
Efficient Lower Bounding Procedures with Application in the
Allocation of Virtual Machines to Data Centers

JÜRGEN RIETZ, RITA MACEDO, CLÁUDIO ALVES, JOSÉ VALÉRIO DE CARVALHO

Departamento de Produção e Sistemas
Universidade do Minho

Campus de Gualtar, 4710-057 Braga
PORTUGAL

juergen_rietz@gmx.de; {rita, claudio, vc}@dps.uminho.pt

Abstract: -
Cloud computing is becoming an alternative model for delivering computing resources and services to end-
users and companies. The configuration of the clouds raises many issues that come from the need to manage
efficiently the available resources in the data centers and from the agreements on the quality of the service that
must be delivered to the clients. One of the key issues in the operation of the clouds consists in determining
how the workload should be distributed among the physical machines such that the utilization of the computing
resources in the cloud computing data centers is maximized. In this paper, we address this latter problem. We
describe in particular a set of new and fast procedures for computing lower bounds on the number of physical
machines that are required by a cloud provider to execute efficiently a set of user applications (virtual
machines).

To compute the bounds, we formulate this virtual machine allocation problem as a bin-packing problem
and we address some of its variants. All our lower bounding procedures are polynomial-time algorithms that
rely on the use of maximal dual-feasible functions. These functions are parameter dependent. We describe the
best set of parameters when the 1-dimensional variant of the problem is considered, and we discuss the
complexity of the lower bounding procedures that are proposed. We report also on extensive computational
experiments conducted on benchmark instances of the literature. The results of these experiments show the
strength of the lower bounds described in this paper.

Key-Words: - Combinatorial optimization; Lower bounds; Maximal dual-feasible functions; Polynomial
complexity; Virtual machine allocation problem; cloud computing.

1 Introduction
Cloud computing is a recent computing paradigm
based on making available a set of shared
computing resources and services to end-users and
companies. The resources and services of the clouds
are accessed by the clients through a network and on
an on-demand basis. The business models
underlying the deployment and operation of the
clouds are diverse, as are the types of clouds that are
currently available and which range from public to
virtual private clouds [20]. However, in essence, all
these variants share a common fundamental
objective which is to offer a service to meet the
computing needs of their clients.

A cloud is characterized by its ability to serve
simultaneously different end-users from a single
data center [20]. Among the various characteristics
that distinguish the cloud computing model, the
possibility that the end-users have to use
dynamically the computing resources of the clouds
is clearly one of the most important. This feature of

the clouds allows the clients to reduce their
operational costs by acquiring only the resources
which are really needed at a given point in time. It is
also the expression of the pay-as-you-go model on
which the cloud computing paradigm is based.

One of the reasons for the advent of cloud
computing is the significant increase in the
computing needs brought by the explosion of
Internet services. Furthermore, all the advantages
that the cloud computing paradigm brings to the
companies such as a more efficient maintenance of
the infrastructures and a better management of the
costs (investment and utilization) justify the current
shift to cloud computing [2].

The configuration and management of the clouds
raise many challenges which have been summarized
recently in [20]. In this paper, we consider in
particular the problem related to the consolidation of
servers in a cloud computing data center. This
problem began to be addressed only very recently
[20]. One of the key objectives of this consolidation

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 157 Issue 4, Volume 8 April 2011

is to ensure that the available resources are used
efficiently so that the energy consumption is
minimized.

The increase of the demand for computing
resources has led to the deployment of cloud
computing data centers and to a corresponding and
significant increase of the total energy consumed by
these infrastructures. In [8,10], the authors report on
the magnitude of the costs involved and on the
impact for the environment caused by these levels of
energy consumption. The expected rate of growth of
these indicators is also impressive [8, 10].
Meanwhile, the average utilization of the resources
in the data centers remains typically low (15% to
20% on average [19]). A solution to this issue
consists in performing the aforementioned server
consolidation through an efficient balancing of the
workload across the physical machines of the data
centers.

Server consolidation is achieved through the
virtualization technology which is one of the
foundations of cloud computing. In this context, the
elementary processing component is the virtual
machine which encapsulates the user applications.
The data centers relying on virtualization are also
referred to as virtualized data centers [11]. The
virtualization technology allows for a flexible
management of the computing resources available in
the cloud computing data centers through the
allocation of many virtual machines to the same
physical server. This allocation aims at balancing
the workloads assigned to each server to an optimal
energy point avoiding idle energy wastage.

A virtual machine can be characterized through a
set of hardware metrics representing resource
consumptions at the physical server hosts. Examples
of these resources are the amount of allocated RAM,
the number of CPU cores, the network bandwidth or
the disk size. The number of different resources to
consider when allocating virtual machines to
physical servers can be treated as a different
dimension of a bin-packing problem. It is therefore
possible to address the virtual machine allocation
problem as a multi-dimensional bin-packing
problem, where the number of dimensions depends
on the considered resource constraints.

As mentioned above, the virtual machine
allocation problem has been pointed out by many
authors [11, 18, 20] as an important issue in the
management of cloud computing data centers. The
research on this field is very recent. In [18], the
authors describe a set of integer programming based
algorithms for the placement of virtual machines
under several constraints defined by the user. These
procedures are embedded in a general approach for

cloud brokering. A different approach for the
management of virtualized data centers was
proposed in [11]. In the latter, the problem of
scheduling tasks in a data center (and thus allocating
them to physical machines) is formulated as a multi-
objective optimization problem. To forecast the
workload, the authors resort to predictions made
through a fuzzy method. Complexity results are
provided together with a set of experimental results.

The virtual machine allocation problem has been
addressed by many authors who formulated it as a
bin-packing problem [1, 8, 12, 16, 17]. Given the
inherent complexity of these combinatorial
optimization problems, and the requirement for a
fast allocation of the virtual machines in real data
centers, it is not surprising that all the contributions
described in the literature focus exclusively on
heuristic approaches. In this paper, we provide
several lower bounding procedures to compute the
minimum number of physical machines required to
serve a given set of virtual machines. These
procedures can be used within these heuristics to
improve the quality of the generated solutions or
simply to evaluate how far these solutions are from
an optimal solution.

In [17], a private cloud management system is
presented. The authors describe a system that
integrates different mechanisms for allocating
virtual machines to physical hosts, for managing
congruent configurations and for the bootstrapping
of blank physical machines and virtual machines.
The allocation of the virtual machines is performed
by considering three resources: the RAM, the
number of CPU cores and the type of architecture.
In fact, the latter is considered as a constraint on the
subset of physical machines that can effectively
handle some of the virtual machines. Given that
each virtual and physical machine has usually a
single type of architecture, the problem is
decomposed into n different subproblems, one for
each different architecture. Each subproblem only
considers the machines of compatible architecture
types. Hence, the problem reduces to a 2-
dimensional bin-packing problem. The authors
describe a heuristic for this problem based on the
well-known first-fit decreasing algorithm.

In [8], the authors propose an algorithm for the
virtual machine allocation problem based on the ant
colony optimization meta-heuristic. Again, their
approach is based on a formulation of the problem
as a multi-dimensional bin-packing problem. The
focus of their contribution is on the generation of
solutions that minimizes the number of physical
machines used in order to decrease the energy
consumed by the data centers. Their algorithm was

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 158 Issue 4, Volume 8 April 2011

compared to the standard first-fit decreasing
heuristic. The results reported in their paper show
that their swarm intelligence based approach
outperforms this greedy heuristic.

In [1], the authors address the virtual machine
allocation problem by focusing on a single type of
resources, namely the memory of the physical
machines in the data centers. Hence, the problem
reduces to a classical 1-dimensional bin-packing
problem. They describe online algorithms for this
problem that are extensions of other approaches
described in the literature, and they show that the
approximation ratio of their approach remains
similar to those of the original approaches.

