

TM: A Development Technique for E-government 2.0 Portals

FARAS ZUHEIR MUSTAFA MOHAMED1, SARAVANAN S/O MUTHAIYAH2, ARMAN K.
NASSIRTOUSSI3

Faculty of Information Technology
Multimedia University

Persiaran Multimedia, 63100 Cyberjaya, Selangor
MALAYSIA

1faras@mmu.edu.my, 2saravanan.muthaiyah@mmu.edu.my, 3armankhnt@gmail.com

Abstract: - The purpose of this paper is to introduce the software community to TM (Total Mashup): a
conceptual software development technique for building and developing e-government 2.0 portals as total
mashups. The range of current development approaches and technologies are compared and a particular
conceptual development technique with a specific set of technologies is proposed to be instrumental to the
development process of e-government 2.0 portals. TM is tested via a real-life prototype that targets the
government research community. The outputs of the prototype are discussed and analyzed. TM has various
added advantages to the conventional development processes in terms of time efficiency and collaboration. It is
a unique technique to enhancing the e-government 2.0 portals development process.

Key-Words: - E-government 2.0, Web 2.0, portal, mashup, Java, and API.

1 Introduction
Generally speaking, e-government initiatives have
plateaued over the past the few years. This can be
attributed to ineffective governance, lack of Web-
related capabilities, and reluctance to allow users’
participation in the creation of applications and
content [1].
E-government 2.0 or government 2.0 is a legitimate
child of web 2.0 influence on numerous domains
including e-government or e-government 1.0.
Siblings of e-government 2.0 include enterprise 2.0,
e-library 2.0, etc.
E-government 2.0 portal development shares more
complex features than any current web 2.0 project.
This is due to the versatile nature of the many
parties constituting the term (fig.1). Web 2.0
concepts can be applied in many segments of e-
government – in both back- and front office
domains [2].
It is predicted that Web 2.0 will enable the
transformation of public administration services,
development of better policies, suppression of silos
and reorganization of public administration [3].
With the fast pace of development on the web, it has
become commonplace more than ever before. Web
2.0 along with its social aspects and its many
capabilities, which were simply not possible a few
years ago, are ruling the cyberspace nowadays [4].
As a result an SOA (Service Oriented Architecture)
approach has become popular under the umbrella of

SaaS (Software as a Service), which has increasing
possibilities in terms of available services usage on
the Internet for customized purposes.

Fig.1: An e-government 2.0 (government 2.0)
blueprint [5]

This is reflected in the increase in the popularity of
mashup applications. It is more evident with the
presence of ubiquitously useful services like Google
earth that is mixed up in various mashups from real
estate websites to traffic control [6].
According to Aaron Boodman, quoted in
BusinessWeek online, "The Web was originally
designed to be mashed up. The technology is finally
growing up and making it possible." The mashup
concept is centered around the integration of
different sources within one displayed interface,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 96 Issue 2, Volume 8, February 2011

usually using the development approach of AJAX or
Asynchronous JavaScript and XML.
The terms “portal” and “mashup” have been
demarcated from each other (based on the standards
they embrace), when discussing technologies for
web development, even though both of them are
classified under the concept of content aggregation.
Despite all of that, to many researchers, the term
“portal” is widely and conceptually understood as a
common entry to into multiple distributed
repositories, using the analogy of a door as a
common entry into knowledge resources. A portal
provides a common user interface, which can often
be customized to certain preferences [8].
TM’s conceptual understanding of a mashup refers
to a web component that achieves functionality by
combining two or more external sources so as to
create a new service. Hence, “total mashup” refers
the intensive use of mashups and web services in a
substantial and undecorated way.
Researchers expect that Web 2.0 influence will
cause a shift from service-oriented to web-oriented
technologies like web services and mashups, due to
its data reuse features [7].
With the great availability of services, maybe it is
about time to use mashups more aggressively and
for total production of a range of common web sites
and portals. A total mashup software development
technique needs to be embraced by software
architects from scratch; this will revolutionize how
web sites and portals are made in governments and
enterprises.
Several research questions are posed; for instance,
what is the logical process or technique followed to
produce intensively mashup-based e-government
2.0 portals? And how easy would the use of
mashups be in the development process? This
implicates factors like the needed knowledge by the
developers, the availability of resources, the
possibility of integration and components reuse
within the popular platforms like Java and .Net, and
which platforms are most-friendly and most-
efficient for development.
Generally, there are four research objectives of this
work:
 (1) The introduction of a total-mashup conceptual
development technique for e-government 2.0 portals
that is pragmatic and easy to understand.
(2) Explaining the deficiencies of the current
development techniques and the strength points of
TM.
(3) Exploring the possibility of easing the TM
technique components reuse process.
(4) Evaluating the conceptual nature of the TM
technique via a test portal that carries much of the

genes of a typical e-government 2.0 portal. This is
very important in extrapolating the concepts
introduced.
The structure of the paper follows both the
conceptual and logical progression of the TM
technique. It incepts by discussing the different
features, elements, and current development mindset
influencing the domain of e-government 2.0 portals.
The paper discusses the potential influence of
mashups on the society in general and on e-
government in specific. It discusses several points of
similarities and differences with enterprise 2.0 and
SOA respectively. It then tackles where would the
mashup be classified among web services and
recommends a particular development platform for
the TM technique after a comparative survey on
their relevant characteristics.
The conceptual nature of TM is put to the test by an
implementation of a researchers portal, whose
members are commissioned to undergo research for
the government. Findings and limitations are used to
critique the overall work and draw directions to
future research.

