 65 10,1 10,1 11 22 22 

  2,3 2,3 3 10 10 18,4 20,9 22 37 37 17,2 19,2 20 28 29 35,6 52,0 53 60 60 12,9 13,2 14 25 25 

  2,2 2,2 3 11 11 19,7 22,7 24 42 42 21,9 25,5 26 31 31 38,7 61,0 62 67 67 12,7 13,1 14 25 26 

  2,4 2,4 3 11 11 19,2 22,0 23 42 42 18,7 21,6 22 28 28 37,3 61,5 62 63 63 12,2 12,4 13 25 25 

  2,5 2,5 3 10 10 20,6 23,4 24 44 44 18,9 21,4 22 28 28 38,5 59,0 59 63 63 13,4 13,6 15 26 26 

  2,5 2,5 3 10 10 18,9 21,7 23 38 38 19,4 21,3 23 29 29 36,9 57,5 58 61 61 9,4 9,4 10 22 22 

  2,6 2,6 3 11 11 19,7 22,9 24 42 42 18,8 20,5 22 29 29 33,2 48,5 49 56 56 11,6 11,6 13 23 23 

  2,3 2,3 3 9 9 20,4 23,5 24 43 43 20,8 23,6 24 30 30 39,0 59,5 60 65 65 13,4 13,9 15 26 26 

100 2,5 2,5 3 11 11 23,6 26,6 27 44 44 22,7 25,9 27 32 32 45,4 71,0 71 77 77 13,6 13,6 15 24 24 

  2,9 2,9 4 11 11 23,2 26,3 27 46 46 22,8 26,4 27 33 34 43,1 63,5 64 69 69 14,6 14,6 16 28 29 

  2,5 2,5 3 10 11 20,8 23,9 25 44 44 20,6 23,4 24 31 31 41,8 68,0 68 72 72 14,9 14,9 16 28 29 

  2,7 2,7 3 12 12 22,6 25,7 27 46 46 25,5 29,9 31 35 36 47,5 77,5 78 82 82 16,2 16,6 18 30 31 

  2,8 2,8 3 11 11 21,5 24,2 25 44 44 24,1 28,5 29 37 37 41,3 64,5 65 72 72 16,5 16,7 18 32 32 

  3,2 3,2 4 13 13 24,8 27,6 28 45 45 22,6 26,0 27 32 32 45,9 70,5 71 74 74 12,2 12,2 13 23 23 

  2,6 2,6 3 12 12 22,8 26,3 27 43 43 22,6 25,0 26 36 36 41,6 65,5 66 71 71 12,9 12,9 14 28 28 

  2,9 2,9 4 10 10 24,4 28,1 29 45 45 24,5 27,6 29 35 35 46,6 73,0 74 80 80 17,0 17,5 18 31 32 

  2,8 2,8 3 11 11 22,6 24,4 25 43 43 23,4 26,2 27 35 35 43,5 65,0 66 71 71 15,1 15,1 16 30 30 

  3,3 3,3 4 12 12 27,2 30,2 31 50 50 27,4 31,6 32 38 39 48,6 71,5 72 78 78 14,1 14,1 15 25 25 

Table 2: Comparison of the bounds for the different cases (part 2) 
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