Li et al. describe in [12] the EnaCloud approach
for allocating virtual machines to physical servers
with a focus on energy saving. They propose a so-
called energy-aware heuristic that indicates
dynamically how the applications encapsulated into
virtual machine should be placed within the physical
servers. Their approach is further improved by
considering an over-provisioning method that
addresses the variability related to the resource
requirements of the applications.

In [16], Mastroianni et al. present an approach
for the adaptive allocation of virtual machines to
physical servers based on statistical procedures. A
physical machine is selected to receive a virtual
machine through Bernouilli trials by giving
preference to those servers that are already highly
loaded. The authors further consider the possibility
of live migration of the virtual machines both to
avoid the occurrence of servers with small
workloads and to avoid the possible overloading of
the servers which may result in a violation of the
service agreements. The authors report on
computational experiments from which it transpires
that their method tends to be decentralized and self-
organizing in part due to the adaptive nature of their
migration approach.

In this paper, we contribute to the resolution of
the virtual machine allocation problem by
describing fast lower bounding procedures that
allows to determine a bound on the minimum
number of physical machines that are required to
handle a given set of virtual machines. The
remainder of the paper is organized as follows. In
Section 2, we formalize the problem and we discuss
its relations with the family of cutting and packing
problems. In Section 3, maximal dual-feasible
functions are introduced, and some important
families are reviewed. In Section 4, their application
to the 1-dimensional cutting stock problem (a
problem that is equivalent to the bin-packing
problem as shown in the next section) is analysed.

In Sections 5 and 6, the 2-dimensional guillotine
cutting stock problem with 2 stages is discussed, in
the exact and the inexact case, respectively, and we
show how to derive new lower bounds for those
cases. We address the computation of lower bounds
for the non-guillotine case in Section 7, and then we
present computational results in Section 8 for ten
classes of test instances from the literature [15].
Some conclusions are finally drawn in Section 9.

2 The Virtual Machine Allocation
Problem
Given a set of physical machines (or physical
servers) and a set of virtual machines, the virtual
machine allocation problem consists in determining
the best assignment of the virtual machines to the
physical ones so as to minimize a given criterion. In
most of the cases, the criterion that is considered is
the number of physical machines that are effectively
used. This criterion allows for the minimization of
the energy consumption of the data centers as
mentioned in the previous section. In the literature,
the virtual machine allocation problem is sometimes
referred to as the virtual machine placement
problem.

The virtual machine allocation problem can be
formulated as a bin-packing problem (BPP). Bin-
packing problems belong to the class of cutting and
packing problems. They can be generally stated as
the problem of assigning a set of items to a set of
larger objects, usually called bins, such that the total
number of bins that are used is minimized. In the
virtual machine allocation problem, the set of virtual
machines can be seen as the set of items to be
allocated to the set of physical machines, which may
in turn be considered as the bins. The assignment of
the items to a bin must be such that the capacity of
the bin is never exceeded in none of its dimensions.
In the virtual machine allocation problem, these
capacities correspond to the levels of the resources
that are considered.

In its general form, the virtual machine allocation
problem is a multi-dimensional vector bin-packing
problem. In the 1-dimensional case, this problem
reduces to a standard 1-dimensional bin-packing
problem (1D-BPP) as illustrated in Figure 1. In the
2-dimensional case, the problem can be seen as 2-
dimensional bin-packing problem (2D-BPP) with
guillotine cuts and cardinality constraints (Figure 2).
In this paper, we consider these two equivalent
formulations of the problem, and we provide fast
(polynomial-time) procedures to compute lower
bounds for each one. Although we are addressing

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 159 Issue 4, Volume 8 April 2011

the cases where one or two resources are considered
simultaneously, our lower bounding procedures can
be easily extended to higher dimensions by
considering either each dimension or each pair of
dimensions (resources) separately, and then by
choosing the smallest value of the generated bounds.

Figure 1: Virtual machine allocation problem as a

1D-BPP

Figure 2: Virtual machine allocation problem as a

2D-BPP

In the cutting and packing terminology, the

designation of bin-packing problem refers usually to
those instances in which all the items are different in
terms of their sizes (resource consumptions in the
case of virtual machine allocation). If different items
have the same sizes in all the dimensions, the
problem is referred to as a cutting stock problem
(CSP). The counterpart of a bin in the terminology

of cutting stock problems is a stock sheet (or simply
a stock), while the packing operation is seen
equivalently as a cutting operation. For the sake of
generality, from this point forward, we will refer to
the cutting stock problem since we do not impose
any special requirement on the resource
consumptions of the virtual machines (i.e. we
consider that different virtual machines may
consume the same amounts of resources).

The 1-dimensional cutting stock problem (1D-
CSP) is NP-hard in the strong sense [14]. Hence, its
2-dimensional counterpart (the 2D-CSP) is also NP-
hard. Most of the approaches proposed in the
literature to solve these combinatorial optimization
problems rely on heuristics, see e.g. [7, 13]. In this
paper, we resort to dual-feasible functions to derive
efficient lower bounding procedures for different
variants of the 2D-CSP. The bounds generated by
these procedures are valid lower bounds for the
corresponding virtual machine allocation problem.
Our computational results reported at the end of this
paper show that these procedures generate strong
lower bounds very efficiently, i.e. with a low
polynomial complexity.

An instance of the 2D-CSP can be described by
the length L and width W of the stock sheets, the
number m of (different) items to be cut, and their
sizes ii w×l and order demands ib , mi ,1,= K . All
input data are assumed to be positive and integer.
The length L and width W correspond to the
available amount of the resources in the virtual
machine allocation problem, while the sizes li and wi
denote the corresponding consumption of each of
these resources by the virtual machine i. We assume
that the items cannot be rotated since that will imply
exchanging the resource requirements of a virtual
machine. This situation will certainly lead to
solutions that are infeasible for the virtual machine
allocation problem. Furthermore, we will assume
without loss of generality that the first cut is
horizontal and that Li ≤l and Wwi ≤ , for all

},{1, mi K∈ . The so-called material bound is
computed in the following way:

,=
1∑ = ×

××m

i

iii
M WL

wb
z

l

 (1)

Clearly, ⌈zM ⌉ is a lower bound for the 2D-CSP.
Indeed, if B ∈ IR is a lower bound, then ⌈ B ⌉ is a
lower bound too.

The majority of the authors addressed the
computation of lower bounds for 2D non-guillotine
CSP, as for instance [7]. A guillotine cut is a cut
from one edge to the opposite edge of the stock

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 160 Issue 4, Volume 8 April 2011

sheet that divides it into two parts. By definition, a
lower bound for the 2D non-guillotine CSP is a
valid lower bound for the variant with guillotine
cuts. Similarly, both bounds are valid for the virtual
allocation problem. One of the objectives of this
paper is to show that better bounds can be obtained
for the 2D guillotine CSP with 2 stages.
Furthermore, we show how to choose good
parameters for some families of maximal dual-
feasible functions with low complexity.

3 Dual-Feasible Functions
Dual-feasible functions were introduced by
Johnson in [9]. Since that time, many other
functions were found and analysed. An exhaustive
survey is given in [5].