2 Literature Review
There are a number of common components and
functions that are usually implemented in every e-
government 2.0 portal; for instance the following
features are seen frequently: calendar, chat
(messaging), communication platforms/weblog,
bulletin/announcement board, file storage and
management, reference management, wikis,
scheduling, project management and graphical
reporting.
More, a need for functionalities of the following
kinds is emerging; mostly categorized as the Web
2.0 trends [9]: social networking, collaboration,
constant communication, collaborative content
development, and collective knowledge
representation.
It is important to note that many of the above
popular features exist also on public websites like
Google, Delicious, Blogger, Box.net, etc. Many of
the potential users of any portal that are to be
created, are already enjoying these services
elsewhere and in a separate setting and environment
than the newly created e-government 2.0 portal.
According to W3C, semantic Web standards in
particular lend themselves to data aggregation —
mashups — and thus to collaboration (planned and
unplanned) among government agencies and with
other e-government actors. Semantic Web
technology also helps in the management of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 97 Issue 2, Volume 8, February 2011

accountability, which can help reduce errors and
mistakes and build trust [10].

2.1 The Current Development Mindset
Currently the de facto development mentality is still
designing and creating the necessary components
and features from scratch. Or maybe with the use of
some pre-made libraries but usually the components
developed inside a portal are of little or no contact
with the outside world and specifically focused on
the users’ affairs inside the company. They are
simply to be found only on their portal of origin
[11].
The major problematic parts of “reinventing the
wheel” are:
(1) Time Consuming:
It takes a considerable amount of time until the
under development portals reach, if ever, a level of
higher functionalities like collaborative features, for
instance.
(2) Organizational Resistance:
Every new format of components and every new
solution encounter a degree of organizational
resistance and will require time, for the users to get
familiarized with.
(3) Different Designs:
If an e-government 2.0 project has different portals
for different departments, which is the case a lot of
the times due to the evolutionary nature of the
organizational growth, the users who need to have
access to different resources from different
departments end up using similar features with
different designs for each one. Say, in case of
departmental event calendars, each department will
have “one of its own” and integration of any kind
can be time consuming, nevertheless inevitable.
Hence, we suggest a shift of architectural mindset
from an organization level design to the Internet
cloud level design and we call it the “Total Mashup”
technique.
Many enterprises have recently considered
including web 2.0 technologies in their enterprise
portal, but that happened through third party mashup
providers, like IBM [12], who probably separate
themselves from the enterprise and assume different
responsibilities. This paper suggests that
architectural separation should not exist at least for
e-government projects that are developing their
portals from scratch; What the IT departments
should do instead, is considering the TM techniques
that already has many mashup concepts in place,
uses many external services, and is designed with
the mentality that accommodates creation and

implementation of ad-hoc mashups any where
necessary in the future.
The similarities between e-government 2.0 and
enterprise 2.0 are striking. Both concepts have
similar obvious objectives, but the scale and context
are different. Hence, what applies on enterprise 2.0
can carefully be extrapolated to e-government 2.0.
Enterprise social software, also known as Enterprise
2.0, is a term describing social software used in
enterprises [13]. It includes Web 2.0 modifications
to enterprise portals.
Traditional enterprise software imposes structure
prior to use, while enterprise social software tends
to encourage use prior to providing structure [14].
The latter is the mentality that is required to exist
nowadays; however, the shift is not much seen yet
because it goes against the ingrained design habits.
Nonetheless, a total mashup mindset is going to
facilitate and secure many of the Web 2.0 changes
that an enterprise will be forced to embrace due to
the external Web 2.0 phenomenon-taking place in
the society.
The Association for Information and Image
Management (AIIM) defines Enterprise 2.0 as "a
system of web-based technologies that provide rapid
and agile collaboration, information sharing,
emergence and integration capabilities in the
extended enterprise" [15].
We argue that neither e-government 2.0 nor
enterprise 2.0 features will be regarded as a
modification and extension only, but more
techniques and approaches are needed for a total
integration of these characteristics in the e-
government and enterprise portal fundamentally.
Some of these characteristics are as follows:
(1) Implementation of Web 2.0 technologies within
an e-government/enterprise.
(2) Existence of rich Internet applications within an
e-government/enterprise project.
(3) Provision of software as a service using the web
as a general platform.
“All of these things (wireless, next generation
search engines, weblogs, instant messaging, file
sharing, grid computing, web spidering] come
together into what I'm calling "the emergent Internet
operating system." The facilities being pioneered by
thousands of individual hackers and entrepreneurs
will, without question, be integrated into a
standardized platform that enables a next generation
of applications. The question is, who will own that
platform?”[16].

