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Abstract: - This paper proposed a new hybrid method, designated as PSOVPRS-index method, for partitioning 
and classifying continuous valued datasets based on particle swarm optimization (PSO) algorithm, Variable 
Precision Rough Set (VPRS) theory and a modified form of the Huang-index function. In contrast to the 
Huang-based index method which simply assigns a constant number of clusters to each attribute and in which 
the Rough Set (RS) theory is applied, this method could not only cluster the values of the individual attributes 
within the dataset and achieves both the optimal number of clusters and the optimal classification accuracy, but 
also extends the applicability of classification using VPRS theory. The validity of the proposed approach is 
investigated by comparing the classification results obtained for a real-world dataset containing stock market 
information with those obtained by PSORS-index method and pseudo-supervised decision-tree classification 
method. There is good evidence to show that the proposed PSOVPRS-index method not only has a better 
classification performance than the considered methods, but also achieves a more reliable basis for the 
extraction of decision-making rules. 
 
 
Key-Words: - Particle Swarm Optimization, Variable Precision Rough Set theory, PSOVPRS-index method, 
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1 Introduction 
Classification, discretization and dimensionality 
reduction are key challenges in the pattern 
recognition, machine learning and data mining 
fields. Classification is a task of assembling data 
with multiple attributes into relevant categories and 
provides an invaluable means of uncovering the 
implicit knowledge within a dataset. In the last few 
decades, several articles have been devoted to the 
study of the classification algorithms, including 
decision-tree algorithms such as ID3 [1], rule-based 
algorithms such as CN2 [2], Bayesian classifiers [3], 
conformal predictors [4], back-propagation 
networks [5], support vector machines [6, 7], and so 
forth. All of these schemes have their respective 
merits and have found widespread use in a diverse 
range of applications, including weather prediction, 
manufacturing process planning, medical diagnosis, 
and so on. However, such methods can not deal 
effectively with datasets having no categorical 
values specified or datasets characterized by 
uncertain or missing information. Thus, a best 
possible solution to the problem of interest is 

applied the Rough Set (RS) theory [8-11] to classify 
the continuous valued datasets.  
RS theory was first introduced more than twenty 
years ago [8] and has emerged as a powerful 
technique for the automatic classification of records 
[9] in such fields as machine learning, forecasting, 
knowledge acquisition, decision analysis, 
knowledge discovery, and pattern recognition. 
However, the ability of RS techniques to correctly 
classify a dataset relies upon the availability of 
complete and certain information. To perform a 
classification operation with a controlled degree of 
uncertainty or misclassification error is beyond the 
ability of the RS approach [12]. To extend RS 
theory to such classification applications, Variable 
Precision Rough Set (VPRS) proposed by Ziarko is 
a methodology in which the records within the 
dataset were analyzed and classified in terms of 
their statistical tendencies rather than their 
functional patterns [12, 13]. In VPRS theory, the 
uncertain nature of the information within the 
dataset of interest is handled using the concept of β-
lower and β-upper approximate sets. However, the 
performance of VPRS models [14] is basically 
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resulting from the quality of the original clustering 
results. Attributes clustering must be performed in 
prior to conduct a continuous valued dataset 
classification, and correct partitioning is the prelude 
to available classifications. In general, the problem 
of evaluating the optimality of the clustering results 
obtained for a particular dataset is referred to as the 
cluster validity problem [15]. Many methods have 
been proposed for assessing the validity of the 
clustering results obtained using fuzzy clustering 
schemes [16], such as classification entropy [17] 
and the using matrix U  methods [15, 18, 19]. 
Accordingly, when classifying continuous valued 
datasets with uncertain or missing information, it is 
preferable to utilize Variable Precision Rough Set 
(VPRS) theory for classification purposes, and to 
integrate the VPRS model with some form of cluster 
generation / cluster index evaluation procedure such 
that the optimal discretizing solution can be 
obtained. In a recent research, Huang [20] proposed 
a Huang-based index method which simply assigns 
a constant number of clusters to each attribute. One 
major question which exists in Huang-index 
clustering method is in adopting an attribute-based 
clustering approach, how one can determine the 
optimal number of clusters for each conditional and 
decision attribute values of the records. In order to 
optimize the number of clusters per conditional and 
decision attribute, it is necessary to integrate the 
clustering mechanism with some form of 
optimization technique.  
Particle Swarm Optimization (PSO), inspired by the 
natural phenomena of bird flocking and fish 
schooling, provides a powerful technique for 
solving a wide range of classification and 
optimization problems [21-24]. Accordingly, PSO is 
an ideal tool for solving the problem considered in 
this study, namely that of determining the optimal 
number of clusters per conditional and decision 
attribute for a continuous valued dataset. In the 
proposed approach, designated as the PSOVPRS-
index method, the PSO algorithm is integrated with 
a modified form of the Huang-index method [20] 
referred to as the FV-index method. The FV-index 
method comprises a fuzzy clustering scheme, a 
VPRS classification model in which the optimal 
threshold parameter β is determined using the 
method presented by Huang [11], and a so-called 
VM-index function, which evaluates the optimality 
of the discretization / classification results in terms 
of both the number of clusters within the dataset and 
the accuracy of β-approximation. Broadly speaking, 
the PSOVPRS-index method provides the means to 
solve the following problems for continuous valued 
datasets: (1) discretizing the continuous values of 

each attribute within the dataset; (2) determining 
both the optimality of the discretization results and 
the optimal number of clusters per attribute; (3) and 
extending the applicability of classification using 
VPRS theory.  
The remainder of this paper is organized as follows. 
In the next section, we present the fundamental 
principles of the VPRS theory, VM-index function 
and PSO, respectively. In Section 3, we interpret the 
combination of the concepts to form the proposed 
PSOVPRS-index method. In Section 4, we compare 
the performance of the proposed method with those 
of the PSORS-index method [25] and pseudo-
supervised decision-tree classification method. The 
paper concludes in Section 5 with some brief 
remarks and indicates the intended direction of 
future research. 
 