Definition 1: A function +→ IRf [0,1]: is called a
dual-feasible function (DFF), if for any finite set

}:{ IiIRxi ∈∈ + of nonnegative real numbers, the
following holds:

1.)(1 ≤⇒≤ ∑∑
∈∈ Ii

i
Ii

i xfx

If f is a DFF, then it follows that 0=(0)f , and

nxf 1/)(≤ for all][0,1/ {0},\ nxIN ∈ . Moreover,
for an integer programming problem with a

knapsack constraint of the form 1≤∑
i

ii xa , and all

coefficients [0,1]∈ia , we have that 1)(≤∑
i

ii xaf

is a valid inequality, because

.1)(=)(=
1=1= 1=1= 1=1=

≤⇒ ∑∑∑∑∑∑ i

n

i
i

n

i

ix

k
i

n

i

ix

k
i

n

i
ii xafafaxa

Dual-feasible functions became very important
for deriving lower bounds for many integer linear
optimization problems, and also to compute valid
inequalities for these problems. Because the above
definition allows a lot of non-interesting functions,
stronger definitions were introduced to characterize
the non-dominated DFFs. These functions are called
maximal DFFs. The formal definition of maximality
is given next.

Definition 2: A dual-feasible function

[0,1][0,1]: →f with 1=(1)f is called a maximal
dual-feasible function (MDFF), if there is no other
dual-feasible function [0,1][0,1]: →g with

.[0,1],)()(∈∀≥ xxfxg

Note that any composition or convex combination
of MDFFs is again a MDFF.

Our lower bounding procedures rely on a set of
strong DFFs proposed in the literature, and surveyed
recently in [5]. From this point forward, we will
denote by frac(.) the non-integer part of the real

argument, i.e. −= xxxfrac)(. These functions
are defined as follows.

• ,0MTf (defined implicitly by Martello and Toth in

[14]) for (0,1/2]∈λ :

−≤≤
.,1

,1,

,<,0

=)(,0

otherwise

xifx

xif

xf MT λλ
λ

• ,1CCMf [4] for any 1≥λ with IR∈λ :

≤−−

≤

.1<1/2,)(11

,1/2=,1/2

,1/2<0,/

=)(

,1

,1

xifxf

xfor

xifx

xf

CCM

CCM

λλ

• ,1BJf [3] for 1≥λ and IN∉λ :

,/
)(1

)()(
0,max=)(,1

−
−+ λ

λ
λλλ

frac

fracxfrac
xxf BJ

• ,1DGf [6] for INkIN ∈∉ and ,1> λλ , with

≥)1/(λk :

−
−−

∈
−

−−

−

−

+

+

.

,)/(
)(1

)()(
1)(0,max

,
)(1

)()(
1)(

 ,/
)(1

)()(

=)(,1

otherwise

k
frac

fracxfrac
k

IN
frac

fracxfrac
kif

frac

fracxfrac

x
xf DG

λ
λ

λλ
λ

λλ

λ
λ

λλ

λ
λ

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 161 Issue 4, Volume 8 April 2011

• ,2LLf [5] for ∉)(1/:= and 1,> λψλλ fracIN :

(

−−

−

−
−

+

.2/1> ,)(11

,2/1= ,2/1

,2/1<

,//1)(
)(1

)()(

,0max{

=)(

,2

,2

xifxf

xif

xif

frac

fracxfrac

x

xf

LL

LL

λψψ
λ

λλ

λ

• ,1FSf [7] for any {0}\INk ∈ :

+

∈+
.,/1)(

,1)(,
=)(,1 otherwisekxk

INxkifx
xf FS

• ,2VBf [5] for any :{0,1}\INk ∈

−−

−−

.1/2>,)(11

,1/2=,1/2

,1/2<,1)1}/({0,max

=)(

,2

,2

xifxf

xif

xifkkx

xf

VB

VB

3 1D-CSP and Best Parameter Choice
In this section, we review how the MDFFs should
be used to generate lower bounds for the 1-
dimensional case. For this purpose, let

[0,1][0,1]: →f

be a MDFF, and

);;;(:= blLmE

an instance of the 1D-CSP with a stock length

{0}\+∈ IRL , {0}\INm ∈ items whose lengths

and order demands are given in the vectors mIRl ∈

and mINb∈ , respectively, with Lli ≤<0 for
mi ,1,= K . The surrogate instance is the following

instance Ef :

);))/(,),/((;1;(:= 1 bLfLfmE mf
Τ

lKl .

Any lower bound for the optimal solution value of

fE is a lower bound for E too.

If f is chosen optimally, then)(fM Ez equals

the continuous relaxation bound given by the
column generation model of E . In fact, the optimal
dual solution of the column generation model
provides a dual-feasible function for E. The
complexity of computing the column generation
bound for E is well-known to be high, and so will be
the complexity of finding an optimal MDFF.

In order to find a good MDFF with low
complexity, we will resort only to the functions
described in the previous section.

Finding the best parameter for fMT,0 requires first
that the items are sorted by their lengths. This step
has a complexity of at least)ln(mmO . After that,
the complexity of the corresponding Martello and
Toth lower bound is only linear in m . This bound
can be computed by considering the pairs of items
that do not fit together. The corresponding lower
bounding algorithm is given below.

Algorithm MT_Original
Input: Instance);;;(= blLmE of the 1D-CSP.

Output: Martello and Toth lower bound)(MTB for
the optimal solution value
1. Sort all items by their length such that

mlKl ≥≥1 .

2. Calculate the material bound Lbz ii

m

i
M /=

1=

l∑ for

E .
3. Set MzB := , MMT zB := , 1:=i , mj := .
4. while i≤ j do

if li + lj < L then
B:=B-bj lj/L; j:=j-1;

end
else

B:=B+bi (1-li/L); i:=i+1;
if B>BMT then BMT:=B;

end

This bound BMT is never worse than the material

bound zM. Furthermore, it can yield very tight results
if E has items greater than /2L . Hence, it is a good
idea to combine this bound with the other functions,
as long as the complexity remains low, e.g.)(mO
for trying a MDFF after the sorting. Since any
MDFF is monotonous, the sorting can be done first.

In the sequel, we describe a new variant of the
previous algorithm that avoids storing the modified
item sizes given by the DFFs. These values may be
used at the steps 2 and 4 of the algorithm
MT_Original instead of the original values li. This
variant is particularly useful when composing DFFs,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 162 Issue 4, Volume 8 April 2011

and it may speedup the computation of the lower
bounds.

Algorithm MT_Online
Input: Instance);;;(= blLmE of the 1D-CSP with

0>1 mL lKl ≥≥≥ and a MDFF f .
Output: Martello and Toth lower bound for the
corresponding instance fE .

The auxiliary vector 6IRd ∈ contains the largest
remaining item, the smallest remaining one, the
actual material bound, the difference between the
Martello and Toth lower bound and the material
bound, and in the 5th and 6th it contains auxiliary
values. The order demands of the remaining largest

and smallest item are stored in 2INr ∈ . The indices
kji ,, belong to the largest or smallest remaining

item while {1,2}∈n is used to decide if the largest
or the smallest item is replaced.

Set d:=o (the zero vector), i:=1, j:=m+1, k:=1,
n:=1 and r:=(0,0)T.
repeat

d3:=d3+d6;
dn:=f (lk/L); rn:=bk;
d6:=dn . rn;
if d1+d2≤1 then

n:=2; d5:=d5-d2 . r2;
j:=j-1; k:=j;

end
else

n:=1; d5:=d5+(1-d1) . r1;
if d5>d4 then d4:=d5;
i:=i+1; k:=i;

end
until i>j;
return d3+d4.

If a lower bound IRB∈ was given, then the last
line could be replaced by “if Bdd >43 + then

43:= ddB + ”, so as to update that bound.
To obtain strong lower bounds for the 1D-CSP, it

is important to choose a good set of parameters. The
decision on the parameter can be done regarding a
single item in E . The aim is to let the rounding-
down in the functions do as few as possible for the
selected item. Trying all the m items yields
therefore m calls of the above algorithm for each of
the functions , , , ,1,1,1 DGBJCCM fff and ,2LLf . The

functions ,1FSf and ,2VBf are more complicated.