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 98 Issue 2, Volume 8, February 2011

Fig. 2: The cloud, as portrayed by Sam Johnston

As Tim O'Reilly had correctly speculated in 2002,
Internet has taken a big shift in its style, affairs, and
usage. With Web 2.0, which was also coined by him
[17], the web has become more friendly, social, and
far more commonplace.
Some challenge an OS (operating system) look at
Internet cloud, because they claim, it has not fully
replaced an operating system [18].
We suggest that it is not a matter of an operating
system physical existence or its size, but that the
cloud can be named an OS as soon as the Internet
platform fulfils some of the main responsibilities
that an OS has. A brief account of some of these
responsibilities follows:
(1) Provision of running applications on the
platform, e.g., Google docs.
(2) Provisions of APIs to control processes and
create further applications, e.g., all openAPIs like
Google APIs.
(3) Provide file storage and its management, e.g.,
box.net.
(4) Provide global user management, e.g., OpenID.
As one can notice from the given examples, all of
the above already exist and is becoming more and
more sophisticated. Therefore, the e-government 2.0
architects should consider it seriously in their total
designs. Reluctance towards use of these services
prejudicially and without thorough and open-
minded exploration can be of a disservice to the
usability and success of future e-government
portals.

2.2 Web 2.0 Mashups in Society and E-
government
By far the impact of Internet on our lives has
doubled if not more by the occurrence of the Web
2.0 trend and its components. Every citizen of us is
somehow involved in a social networking site, or
uses web services in one way or another [19].
Google Docs for instance has become an undeniable

part of the lives of a great majority of the knowledge
workers and the Internet users. Wikipedia has
broken a definite historical record in multitudes in
terms of a source that is referred to by people of all
kinds constantly and around the globe.
The use of Web 2.0 technology has become so
habitual by the younger generation that some
companies are starting to act on it, based on the
sheer belief that "If change is happening on the
outside faster than on the inside the end is in sight."
- Jack Welch.
We firmly believe in the above and hence encourage
web 2.0 technologies to be embraced and integrated
by the e-governments. By far the most practical and
ubiquitous aspect of the Web 2.0 wave is the
appearance of mashups that are effective and have
solved many problems effectively; earthquake-
forecast is one example [20].
A great number of those mashups, especially
Google maps have gained a continuous presence. It
turns out that data representation on a map,
particularly if it is real-time is of great popularity
and usefulness [21]. Hence, there are all sorts of
mashups created from pandemic pin-pointers to on-
the-run-prisoner locators, from traffic monitors to
real-estate websites almost anywhere possible;
Google maps were injected and many of them
facilitated tasks, which could not have been carried
out otherwise.
Like mentioned earlier, the mashup mentality is
based on driving usefulness out of what already
exists and creating applications or solving problems
many times more quickly.
This rate of problem solving is something that
people are now used to in the society and will find it
frustrating if they enter for instance an e-
government portal whereby the same principles and
methodologies do not exist.
Concepts of Web 2.0 like social networking prove
to be very useful inside e-governments, too. They
can facilitate knowledge dissemination in a unique
manner and can help citizens find answers for their
questions from social network. Citizens and
businesses can also stay connected and keep
updated.
The question of whether mashups are the Excel of
our era is a very valid question and a few lessons
need to be learnt in terms of their similarity as user
applications and their adoption process by the
enterprises and the software companies.
Excel applications gave the non-developer users the
possibility to create easily ad-hoc applications that
solved some of their daily problems very quickly
and efficiently and that is why, despite many efforts
to control the user desire to do so and to restrain

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 99 Issue 2, Volume 8, February 2011

things by the help of substitute and more
sophisticated BI (Business Intelligence) software
that is unified across the enterprise [22], the users
continued to use excel applications as they preferred
form of BI, until the companies were left with no
choice but embracing the change and valuing it.
We argue that the same attitude exists towards
mashups currently in e-government portals, but they
will find their way, as they have in many cases.
However, embracing the required changes in the
architectural design, that enables mashups from
ground up, can make this process a lot less painful
and a lot more fruitful, while aimed at a productive
future backed by user creativity.

3 The “Total Mashup” Technique
We coin the term “Total Mashup” or TM technique
for e-government 2.0 projects, typically portals that
encompass the following characteristics:
(1) Extensive use of external services, e.g., Google
Calendar, anywhere possible.
(2) Inclusion of the current Web 2.0 services and
trends that the potential users of the portal are using
already on the outside as much as possible in
cooperation with their original sources.
(3) Creation of an architecture that facilitates later
accommodation of mashups and further extensions.
A lot of this relies on the choice of platform and the
integration approach for mashups, which is
explained further in the coming sections.
(4) Implementation of procedures and input/output
passages that will facilitate controlled data
accessibility.
(5) Provision of appropriate security and speculation
over the probable security risks.

3.1 Mashups vs. SOA
SOA (Service-Oriented Architecture) has been
around for quite some time and has become with
principles like abstraction, autonomy,
composability, discoverability, formal contract,
loose coupling, reusability, and statelessness [23].
These principles are supposed to serve to faster
application development with more flexibility in
terms of mixing the services. The services are also
autonomous and treated as separate entities, so that
if one is lagging, the others can still work fine and
independently, hence, the entire system does not go
down at once. In short, some of the best practices of
software architecture are summarized in these
principles.