Choosing the parameters depending on the length

il of the i -th item can be done with a suitable

small 0>ε as follows:

• ,1CCMf : if /2< Lil , then let iL l/:=λ else

)/(:= ελ +− iLL l ;

• ,1,1, DGBJ ff and ,2LLf : if the λ for ,1CCMf is not

integer, then this λ is suitable for , , ,1,1 DGBJ ff and

,2LLf too.

• ,1FSf : Fekete and Schepers [7] found that using

only this function yields a worst case performance
ratio of 3/4, i.e. that there is a sequence of bad
instances such that the ratio of the obtained bound
and the optimal solution value tends to 3/4 even if
all possible parameter values {0}\∈k are tried.

Nevertheless, some values k can be tried such that
the fractional part of Lk i /1)(l+ becomes very

small. Such suitable values k can be computed with
continued fractions, where iL l/ is approximated by
rational numbers with smaller denominators as
follows:

Let a:=0; b:=1; y:=li / L;
repeat

y:=1/frac(y);
c:=

 y . b+a;
a:=b; b:=c;

if frac(b . li/L) < 0.5 and b > 2 then
Use k:=b-1 as parameter for fFS,1;

until frac(y)=0.

The value 1=k yields the identity function, and

hence it is clearly not an interesting value for the
parameter. In the loop, the number of parameter
values that are tried is)(ln LO . Therefore, the

complexity of the loop is)ln(LmO , and hence it is
linear in m (note that applying one of the functions
to all the items requires clearly linear complexity).

In order to prevent to apply one parameter k
arising from different lengths il more than once for

the function ,1FSf , all obtained values k can be

stored in a binary search tree, for instance in a red-
black tree. These trees guarantee that finding and/or
inserting a node requires a complexity of)(ln nO , if

the tree contains 0>n nodes. If the value k is not
found in the tree, then it is inserted in the tree, and

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 163 Issue 4, Volume 8 April 2011

the bound is computed using ,1FSf with parameter

k . Otherwise, the calculation can be omitted.
Because)ln(LmO values of the parameter k can
be in the search tree, a trivial searching structure
cannot be recommended, since looking for every
found parameter value in the structure would

increase that complexity to 2)ln(LmO . That would
be more expensive than not using any check, if that
value k was already tried or not, which would

cause a total complexity)ln(2 LmO . If all

)ln(LmO possible values for k are stored in a red-
black tree, then the total complexity for searching
these nodes is around))ln(lnln(LmLmO , and the

entire effort for using ,1FSf becomes)ln(2 LmO .

The latter dominates the first expression.

• ,2VBf : here, the same idea as for ,1FSf can be used.

In conclusion, a lower bound for the 1D-CSP can
be computed with quadratic complexity in the
number m of items as follows:
1. Sort all items by their size such that

mL lKl ≥≥≥ 1 ;
2. Compute the Martello and Toth lower bound for
the instance, i.e. using idMT ff o,0 , with xxf id =)(
being the identity function;
3. For all },{1, mi K∈ , choose suitable parameters
as described above and apply the functions together
with ,0MTf .

4 2D Guillotine CSP with 2 Stages:
the Exact Case
In the exact case, horizontal strips with widths
belonging to },,{ 1 mww K are cut in the first stage,
while in the second stage, these strips are cut to the
desired items. No additional cuts are allowed. In this
paper, we will assume that neither the stock sheets
nor the items can be rotated. The lower bound
obtained for this 2D-CSP is valid for the virtual
machine allocation problem introduced above.

In this problem, the gap between the optimal
solution value of the integer problem and its linear
relaxation can increase affine-linearly with m .
Therefore, the difference between the obtained
lower bound and an upper bound, found e.g. by a
heuristic like the worst-fit-decreasing heuristic
(WFD), can rise beyond any constant. A lower
bound for the problem can be obtained using the
following procedure:

1. Sort all the items such that mww ≥≥K1 . If

ji ww = and ji < , then sort items i and j such that

ji ll ≥ ;

2. For each item width, compute the number of
necessary strips by applying MDFFs as described in
the previous section. Take the maximum value for
the bound and round it up to the next integer;
3. Compute the number of required stock sheets
regarding the obtained numbers of strips
analogously.

These calculations are a simple sequence of
calculations of lower bounds for 1D-CSP instances.
Therefore, the complexity to get the lower bound

will be nearly)(2mO .
The WFD heuristic can be implemented

efficiently using a priority queue. For each width, a
sufficient number of strips is calculated, and then
the strips are combined into stock sheets. Since
these are again only 1D instances, this can be done
in detail as follows:

1. Initialize a priority queue q as empty. The head
of q shall always contain the largest stored value, if
q is not empty;

2. For each width },,{ 1 mwww K∈ : if q is not
empty, and the value at the head of q is greater than
or equal to the length of the item with width w , then
use the represented strip of width w , otherwise use
a new strip with size wL × . Put as much of the
items into the strip as possible, regarding their order
demands. Store the new or the changed strip in q .
After putting all the items of the selected width w
into the strips, the number of elements in q equals
the number of needed strips. Store this number for
the next step and empty q .
3. Obtain the number of needed stock sheets
depending on the number of necessary strips of the
different widths in the same way.

The complexity for the entire WFD is then only

)ln(mmO .

5 2D Guillotine CSP with 2 Stages: the
Inexact Case
This problem differs from the previous in the fact
that, for each item, one additional cut to remove
waste is allowed. In practice, this variant allows the
placement of items with different heights in the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 164 Issue 4, Volume 8 April 2011

same strip. This characteristic makes the calculation
of good lower bounds a bit more complicated than
in the exact case. The resulting bound remains
feasible for the virtual machine allocation problem.

Here, we propose the following lower bounding
algorithm for this problem with a complexity

)(3mO . Let mINs ∈ , our algorithm states as
follows:

1. Sort all the items like in the exact case. Let

mi := ;
2. Compute the number of needed horizontal strips
for all the items of },{1, iK , i.e. apply several
MDFFs, take the maximum of the lower bounds and
round it up to the next integer. Store this number in
s ;
3. If mi < , then subtract the last obtained number
in s from the previous one;
4. Repeat 1:= −ii until 1or 0= +≠ ii wwi ;
5. If 0>i , then goto Step 2.
6. Compute the number of needed stock sheets
according to the widths of the strips and their
numbers stored in s .

Since the bound for the 1D problem needs sorted
items, it is necessary to sort a copy of the items of

},{1, iK in Step 2. The complexity)(3mO can be
argued as follows: if all the items have different
widths then for ,,11, ,= K−mmi lower bounds for
the number of strips with i items must be
calculated. The complexity for that is each time

)(2iO , and together)(3mO .
The following example shows that the lower

bound for the 2-stage guillotine CSP can dominate
the best lower bound for the non-guillotine
counterpart.

Example 1: Let L=W=m=3, l1=w2=b1=b2=2, and

1===== 33312 bww ll . In the first step, items
1 and 2 are exchanged during the sorting. That
means that the items have now the sizes 21× , 12×
and 11× . At the beginning, a lower bound for the
number of all strips of widths greater than or equal
to 1 is computed (Step 2). Since all the items are
involved, the copied lengths (and order demands)
have to be exchanged again such that 2=1l ,

1== 32 ll . The simple material bound yields
1)/31122(2 ×+×+× , and hence three strips are

necessary. In Step 4, the index variable i decreases
to 1 because in the sorted list of items after Step 1,
the relations 1=>2= 21 ww hold.

Now, the strips with the next larger width 2 are
analyzed. The only item is 2,1× which is
demanded twice. Therefore, one strip of width 2 can
be enough. Since the total number of strips is (at
least) 3, the lower bound for the number of stock
sheets arises from one strip of width 2 and two strips
of width 1. If strips of width 1 are changed to width
2, then neither the whole number of strips nor the
total number of stock sheets can decrease.
Therefore, the subtraction in step 3 is correct. In
Step 6 the material bound yields that at least

1)/322(1 ×+× , and hence two stock sheets are
necessary.

Because there is a non-guillotine arrangement of
all the items on one stock, this is an example where
the obtained lower bound for the inexact case of
guillotine cutting in two stages is higher than any
valid lower bound for the non-guillotine packing.

6 The Non-Guillotine 2D-CSP
The strategy for obtaining lower bounds for this
ordinary orthogonal cutting stock problem is the
following. We apply a set of MDFFs to all the items
in one direction and a set of the same or other
MDFFs to all the items in the second direction.
Then, the material bound Mz for the changed
instance is a lower bound for the original one.
Because it is necessary to explore both directions at
the same time, and not sequentially as in the
previous sections, the complexity increases.

Since in the 1D case the Martello and Toth lower
bound was very successful when it was combined
with the other MDFFs (except with ,2LLf and

,2VBf), we resort again to the function ,0MTf

together with idf , ,1CCMf , ,1BJf , ,1DGf and ,1FSf .

Note that the total area of an item (with its original
size or after applying a MDFF) is very often less
than half of the stock area, causing ,0MTf to yield a

function value 0. Therefore, it is not useful to
compute the Martello and Toth lower bound for the
areas of all the items. Using the other MDFFs for
the areas would also increase the complexity further
without strong effect on the bounds.

The details of the lower bounding procedure are
described next.

1. Construct vectors to sort all the items indirectly
by their lengths and by their widths. Let 0:=B ;
2. Construct a surrogate instance fE with stock

length 1=L′ and item lengths)/(Lf il , where f is

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 165 Issue 4, Volume 8 April 2011

the composition of idf , ,1CCMf , ,1BJf , ,1DGf or

,1FSf and ,0MTf according to the 1D case, and call

an analogous procedure applied now to the item
widths;
3. For each combination of MDFFs, compute the
material bound. If the returned value is larger than
B , then update B accordingly.

The value B is the desired lower bound. The

complexity of this procedure is)lnln(4 WLmO ,
since for each different item length a set of MDFFs
is applied to all item lengths, and for each such
surrogate instance, the widths must be handled
analogously.

Composing ,0MTf with one of the other MDFFs

does not increase the complexity. This can be
confirmed as follows. Choosing the parameter for
the MDFF brings a factor m and eventually
additionally Lln or Wln . Applying the chosen
function with the chosen parameter yields another
factor m . After that, ,0MTf is applied to the data

which needs no additional factor m . Since the
computation of the material bound can be done
before using ,0MTf in the second direction, and then

changing the parameter in ,0MTf can be regarded

each time with constant complexity, the total effort

)lnln(4 WLmO can be achieved. The factors Lln

and Wln come from the parameter search for ,1FSf

(and ,2VBf).

7 Computational Results
The algorithms described in the previous sections
were tested on instances from the literature, namely
on ten test classes by Berkey and Wang and
Martello and Vigo described in [15]. Each class is
composed by 5 groups of 10 instances, one group
for each value of m from 20 to 100. The instances
can be obtained from
www.or.deis.unibo.it/research_pages/ORinstances/2
BP.html.

Our results are reported on Table 1 to 5. The
entries in these tables have the following meaning:
m stands for the number of items, Mz denotes the
material bound for the original instances, the lower
bound for the non-guillotine problem is denoted by

NGB , inB and exB are the bounds inexact and exact
case of the guillotine CSP, and WFD stands for the
upper bound obtained with the worst-fit-decreasing

heuristic for the exact 2D guillotine CSP in two
stages.

To derive the value of each of the bounds inB

and ,exB we used all the MDFFs described in

Section 2, i.e. ,0MTff o with ,,{ ,1CCMid fff ∈

},,,, ,2,1,2,1,1 VBFSLLBJDG fffff , and then we took the

largest value found. NGB was calculated

analogously except that the functions ,2LLf and

,2VBf were omitted. Indeed, our preliminary

experiments showed that these functions dominated
the others only very rarely.

Given the low complexity of our lower bounding
procedures, the time required to compute the bounds
is typically a few miliseconds for all the instances
that were used.

Table 4 and 5 report the exhaustive list of lower
bounds obtained for each case. In 457 of the 500
instances, our lower bounding procedure for the
exact case of the 2D guillotine CSP was able to find
the value of the optimal solution (exB is equal to the
upper bound provided by WFD heuristic). For 347
instances, the bound for the inexact case improved
the material bound computed from the original
instance. The average increase of the lower bound in

the sense ∑∑ MNG zB / is given in Table 1 for

the ten classes.
The comparison with the results of Martello and

Vigo [15] shows that the lower bounds with dual-
feasible functions can yield better results. This can
even happen if the number of large items is small as
in class 10. In that class Martello and Vigo did not

get better bounds than Mz .
Table 2 presents the average increase of the

lower bounds ∑∑ NGin BB / , when comparing

the non-guillotine 2D-CSP and the inexact 2 stages
guillotine CSP. These results shows that the latter
bounds can be sharpened for the inexact case too
while the computational effort decreases.

Table 3 contains an analogous comparison of the

inexact and the exact case, i.e. inex BB ∑∑ / . It is

not surprising that the lower bounds for the exact
guillotine CSP with 2 stages rise very strongly
compared with the inexact case, especially in Class
6. Indeed, in the exact case, since each strip can be
used only for the items of the same width, it can
easily happen that the strips contain only one item
but much waste. In contrast, the inexact case allows
the combination of different items in one strip.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 166 Issue 4, Volume 8 April 2011

CLASS m=20 m=40 m=60 m=80 m=100

1 69/64 131/120 200/185 275/253 317/305
2 1 1 1 1 1
3 47/44 92/82 136/125 188/173 221/205
4 1 1 1 1 1
5 60/54 116/101 177/157 243/215 279/259
6 1 1 1 1 1
7 53/47 109/97 156/140 224/197 269/238
8 55/48 112/96 159/141 223/195 274/241
9 143/94 275/180 435/276 574/371 693/450

10 41/38 72/69 98/94 124/122 153/153

Table 3: Comparing NGB with Mz

 ∑∑ MNG zB /

CLASS m=20 m=40 m=60 m=80 m=100

1 71/69 136/131 201/200 275/275 321/317
2 10/10 20/19 27/25 33/31 40/39
3 54/47 95/92 140/136 192/188 224/221
4 10/10 20/19 26/23 33/30 39/37
5 66/60 120/116 179/177 246/243 282/279
6 10/10 19/15 22/21 30/30 34/32
7 56/53 115/109 159/156 231/224 271/269
8 59/55 113/112 162/159 225/223 279/274
9 143/143 278/275 437/435 577/574 695/693

10 45/41 75/72 103/98 129/124 159/153

Table 4: Comparing Bin with BNG: ∑∑ NGin BB /

CLASS m=20 m=40 m=60 m=80 m=100

1 86/71 157/136 230/201 304/275 348/321
2 20/10 28/20 33/27 39/33 47/40
3 85/54 147/95 203/140 267/192 301/224
4 32/10 48/20 59/26 66/33 70/39
5 102/66 193/120 286/179 387/246 432/282
6 34/10 59/19 85/22 101/30 113/34
7 135/56 241/115 324/159 406/231 450/271
8 73/59 151/113 211/162 284/225 344/279
9 158/143 316/278 474/437 623/577 746/695

10 86/71 157/136 230/201 304/275 348/321

Table 5: Comparing Bex with Bin: inex BB ∑∑ /

8 Conclusion
In this paper, we proposed new and efficient
procedures to compute good lower bounds for 2-
dimensional cutting stock problems. All the lower
bounds described in this paper are feasible for the
virtual machine allocation problem in data centers.
Hence, they can be used to determine the minimum
number of physical machines that are required for
handling a set of virtual machines. Our procedures
are based on maximal dual-feasible functions. In the
first part of the paper, we described strategies for
choosing the best set of parameters for these
functions.