Mashups however, do pretty much all the above and
in a more pragmatic way, that is also sensible by the
citizen. They actually realize many of the promises
of SOA at a practical level and they also have many
advantages. Hence, they have become radically
more popular compared to SOA composites
especially in the eyes of the businesses [24].
The main differentiations of mashups that should be
considered to SOA:
(1) Mashups are Web-based:
SOA is not necessarily web-based and web
compatible, which makes it different and somewhat
more primitive compared to mashups.
(2) Mashups are relatively simple:
The SOA architecture with all its best practices is
academically interesting but the complication
overhead is undeniable, and makes it impractical at
various levels.
(3) They can be user-developed and are sharable:
One of the most important features that came to
practical existence and use, when it comes to
mashups, is the fact that they are capable of being
developed or composed by the users, which is the
same factor that has made Excel applications
extremely popular. Moreover, in an enterprise
setting, once a user creates a mashup it can be easily
shared with others, which makes it extremely useful
and reusable.
(4) Easier data integration with other services:
Since mashups are web-based and its data collection
and communication are much simpler and more
standard, they are extremely successful when it
comes to data integration with local services or
other services from the web. This is practically not
the case for SOA architecture because the access to
data is more complicated and the methods are not
simple or compatible with web-based methods.
(5) Distinct business value:
Since the mashups are easily and very quickly
created, their business value is quite clear. They
provide access to business insight that is the sheer
result of putting different data sources together at a
timely manner.
(6) Help emerge new business models:
Since mashups help deepen business insight and
provide new sources of revenue accordingly, they
lead to new business models [25]. These new
business models are partially a result of the
capability that mashups bring about in accessing and
using data at a different granularity than ever before.
However, some look at mashups not as a
replacement of SOA but as a complement [26],
especially in the user arena. We argue that this
architectural look is not declined and the TM
technique can be described as an SOA architecture

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 100 Issue 2, Volume 8, February 2011

that has a fully-fledged web-based end and is fully
oriented and specialized for mashups’ creation and
management.

3.2 TM Technique is RESTful
A Web Service is defined by W3C as "a software
system designed to support interoperable machine-
to-machine interaction over a network" [27]; and
that usually happens through APIs. There are other
approaches with similar functionality as web
services like Object Management Group's (OMG),
Common Object Request Broker Architecture
(CORBA), Microsoft's Distributed Component
Object Model (DCOM) or SUN's Java/Remote
Method Invocation (RMI), however, Web Services
are most compatible with current web standards.
The three prevalent styles of Web Services are
Remote Procedure Calls (RPC), Service-Oriented
Architecture (SOA), and Representational State
Transfer (REST).
RPC is operation-based, SOA is message-based, but
REST is resource-based.
The suggested approach for the total mashup
technique is RESTful.
The REST design transmits resources over HTTP
without an additional messaging layer, as opposed
to SOAP. As a matter of fact the best example for a
RESTful system is the World Wide Web.
REST has got a number of benefits, namely,
improved response time by caching of
representations, less client-side software
requirement, less dependant on vendor software, no
need for a separate resource discovery mechanism
and most importantly REST possesses unique
scalability [28], which is extremely important for
the context of e-government 2.0.
In the words of the inventor of REST, Roy Fielding,
REST's effect on scalability is as follows [29]:
 “REST's client-server separation of concerns
simplifies component implementation, reduces the
complexity of connector semantics, improves the
effectiveness of performance tuning, and increases
the scalability of pure server components. Layered
system constraints allow intermediaries—proxies,
gateways, and firewalls—to be introduced at various
points in the communication without changing the
interfaces between components, thus allowing them
to assist in communication translation or improve
performance via large-scale, shared caching. REST
enables intermediate processing by constraining
messages to be self-descriptive: interaction is
stateless between requests, standard methods and
media types are used to indicate semantics and

exchange information, and responses explicitly
indicate cacheability.”

3.3 TM Development Platform
The choice of a development platform is critical to
the extensibility and interoperability of an e-
government 2.0 portal; both are vital requirements
of its success.
There are many platforms available for such
development, however, the following demonstrates
why in the view of this paper, JavaServer Faces or
JSF is one of the most suitable, and how it should be
used.

3.3.1 Comparisons of Current E-government 2.0
Portal Development Platforms
Some of the most common technologies that are
used for web development are Ruby on Rails (RoR),
.Net and JavaServer Faces. Each of which has
unique characteristics that make them suitable for
specific usages.
Ruby on Rails for instance is a great automation of
many of the configurations that developers need to
carry out, it also generates a lot of the code and by
the motto of “Convention over Configuration” [30],
agile development becomes possible. Moreover, it is
aimed for web development and, therefore, enjoys
the advantages that come with specialization.
.Net is a heavy weight platform with many
capabilities for huge development projects and
monitoring them to the greatest details. It also
enjoys the Visual Studio IDE for visual design that
can facilitate the development process to a great
deal.
However the two above platforms are less practical
and efficient than JSF for the purpose of technique.
One of the important factors that need to be taken
into consideration when contemplating a technology
or platform, which is to be used at e-government
level, and in total cooperation with the other
segments of an e-government system, is
interoperability. Not only is interoperability
important with regards to systems where the e-
government 2.0 portal needs to be run on, in terms
of hardware and OS, but also, and probably more
importantly, it is critical for an enterprise portal to
be compatible and work with J2EE as, by far, the
most dominant enterprise solution for many of the
businesses. J2EE enjoys specialization in enterprise
architecture, and therefore, is used at large scales
and facilitates many of the needs of heavy-usage-
environments, by appropriate and somewhat unique
traffic and load management capabilities that are