We report on computational experiments
conducted on instances from the literature. For
many cases, it is important to emphasize that our
procedures provided the optimal solution value. For

many instances, we improved the results reported in
the literature.

References:
[1] D. Bein, W. Bein, S. Phoha, Efficient Data

Centers, Cloud Computing in the Future of
Distributed Computing, Seventh International
Conference on Information Technology, 2010,
pp. 70-75.

[2] J. Blanchette, A Material History of Bits,
Journal of the American Society for
Information Science and Technology, Vol. 62,
2011, pp. 1042-1057.

[3] C. Burdett, E. Johnson, A Subadditive
Approach to Solve Linear Integer Programs,
Annals of Discrete Mathematics, Vol. 1, 1977,
pp. 117-144.

[4] J. Carlier, E. Néron, Computing redundant
resources for the resource constrained project
scheduling problem, European Journal of
Operational Research, Vol. 176, No. 3, 2007,
pp. 1452-1463.

[5] F. Clautiaux, C. Alves, J. V. de Carvalho, A
survey of dual-feasible functions for bin
packing problems, Annals of Operations
Research, Vol. 179, 2010, pp. 317-342.

[6] S. Dash, O. Gunluk, Valid Inequalities Based
on Simple Mixed-Integer Sets, Mathematical
Programming, Vol. 105, 2006, pp. 29-53.

[7] S. Fekete, J. Schepers, New Classes of Fast
Lower Bounds for Bin Packing Problems,
Mathematical Programming, Vol. 91, 2001, pp.
11-31.

[8] E. Feller, L. Rilling, C. Morin, Energy-Aware
Ant Colony Based Workload Placement in
Clouds, Technical Report, INRIA, 2011.

[9] D. Johnson, Near Optimal Bin Packing
Algorithms, Ph.D. Dissertation, Massachusetts
Institute of Technology, Cambridge, 1973.

[10] J. Kaplan, W. Forrest, N. Kindler,
Revolutionizing data center energy efficiency,
Technical Report, McKinsey and Company,
2008.

[11] X. Kong, C. Lin, Y. Jiang, W. Yan, X. Chu.
Efficient dynamic task scheduling in virtualized
data centers with fuzzy prediction, Journal of
Network and Computer Applications, Vol. 34,
2011, pp. 1068-1077.

[12] B. Li, J. Li, J. Huai, T. Wo, Q. Li, L. Zhong,
EnaCloud: An Energy Saving Application Live
Placement Approach for Cloud Computing
Environments, IEEE International Conference
on Cloud Computing, 2009, pp. 17-24.

[13] A. Lodi, S. Martello, M. Monaci, Two-
Dimensional Packing Problems: A Survey,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 167 Issue 4, Volume 8 April 2011

European Journal of Operational Research,
Vol. 141, No. 2, 2022, pp. 241-252.

[14] S. Martello, P. Toth, Knapsack problems -
Algorithms and Computer Implementation,
Wiley, Chichester, 1990.

[15] S. Martello, D. Vigo, Exact Solution of the
Two-Dimensional Finite Bin Packing Problem,
Management Science, Vol. 44, No. 3, 1998, pp.
388-399.

[16] C. Mastroianni, M. Meo, G. Papuzzo, Self
Economy in Cloud Data Centers: Satistical
Assignmet and Migration of Virtual Machines,
Lecture Notes in Computer Science, Vol.6852,
2011, pp. 405-416.

[17] R. Nielsen, C. Iversen, P. Bonnet, Private
Cloud Configuration with MetaConfig,
Proceedings for IEEE 4th International
Conference on Cloud Computing (CLOUD
2011), 2011.

[18] J. Tordsson, R. Montero, R. Moreno-
Vozmediano, I. Llorente, Cloud Brokering
Mechanisms for Optimized Placement of
Virtual Machines across Multiple Providers,
Future Generation of Computer Systems, Vol.
28, 2012, pp. 358-367.

[19] W. Vogels, Beyond server consolidation,
Queue, Vol. 6, 2008, pp. 20-26.

[20] Q. Zhang, L. Cheng, R. Boutaba, Cloud
computing: state-of-the-art and research
challenges, Journal of Internet Services and
Applications, Vol. 1, 2010, pp. 7-18.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 168 Issue 4, Volume 8 April 2011

 CLASS 1 CLASS 2 CLASS 3 CLASS 4 CLASS 5

m zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD

20 6,5 7,2 8 8 8 0,7 0,7 1 2 2 4,3 5,0 6 9 9 0,7 0,7 1 3 3 5,4 6,8 8 11 11

 4,3 4,5 5 8 8 0,5 0,5 1 2 2 2,6 2,8 4 7 7 0,4 0,4 1 3 3 3,2 3,6 5 9 9

 6,5 7,9 9 10 10 0,7 0,7 1 2 2 4,4 5,0 6 10 10 0,7 0,7 1 4 4 5,5 6,4 7 13 13

 4,7 4,8 6 7 7 0,5 0,5 1 2 2 3,1 3,3 4 9 9 0,5 0,5 1 3 3 3,9 4,2 5 9 9

 5,3 5,4 6 8 8 0,6 0,6 1 2 2 3,5 3,7 5 7 7 0,6 0,6 1 3 3 4,4 4,6 6 8 9

 7,4 8,5 9 11 11 0,8 0,8 1 2 2 4,8 5,9 7 9 9 0,8 0,8 1 3 4 6,0 8,0 9 11 11

 5,3 5,5 6 8 8 0,6 0,6 1 2 2 3,4 4,0 5 8 8 0,5 0,5 1 3 3 4,3 4,8 6 10 10

 5,1 5,9 6 7 7 0,6 0,6 1 2 2 3,2 3,7 5 8 8 0,5 0,5 1 3 3 4,0 4,7 5 9 9

 6,2 7,3 8 10 10 0,7 0,7 1 2 2 4,2 4,6 5 9 9 0,7 0,7 1 4 4 5,3 6,8 7 12 12

 6,6 7,7 8 9 9 0,7 0,7 1 2 2 4,6 6,3 7 9 9 0,7 0,7 1 3 3 5,8 7,0 8 10 10

40 9,0 9,1 10 13 13 1,0 1,0 2 3 3 5,6 5,7 7 12 12 0,9 0,9 2 4 4 7,0 7,2 8 16 16

 10,7 11,0 12 14 14 1,2 1,2 2 2 2 7,1 7,5 8 15 15 1,1 1,1 2 5 5 8,9 9,7 10 19 19

 13,9 16,0 16 19 19 1,5 1,5 2 3 3 9,1 10,5 11 14 15 1,5 1,5 2 5 5 11,5 14,3 15 19 20

 12,5 14,0 15 16 16 1,4 1,4 2 3 3 8,2 9,4 10 15 15 1,3 1,3 2 5 5 10,4 11,8 13 18 18

 13,8 14,5 15 17 17 1,5 1,5 2 3 3 9,4 11,5 12 17 17 1,5 1,5 2 5 5 11,9 13,0 14 20 20

 10,6 13,3 14 15 15 1,2 1,2 2 3 3 7,0 9,5 10 15 15 1,1 1,1 2 5 5 8,8 12,0 12 22 22