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 101 Issue 2, Volume 8, February 2011

achieved through possession of well-rounded
properties that are required in distributed systems.
From the above perspective, JavaServer Faces,
which is a component of the J2EE stack naturally,
exceeds any other competing platform in terms of
compatibility.
JSF applications enjoy one of the most successful
design patterns for web development by the name of
Model-View-Controller or MVC. MVC brings
about separation of business-logic and presentation
in a way that makes the applications a lot more
efficient, reusable and maintainable; it also
facilitates testing processes.
Moreover, JSF or J2EE, in general possess strong
separation of layers of code through the use of
JavaBeans. In JSF also, JavaBeans are excessively
used and grant clear boundaries to concepts related
to a Request, a Session or an Application by virtue
of existence of a separate JavaBean for each. This,
of course, improves code clarity and management,
two of the vital enterprise-architecture-related
characteristics.
On top of all, JSF comes with JSF Visual Designer
that works in NetBeans. The visual designer is more
sophisticated in many ways than the better-known
Visual Studio IDE for .Net.
Last but not least, of the features that are critical to
development of a Web 2.0 portal, is the Ajax-
friendliness or the capability to use Ajax with the
development technology. This is extremely handy
and to a great extent automatic in JSF due to the
presence of various Ajax component libraries like
Woodstock Components, for instance. These
components come with Ajax features out of the box
that are usable with very little or no programming
effort in Ajax. They are capable to do partial page
updates on their own and based on the
circumstances and events.
In comparison, Ruby on Rails is actually not
designed for large-scale enterprise development like
e-government 2.0 at all, and is most suitable for
agile development of much smaller systems. It also
does not have any visual design environment. But it
enjoys being an MVC based platform, and is quite
Ajax friendly.
.Net bears some of the typical criticisms that are
usually out there against it, like its being a
proprietary platform and therefore, again, less
interoperable with any other technological
phenomena.
Furthermore, .Net is not fundamentally based on a
sound design pattern like MVC. Microsoft recently
figured this out and made an effort to catch up by
the release of MVC ASP.Net, however, this product
is still at a hatching stage and is yet to be anywhere

near comparable to the grass root MVC that exists
in JSF.
ASP.Net Ajax satisfies the Ajax needs to some
extent but the library options are not as many as the
libraries that exist for JSF.
One last point that needs to be mentioned is the
availability of API client libraries for the
programming language of the platform in order to
be able to follow the proposed methodology in this
paper. By far the most available API client library
for a language, in most of the services that this
paper frequently refers to, is Java.
The following table summarizes some of the above
characteristics comparatively among the three
platforms.

V
is

ua
l d

es
ig

ne
r

M
V

C

C
lie

nt
 li

br
ar

y
A

PI
s

A
ja

x
In

te
gr

at
io

n

In
te

ro
pe

ra
bi

lit
y

J2
EE

 c
om

pa
tib

ili
ty

O
pe

n
so

ur
ce

JSF

RoR

.Net

Table 2: Technology comparison

3.3.2 JSF Suitability as a Mashup Platform
JavaServer Faces is a very promising platform for
development of large scale applications including e-
government 2.0 and enterprise web applications,
which is based on an MVC (Model-View-
Controller) design pattern [31].
The view of the application is mainly constructed in
JSP and Woodstock Ajax library, and the business-
logic is created in Java and in a completely separate
layer.
The separation of the business-logic is one of the
principles of the MVC and its being developed in
Java makes it the perfect development bed for using
the Java API client libraries.
The most important element in existence of usable
and viable mashups is the availability of standard
usable APIs that can facilitate the services
efficiently.
And if a Java client library is available for the APIs
being used, the application development is made
dramatically more efficient.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 102 Issue 2, Volume 8, February 2011

3.3.3 A Strong Visual Designer
JSF also possesses a strong visual web designer by
the name of JSF Visual Designer that is plugged
into NetBeans IDE.
The existence of a visual designer is undeniably
vital to speed and productivity of application
development, especially mashups development.
With JSF visual designer, one has almost complete
control over the normal web components, and also
Ajax ones like the Woodstock components. The
Woodstock components are AJAXified in that they
have individual update characteristics, independent
from the page update. Hence, one can get Ajax
properties by working with them without much
JavaScripting.

3.3.4 Importance of MVC in Enterprise
Development
Model-View-Controller (MVC) design pattern
draws its success from the clear separation of
functions. This is extremely significant for e-
government 2.0 portal development because the one
characteristic that is always there, is the fact that the
application is huge and in order to manage and run
an application of great magnitude, separation
provides a breakdown that facilitates extensibility
and also distributed execution of the application.
Fig.3 below is a snapshot of how MVC is reflected
in JSF.

Fig.3: Implementation of MVC in JSF

3.3.5 Importance of a Java Layer
As you can see in the above figure the business
logic is developed in Java, in JSF platform and in
complete separation. Therefore, we suggest that the
technique for designing mashups efficiently should
be using this capability in order to communicate
with the desired web services, wherever possible.
Almost all available Web Services have Java Client

libraries to work with; GData or the Google protocol
and all Google services have almost all the required
libraries in Java, and it is being updated constantly
based on the collective user needs.
Some examples of how the Java client libraries are
to be used are provided below in fig.4.

Fig.4: Google services authentication by API

As one can see above, Google services
authentication can be as simple as above in fig.4.
Fig.5 below shows how data can be retrieved from a
service, in this case, the Google Docs.

Fig. 5: Google services retrieval by API

The same is true for almost all other available Web
Services through their Java client libraries, e.g.,
Delicious, the bookmark management service
(fig.6).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 103 Issue 2, Volume 8, February 2011

Fig. 6: Delicious services retrieval by API

3.3.6 Strengths of Using APIs’ Java Client
Libraries
(1) Compatibility with J2EE
J2EE as the de facto large scale development
platform with its widespread popularity can be very
well accommodating for the mashups with this
proposed technique. As a matter of fact, the JSF
platform is a part of the J2EE family, and since it
now can be affectively used to create mashups, the
proposed technique would be the natural one for this
integration.
(2) Common approach
In order to have a successful e-government 2.0
portal development approach - although mashing up
and ad-hoc development are being advocated here,
the general approach for doing so should be unified
for the sake of manageability and maintenance. We
basically propose that a sound, reliable and common
approach needs to be in place so that it enables
further mashup development on the top. That is why
standardizing the use of Java Client Libraries for all
mashup activities would be strongly recommended
and that is precisely what happens when JSF and
Java Client Libraries are used almost at all times.
(3) Combination with business logic
Indeed, the real power of mashups comes from
combining. And when the Java Client Libraries are
used, the required logic-combinations with other
services from the outside, and more importantly
with the internal business-logic, become
significantly easy.
Hence, with the use of TM, a platform will emerge
with enough room for creative development on the
top.

3.4 A Mashup Generator Platform
TM as a conceptual technique is materialized by the
development of a mashup generator: an inter-
component connection, where each component is an
outlet to a Web Service (fig.7). It simply advocates
that almost all components that are typically
required in portals exist out there in the form of
services and can be used again and again in different
contexts. This brings the thought process to the need
for existence of a platform that facilitates the reuse
and organization of these components. These
platforms could be called mashup generator
Platforms or simply mashup generators.
A mashup generator facilitates the creation of a
mashup without any programming knowledge
required.
It basically allows the non-developer user to choose
the components or widgets that they would like to
have on their mashup from a set of available
widgets with pre-set interconnectivity capabilities.
In other words if one requires components like an
outlet to their Google docs, an outlet to their
Delicious bookmarks and one to their weblog, they
can have all of them in form of widgets and all they
need to do is to select them from a list of available
widgets on the mashup generator and add them to
their mashup page, in that way they will have a
personalized mashup based on their unique needs.
They might also require some sort of
interconnectivity between these widgets, for
instance one might need their calendar events to
have the capability to add their favorite website
links from the Delicious widget to the event
description section of a calendar event by just
choosing them from a pop-out list on the calendar
widget.
There are also other possibilities, for instance, some
widgets could exist for the purpose of advertisement
for a particular brand, but they could have filtration
criteria for product categories that could be set by
the user or based on input from other widgets, and
thereby users can have their preferred advertisement
on their advertisement widget of choice on their
personalized mashup.
Hence a mashup generator allows novice developers
to take at least the following two actions:
(1) The users can choose their widgets of choice and
add them to their personalized mashup.
(2) The users can set some criteria that some of the
widgets have and thereby determine the type of
output that they would like to see on those widgets
on their mashups.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 104 Issue 2, Volume 8, February 2011

Fig.7: The mashup generator GUI

A mashup generator platform, however, should
preferably have a set of tools that help its
maintenance and improvement by developers or the
developer community. Hence the following facilities
should be available:
(1) Standards, guidelines and ultimately online tools
for creation of widgets.
(2) Automated capability to use the guidelines for
addition of the created widgets to the set of
available widgets on the platform.
Hence, a mashup generator has the following
benefits:
(1) User-development that has been covered in
previous sections actually becomes a reality with the
existence of a mashup generator platform, whereby
users with little or no programming knowledge can
form their personalized mashups for all purposes.
This is extremely important because it enables user
creativity in problem solving in their work
environment and thereby the resulted mashups
become very effective and to-the-point in terms of
satisfying users’ needs.
(2) The development team spends its time on
creation and perfection of widgets and their
communication ability without worrying too much
about the context of use of the mashups, because the
mashup generator could be used in any context,
moreover, it will enjoy a much larger audience.
Therefore, the most important software engineering
task becomes the reusability architecture.

3.5 Testing the Implementation of a TM-
based E-government 2.0 Portal

3.5.1 Test Overview
The Total Mashup Technique was tested through a
practical and real-life implementation on an e-

government 2.0 portal that targets researchers’
collaboration commissioned by the government
(fig.8).
With numerous portals whose requirements are met
by the conventional portal architectures, everything
should be created from scratch and normally
independent from the outside world. Lengthy and
man-hour consuming development would not
necessarily accomplish all the collaborative needs of
an e-government 2.0 portal specially sociability and
sharability features.

Fig.8: A screenshot of a TM-based e-government
2.0 portal for research collaboration (displayed
features include documents management, blogging,
social bookmarking, calendar, diary, and messaging)

Hence, the non-conventional technique of Total
Mashup seems to be the right choice and is put to
test. This adoption should not only result in fully
functional features with sophisticated levels of
social-networking and sharability, but also it makes
it possible for a portal of such magnitude to be
accomplished many times faster, hence successfully
impact the ROI (Return on Investment).
The Mashup Generator Platform was instrumental in
evolving the created research portal into a platform
whereby registered users (software architects,
developers, etc.) can choose the widgets that they
desire and put them on their personalized mashup in
the allocated slots, in the order they wish. As it is
seen in fig.7, the first two slots are assigned with
widgets, one is the Delicious widget and one is the
Google Docs widget and the other two are empty
and can be used for placing other widgets.
The observed significance of the Mashup Generator
Platform according to the test is:
(1) The implementation of the required flexibility
for choosing the widgets in the platform is easily
feasible with the help of the utilized technology (i.e.
JSF).
(2) The interconnectivity of the widget works
mostly as it was in the case of the research platform
itself.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 105 Issue 2, Volume 8, February 2011

(3) Considerable user development has been
enabled.
The components that could be added to this platform
in the future are:
(1) Widget creation facilities.
(2) Automation of widget addition.