 10,7 10,7 12 14 14 1,2 1,2 2 3 3 7,3 8,0 8 14 14 1,2 1,2 2 5 5 9,1 10,0 10 20 20

 14,5 18,0 19 21 21 1,6 1,6 2 3 3 9,9 12,8 13 19 19 1,6 1,6 2 5 5 12,5 17,0 17 25 25

 10,1 10,2 11 14 14 1,1 1,1 2 2 2 6,7 6,7 8 14 14 1,1 1,1 2 5 5 8,4 8,8 10 16 16

 10,3 10,6 12 14 14 1,1 1,1 2 3 3 6,7 6,8 8 12 12 1,1 1,1 2 4 4 8,5 9,6 11 18 18

60 20,1 22,1 23 26 26 2,2 2,2 3 4 4 13,5 15,8 16 23 23 2,2 2,2 3 6 6 17,1 19,5 20 31 31

 17,7 18,1 19 23 23 2,0 2,0 3 4 4 11,4 12,0 13 18 19 1,8 1,8 2 6 6 14,4 15,8 17 27 28

 18,2 21,0 21 24 24 2,0 2,0 3 3 3 12,3 12,8 14 20 20 2,0 2,0 3 6 6 15,5 18,5 19 30 30

 18,2 21,8 22 25 25 2,0 2,0 3 3 3 12,3 14,2 15 22 22 2,0 2,0 3 6 6 15,5 19,3 20 33 33

 16,5 18,1 19 21 21 1,8 1,8 2 3 3 10,9 11,1 12 18 18 1,7 1,7 2 5 5 13,7 14,6 15 25 25

 16,6 16,8 18 21 21 1,8 1,8 2 3 3 11,1 11,3 12 18 18 1,8 1,8 2 6 6 13,9 14,9 16 24 24

 14,8 15,0 16 18 18 1,6 1,6 2 3 3 10,0 10,8 12 18 18 1,6 1,6 2 6 6 12,5 13,8 14 23 24

 18,8 20,7 21 24 24 2,1 2,1 3 3 3 12,8 14,3 15 20 20 2,0 2,0 3 6 6 16,1 18,3 19 29 29

 17,4 17,4 18 21 21 1,9 1,9 3 3 3 11,6 12,5 13 18 19 1,9 1,9 3 6 6 14,5 15,8 16 29 30

 21,1 23,5 24 27 27 2,3 2,3 3 4 4 14,6 17,0 18 28 28 2,3 2,3 3 6 6 18,4 23,0 23 35 35

80 22,7 24,1 25 27 27 2,5 2,5 3 4 4 15,2 16,7 17 27 27 2,4 2,4 3 7 7 19,0 22,0 22 39 39

 24,1 25,4 26 28 28 2,7 2,7 3 4 4 15,9 17,4 19 26 26 2,5 2,5 3 7 7 20,1 22,1 23 39 39

 23,0 26,8 27 30 30 2,6 2,6 3 3 3 15,5 17,3 18 26 26 2,5 2,5 3 7 7 19,5 23,8 25 40 40

 24,4 26,8 27 30 30 2,7 2,7 3 4 4 16,3 17,6 18 25 25 2,6 2,6 3 6 6 20,4 24,3 25 38 39

 23,5 25,3 26 29 29 2,6 2,6 3 4 4 15,6 15,8 17 26 26 2,5 2,5 3 7 7 19,6 22,0 23 37 37

 25,2 27,6 28 31 31 2,8 2,8 3 4 4 17,2 19,8 20 27 27 2,7 2,7 3 6 6 21,6 25,0 25 39 39

 26,6 30,8 31 35 35 3,0 3,0 4 4 4 18,1 19,8 21 29 29 2,9 2,9 4 7 7 22,8 26,8 27 39 39

 26,4 28,6 29 33 33 2,9 2,9 4 4 4 18,0 21,5 22 30 30 2,9 2,9 4 6 6 22,9 25,9 26 40 40

 27,9 29,6 30 33 33 3,1 3,1 4 4 4 18,6 21,0 22 27 27 3,0 3,0 4 7 7 23,5 25,7 27 42 42

 24,3 25,3 26 28 29 2,7 2,7 3 4 4 16,2 18,0 18 24 25 2,6 2,6 3 6 6 20,4 22,2 23 34 35

100 27,3 27,5 28 30 31 3,0 3,0 4 4 4 18,0 18,1 19 26 26 2,9 2,9 4 7 7 22,6 23,0 24 40 41

 30,4 30,6 32 35 35 3,4 3,4 4 5 5 20,8 21,6 23 30 30 3,3 3,3 4 7 7 26,2 27,7 29 43 43

 26,7 28,5 29 32 32 3,0 3,0 4 4 4 17,6 18,0 19 28 28 2,8 2,8 3 7 7 22,2 23,1 24 39 40

 28,8 29,9 31 34 34 3,2 3,2 4 5 5 19,1 19,1 20 27 28 3,1 3,1 4 7 7 24,0 25,5 26 42 42

 30,2 31,5 32 35 35 3,4 3,4 4 5 5 20,2 21,5 22 30 30 3,2 3,2 4 7 7 25,4 27,3 28 43 44

 33,8 36,3 37 40 40 3,8 3,8 4 5 5 23,0 26,0 27 37 37 3,7 3,7 4 7 7 29,0 33,3 34 50 50

 27,4 27,6 29 30 30 3,0 3,0 4 4 4 18,4 19,3 20 28 28 2,9 2,9 4 7 7 23,1 24,4 25 43 43

 31,2 32,7 34 37 37 3,5 3,5 4 5 5 20,9 22,3 23 30 30 3,3 3,3 4 7 7 26,3 28,7 30 42 42

 29,9 30,7 31 34 34 3,3 3,3 4 5 5 19,7 21,3 22 30 30 3,2 3,2 4 7 7 24,9 26,6 27 41 42

 34,2 37,6 38 41 41 3,8 3,8 4 5 5 23,2 28,5 29 35 35 3,7 3,7 4 7 7 29,3 34,8 35 49 49

Table 1: Comparison of the bounds for the different cases (part 1)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 169 Issue 4, Volume 8 April 2011

 CLASS 6 CLASS 7 CLASS 8 CLASS 9 CLASS 10

m zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD zM BNG Bin Bex WFD

20 0,6 0,6 1 4 4 4,4 4,7 5 13 13 4,8 5,8 6 6 6 11,1 18,5 19 19 19 5,0 6,0 7 8 8

 0,4 0,4 1 3 3 3,8 4,6 5 15 15 4,6 6,0 7 11 11 7,6 12,5 13 17 17 2,4 2,5 4 9 9

 0,6 0,6 1 4 4 3,9 4,1 5 12 12 4,4 4,7 6 7 7 9,2 13,5 14 16 16 3,5 3,8 5 8 8

 0,4 0,4 1 3 3 5,1 6,4 7 15 15 5,0 6,2 7 9 9 8,8 16,0 16 18 18 3,4 4,0 5 8 8

 0,5 0,5 1 3 3 4,6 5,4 6 14 14 4,2 5,0 6 6 6 9,9 16,0 16 16 16 3,2 3,6 4 6 7

 0,7 0,7 1 4 4 4,4 4,8 6 13 13 4,7 5,4 6 7 8 9,8 14,0 14 16 16 3,0 3,1 4 7 7

 0,5 0,5 1 3 3 3,3 3,6 4 13 13 3,4 3,9 5 6 7 6,5 9,0 9 11 11 3,9 4,4 5 9 9

 0,4 0,4 1 3 3 4,7 5,7 7 16 16 4,2 4,8 5 7 7 8,4 14,0 14 15 15 1,9 2,0 3 6 6

 0,6 0,6 1 4 4 4,8 5,5 6 12 12 4,9 5,4 7 9 9 10,2 15,0 15 17 17 4,4 4,7 5 9 9

 0,6 0,6 1 3 3 3,4 3,8 5 12 12 3,1 3,6 4 5 5 7,7 12,5 13 13 13 2,0 2,0 3 6 6

40 0,8 0,8 1 5 5 8,4 9,3 10 23 23 9,5 10,5 12 19 19 16,2 24,0 25 31 31 7,0 7,5 8 18 18