3.5.2 Outcomes of the Test
To sum up the achievements of the Total Mashup
Technique for the test research portal, the following
could be enumerated:
(1) All required features are available as services on
the web.
(2) The time is spent on creating mashup
functionalities rather than the basic components.
Mashup functionalities that are results of pulling
different services together and creating new
combinational services, can be very useful and
creatively developed at ease. Nevertheless, the time
of pulling these services necessitate performance
testing because this greatly influences the continuity
of the citizen with the e-government 2.0 portals.
(3) Efficient development was by far the most
significant and immediate impact of taking the TM
technique on this project. A project of this
magnitude could have never been implemented with
limited resources otherwise.
(4) Development is also very flexible in TM; and
addition and replacement of features, is much more
convenient and straightforward.
(5) The components of the research portal primarily
represents the impact of Web 2.0 on e-government
back-office domain, typically knowledge
management and cross-agency collaboration (social
bookmarking, blogging, messaging, calendar
sharing, and documents exchange). The test did not
involve the front-office domain like service
provision, political participation, and law
enforcement, which nevertheless are realized
differently within other contexts by other
researchers. Nevertheless, the front-office domain
widgets could be added using the Mashup
Generator.
(6) End-users find it easier to deal with the
generated applications. This is attributed to the fact
that many of them are already familiar with the
third-party components’ individual use. Hence, less
resistance, training, and data duplication are
imposed.
(7) The use of the mashup generator highly supports
generatively: the ability to generate content without
any inputs from the originators.
(8) Testing TM as open-source facilitates growth
and innovation.

3.5.3 Challenges of the Total Mashup Technique
According to the Test
Three of the most critical areas of the technique are:
(1) The great dependence on third party service
providers is an issue, since the availability of
services is completely dependent on them. The issue
of availability is a sensitive matter for numerous e-
government agencies, nevertheless it is quite
acceptable to rely on established and reliable web
services like the ones from Google, Apple, Amazon,
etc., especially with the growing trend towards
Cloud Computing.
(2) Corollary to the challenge of dependence in
point 1 follows the issue of IP (Intellectual Property)
protection. Nevertheless, signing non-disclosure
agreements can alleviate this, since many of these
third-party service providers like Google are very
keen in expanding their business to government.
(3) Security might also be a challenge but not as big
as many would like to portrait when it comes to
mashups, especially when TM is embraced, because
when TM is in place the total architecture is
designed to accommodate mashups and critical
security measures can be put in place from ground
up, although this new technique might require some
creativity in security, but it is plausible that they are
easily achievable. More and admittedly, we witness
both security and end-user convenience clash. For
instance, one concept that is used within the this test
to achieve end-user convenience is SSO (Single-
Sign On); SSO enables a single action of user
authentication and authorization that allows a user
to access all computers and systems where he has
access permission, without the need to enter
multiple passwords. In its simplest form, SSO is
implemented by internally storing the authentication
information (mostly, username and password) of
every third-party service provider (Google,
Delicious, etc.) and later using these credentials for
log in (fig.4). Obviously, having an SSO feature
should always be associated with high measures
protecting the end-user’s single authentication
information.
Moreover, when speaking about security in a macro-
perspective the net-gain should be compared against
the net-loss, which in this case the amount of
increased overall productivity due to relevance and
functionality of the mashups, is arguably and
significantly higher than possible security breaches,
when taking into account all the possible ways of
breaching into a conventional portal or the possible
ways of data-leak through users’ negligence.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 106 Issue 2, Volume 8, February 2011

4 Conclusion
This work is an effort to emphasize the necessity
and practicality of mashup design integration, as a
part of the Total Mashup technique, into the
architecture of e-government 2.0 portal projects. It
differentiates itself from many other enterprise 2.0
efforts in that they suggest the mashup capability as
a third party, and as an additional extension to
current architectures at enterprises. The research
carried out appreciates the progressive thought in
that direction yet deems that it might not be enough.
The conceptual nature of TM is evaluated through
the deployment of real e-government 2.0 portals that
emphasizes high degree of collaboration among
researchers.
The TM technique demonstrates the possibility of
an innovative design technique and sets the path for
further development initiatives of similar scenarios
in the future. Several outcomes and challenges are
unearthed.
TM is highly driven by the shift towards to Cloud
Computing; hence it inherits some of its research
challenges like dependency on their services
providers, IP, and security.
We view TM as a propitious technique that should
be considered by software architects who are
commissioned to develop e-government 2.0 portals.
The future of e-government 2.0 is bound to involve
a great number of mashup applications; hence
methods, approaches and design patterns need to be
devised to cater for this need. The blend of e-
government 2.0 activities with Internet cloud
services is inevitable and the e-government agencies
that realize that before others will have the bigger
wins or at least avoid losses (first-movers
advantage).
We perceive that a detailed operational framework
for the Total Mashup technique is obviously
required. More, there is a dire need to undergo
research on methods to maintain availability of
services upon which mashups are designed. Finally,
empirical research on performance and stress testing
might be beneficial to unearthing scalability issues.

References:
[1] J. Baumgarten, and M. Chui, E-government

2.0, McKinsey Quarterly - Public Sector
Practice, www.mckinseyquarterly.com/E-
government_20_2408, 2009.

[2] D. Osimo, Web 2.0 in Government: Why and
How? European Commission, Joint Research
Centre, Institute for Prospective Technological
Studies, 2008.

[3] P. Klein, Web 2.0: Reinventing Democracy,
CIO Insight Magazine, 2008, pp. 30-43.

[4] P. Deitel, H. Deitel, Ajax: Rich Internet
Applications and Web development for
programmers, Prentice Hall, 2008.

[5] D. Hinchcliff, Enterprise Web 2.0,
http://blogs.zdnet.com/Hinchcliffe, 2009.

[6] C. Klocker, Mashups: A New Concept in Web
Application Programming, VDM Verlag, 2008.

[7] Gartner Inc., Government and Web 2.0: The
Emerging Midoffice, Stamford, 2007.

[8] I. Becerra-Fernandez, A. Gonzalez, R.
Sabherwal, 2003, Knowledge Management:
Challenges, Solutions, and Technologies,
Prentice Hall, 2003.

[9] J. Feiler, How to Do Everything with Web 2.0
Mashups, McGraw-Hill Osborne Media, 2007.

[10] W3C Press Release, W3C eGovernment
Activity to Help Empower Citizens,
http://www.w3.org/2008/06/egov-pressrelease,
2009.

[11] , [12] IBM Corporation Website, Why Mashups
Matter,
ftp://ftp.software.ibm.com/software/lotus/lotus
web/portal/why_mashups_matter.pdf, 2009.

[13] P. McAfee, Enterprise 2.0: The Dawn of
Emergent Collaboration, Sloan Management
Review, Vol.47, No.3, 2006, pp. 21-28.
[14] Online Public Encyclopedia, Wikipedia Corp.,
Enterprise2.0,
http://en.wikipedia.org/wiki/Enterprise_2.0, 2009.
[15] AIIM official website, What is Web 2.0?,
http://www.aiim.org/What-is-Web-2.0.aspx,
2009.
[16] T. O’reilly, Inventing the Future ,
http://www.oreillynet.com/pub/a/network/2002/04/0
9/future.html, 2008.
[17] T. O'Reilly, What Is Web 2.0: Design Patterns
and Business Models for the Next Generation of
Software,
http://www.oreillynet.com/pub/a/oreilly/tim/news/2
005/09/30/what-is-web-20.html, 2008.
[18] A. Mohamed, Moving closer to the Internet as
an operating system,
http://www.computerweekly.com/Articles/2008/05/
23/230812/moving-closer-to-the-internet-as-an-
operating-system.htm, 2008.
[19] V. Barker, (2009), Older adolescents'
motivations for social network site use: The
influence of gender, group identity, and collective
self-esteem, CyberPsychology & Behavior, Vol.12,
No.1, pp. 209-213.
[20] F. Gorder, Grid Computing Yields Earthquake
Forecast, IEEE Computing in Science &

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 107 Issue 2, Volume 8, February 2011

Engineering, January-February, Vol.9, No. 1, 2007,
pp. 6–10.
[21] L. Vincent, Taking Online Maps Down to
Street Level, IEEE Computer Journal, Vol.40, No.
12, 2007, pp.118 – 120.
[22] H. Elmeleegy, A. Ivan, R. Akkiraju, R.
Goodwin, Mashup Advisor: A Recommendation
Tool for Mashup Development, ICWS '08 IEEE
International Conference on Web Services, 2008,
pp.337–344.
[23] Y. Balzer, Improve your SOA project plans,
http://www.ibm.com/developerworks/webservic
es/library/ws-improvesoa, 2004.
[24], [25] C. Weinhardt, A. Anandasivam, B. Blau,
J. Stosser, Business Models in the Service World,
IEEE IT Professional, Vol.11, No.2, 2009, pp. 28-
33.
[26] E. Castro-Leon, J. He, M. Chang, Scaling
Down SOA to Small Businesses, SOCA '07, IEEE
International Conference on Service-Oriented
Computing and Applications, 2007, pp. 99 – 106.
[27] W3C Working Group Note, 2004, Web
Services Glossary, http://www.w3.org/TR/ws-
gloss, 2004.
[28], [29] R. Thomas, Architectural Styles and the
Design of Network-based Software Architectures,
Doctoral dissertation, University of California,
Irvine, 2000.
[30] V. Viswanathan, Rapid Web Application
Development: A Ruby on Rails Tutorial, IEEE
Software, Vol.25, No.6, 2008, pp. 98-106.
[31] C. Schalk, E. Burns, J. Holmes, JavaServer
Faces: The Complete Reference, McGraw-Hill
Osborne Media, 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Faras Zuheir Mustafa Mohamed,
Saravanan S. Muthaiyah, Arman K. Nassirtoussi

ISSN: 1790-0832 108 Issue 2, Volume 8, February 2011