 1,0 1,0 2 6 6 10,3 11,9 13 27 27 10,6 12,9 13 16 16 18,5 31,5 32 33 33 6,6 6,8 8 14 14

 1,3 1,3 2 6 6 8,3 9,0 10 23 23 8,9 10,1 11 14 14 18,5 28,0 29 32 32 8,0 8,6 9 16 16

 1,2 1,2 2 6 6 11,2 13,4 14 26 26 10,0 11,7 12 14 14 18,7 31,0 31 32 32 5,5 5,5 7 11 11

 1,3 1,3 2 6 6 7,9 9,0 10 20 20 7,3 8,6 9 11 11 16,6 26,5 27 29 29 5,1 5,3 6 12 12

 1,0 1,0 2 6 6 9,6 10,6 12 24 24 9,5 11,4 12 16 16 18,4 29,0 29 34 34 5,0 5,0 6 13 13

 1,0 1,0 2 6 6 9,1 10,8 12 25 25 8,9 10,3 11 15 15 15,8 23,5 24 28 28 6,1 6,6 7 13 14

 1,4 1,4 2 6 6 9,6 10,8 12 22 22 9,2 10,2 11 16 17 18,0 25,5 26 33 33 6,1 6,4 7 16 16

 0,9 0,9 2 6 6 6,9 7,9 9 23 23 7,7 8,1 9 15 15 14,9 21,0 21 27 27 6,8 7,5 8 17 17

 0,9 0,9 2 6 6 10,2 12,5 13 28 28 10,5 12,1 13 15 15 20,1 33,0 34 37 37 7,2 8,3 9 15 15

60 1,9 1,9 3 9 9 14,7 16,5 17 36 36 14,6 16,5 17 20 20 29,3 45,5 46 48 48 10,3 10,6 12 19 19

 1,6 1,6 2 8 8 12,4 13,2 14 30 30 14,4 16,2 17 21 21 29,3 44,0 45 49 49 10,9 11,6 12 21 21

 1,7 1,7 2 9 9 14,1 16,4 17 33 33 14,0 15,5 17 21 22 29,7 46,0 46 50 50 10,3 10,4 12 19 19

 1,7 1,7 2 9 9 12,8 14,1 15 30 30 12,5 14,7 15 21 21 26,2 44,0 44 51 51 6,9 6,9 8 18 19

 1,5 1,5 2 7 7 12,1 13,8 15 33 33 12,2 13,5 15 22 22 24,7 40,5 41 46 46 7,2 7,2 8 17 18

 1,5 1,5 2 8 8 12,1 14,6 15 32 32 12,9 14,3 15 21 22 24,2 37,0 37 41 41 11,1 12,5 13 24 24

 1,4 1,4 2 7 7 12,4 14,4 15 30 30 12,1 13,2 14 20 21 24,7 40,0 41 47 47 9,0 9,0 10 19 20

 1,8 1,8 2 9 9 14,5 16,6 17 32 32 14,7 17,0 17 24 24 27,9 46,5 47 49 49 9,0 9,2 10 21 21

 1,6 1,6 2 9 9 12,7 13,8 15 32 32 13,7 15,7 17 20 20 27,0 44,5 45 47 47 7,9 7,9 9 17 17

 2,0 2,0 3 10 10 16,2 17,8 19 36 36 15,0 17,6 18 21 21 28,9 45,0 45 46 46 7,3 7,5 9 15 15

80 2,1 2,1 3 10 10 17,9 20,0 21 38 38 18,4 21,2 22 27 28 35,1 58,0 59 61 61 11,7 11,8 13 23 24

 2,2 2,2 3 9 10 20,9 24,1 25 42 42 19,4 23,1 24 27 27 36,0 58,0 58 62 62 9,8 9,8 11 19 19

 2,2 2,2 3 10 10 17,7 20,0 21 38 38 17,3 19,7 20 27 27 35,1 57,0 57 65 65 10,1 10,1 11 22 22

 2,3 2,3 3 10 10 18,4 20,9 22 37 37 17,2 19,2 20 28 29 35,6 52,0 53 60 60 12,9 13,2 14 25 25

 2,2 2,2 3 11 11 19,7 22,7 24 42 42 21,9 25,5 26 31 31 38,7 61,0 62 67 67 12,7 13,1 14 25 26

 2,4 2,4 3 11 11 19,2 22,0 23 42 42 18,7 21,6 22 28 28 37,3 61,5 62 63 63 12,2 12,4 13 25 25

 2,5 2,5 3 10 10 20,6 23,4 24 44 44 18,9 21,4 22 28 28 38,5 59,0 59 63 63 13,4 13,6 15 26 26

 2,5 2,5 3 10 10 18,9 21,7 23 38 38 19,4 21,3 23 29 29 36,9 57,5 58 61 61 9,4 9,4 10 22 22

 2,6 2,6 3 11 11 19,7 22,9 24 42 42 18,8 20,5 22 29 29 33,2 48,5 49 56 56 11,6 11,6 13 23 23

 2,3 2,3 3 9 9 20,4 23,5 24 43 43 20,8 23,6 24 30 30 39,0 59,5 60 65 65 13,4 13,9 15 26 26

100 2,5 2,5 3 11 11 23,6 26,6 27 44 44 22,7 25,9 27 32 32 45,4 71,0 71 77 77 13,6 13,6 15 24 24

 2,9 2,9 4 11 11 23,2 26,3 27 46 46 22,8 26,4 27 33 34 43,1 63,5 64 69 69 14,6 14,6 16 28 29

 2,5 2,5 3 10 11 20,8 23,9 25 44 44 20,6 23,4 24 31 31 41,8 68,0 68 72 72 14,9 14,9 16 28 29

 2,7 2,7 3 12 12 22,6 25,7 27 46 46 25,5 29,9 31 35 36 47,5 77,5 78 82 82 16,2 16,6 18 30 31

 2,8 2,8 3 11 11 21,5 24,2 25 44 44 24,1 28,5 29 37 37 41,3 64,5 65 72 72 16,5 16,7 18 32 32

 3,2 3,2 4 13 13 24,8 27,6 28 45 45 22,6 26,0 27 32 32 45,9 70,5 71 74 74 12,2 12,2 13 23 23

 2,6 2,6 3 12 12 22,8 26,3 27 43 43 22,6 25,0 26 36 36 41,6 65,5 66 71 71 12,9 12,9 14 28 28

 2,9 2,9 4 10 10 24,4 28,1 29 45 45 24,5 27,6 29 35 35 46,6 73,0 74 80 80 17,0 17,5 18 31 32

 2,8 2,8 3 11 11 22,6 24,4 25 43 43 23,4 26,2 27 35 35 43,5 65,0 66 71 71 15,1 15,1 16 30 30

 3,3 3,3 4 12 12 27,2 30,2 31 50 50 27,4 31,6 32 38 39 48,6 71,5 72 78 78 14,1 14,1 15 25 25

Table 2: Comparison of the bounds for the different cases (part 2)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jurgen Rietz, Rita Macedo, Claudio Alves, Jose Valerio De Carvalho

ISSN: 1790-0832 170 Issue 4, Volume 8 April 2011