 
2 Review of Related Methodologies 
 
 
2.1 Index function maxI [20] 
Assume that each record ix in the dataset has m  
attributes and the l -th attribute la  can be divided 
into lp  clusters, then )( ia xC

l
 gives the index of the 

cluster to which the l -th attribute la  of record ix  
belongs. Here )( ia xC

l
 is given by 

)( il xC )))(((max lij axI μ= = 
Index nimlforax lij ≤≤≤≤ 1,1))))(((max(μ  (1) 

where )(( lij axμ is the membership function values 

of the l -th attribute of ix ; )))((max( lij axμ  returns 
the maximum of these membership functions values; 
Index( max(...) ) will return the index of the cluster 
associated with the output of max(...) ; Therefore, 

)))(((max lij axI μ  returns the index of the cluster 
corresponding to the maximum value of the 
membership functions of the l -th attribute of ix . 
 
 
2.2 Fundamental principles of VPRS theory 
The VPRS operates on what may be described as a 
knowledge-representation system, or information 
system [12]. The basic principles and notations of 
information systems ( S ) and the application of 
VPRS theory to the processing of such systems are 
described in the sections below. 
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2.2.1 β-lower and β-upper approximate sets 
For a given dataset, any records which are 
indistinguishable from one another when evaluated 
using a particular subset of all the attributes define 
an equivalence or indiscernibility relationship. In 
VPRS theory, this indiscernibility concept is 
handled using approximate sets. A typical 
information system has the form ),,,( qq fVAUS = , 

where U  is a non-empty finite set of records, A  is a 
non-empty finite set of attributes describing these 
records and UX ⊆ and AR ⊆ . Generally speaking, 
the attributes in set A  can be partitioned into a set 
of conditional attributes φ≠C  and a set of decision 
attributes φ≠D , i.e. A  = DC U  and φ=DC I . For 
each attribute, qVAq ,∈  represents the domain of q , 
i.e. U qVV = . Finally, VAUf q →×:  is an 
information function defined such that 

qVqxf ∈),( for Aq∈∀  and Ux∈∀ . 
The proposed VPRS method utilizes the systematic 
method presented by the current author in [11] to 
determine an appropriate value of the threshold 
parameter β, i.e., the value of β at which a certain 
proportion of the records in a particular conditional 
class are classified into the same decision class. 
When processing an information system using a 
VPRS model with 15.0 ≤< β , the objective is to 
identify the β-lower and β-upper approximate sets 
associated with each cluster of the decision attribute. 
In general, the β-lower approximation of sets 

UX ⊆  and CP ⊆  can be expressed as 
( ){ }

[ ] ( ){ }β
ββ

≥=

≥∈=

PP

PP

xXPx

xXPUxXR

]/[:                  

]/[:)(

U
 (2) 

Similarly, the β-upper approximation of sets UX ⊆  
and CP ⊆  is given by 

( ){ }
[ ] ( ){ }β

ββ

−>=
−>∈=
1]/[:                  

1]/[:)(

PP

PP

xXPx
xXPUxXR

U
 (3) 

Note that ( ) YYXYXP I=/  if 0>Y , and 
( ) 1/ =YXP  otherwise. Note also that X  denotes 

the cardinality of set X . In the particular case 
of 1=β , )(P XRβ and )(XRPβ  are equivalent to the 
lower and upper approximate sets in RS theory. In 
other words, the VPRS model reverts to the 
traditional RS model. 
 
 
2.2.2 Accuracy of VPRS classification results 
The accuracy of the VPRS classification results can 
be quantified as follows:  

)()( XRXR PPc βββ α =  (4) 

where },)(:{ UxcxCxX d ∈∀==  , and 

|)(| XR Pβ and )(XRPβ  are the cardinalities of the 

β-lower and β-upper approximate sets , respectively, 
when classifying the elements ( x ) in terms of the 
c th cluster of the decision attribute d . 
 
 
2.3 Overview of Huang and VM cluster 
optimization index functions 
 
 
2.3.1 Accuracy of VPRS classification results 
The Huang-based index method in which the RS is 
applied assigns a constant number of clusters to 
each attribute and is applied to optimize both the 
number of clusters within the dataset and the 
corresponding classification accuracy. This function 
has the form:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′×

′
×=

d

d

N
Nd

Cd D
F
ENH 1

N
1),( α  (5) 

where dN  is the number of clusters assigned to the 
decision attributes and cα is the corresponding 
classification accuracy when evaluated in terms of 
the c th cluster of the decision attribute d . 1E  is a 
constant for a given dataset and is set in such a way 
as to prevent the second term from vanishing. In 

addition, ∑ ′=′
=

d

d

N

c
cN EF

1
, cE ′  is obtained by 

accumulating the value of cE ′  for each cluster of the 
decision attribute ( d ), where cE ′  is given by 

c

n

j
cjj

m
cjc zxdxE αμ∑

=

′
′−=′

1
))((   (6) 

in which ))(( dx jcjμ  is the membership function of 
record jx  in the c th cluster of the decision attribute 
d , and cz′  is the multi-dimensional centroid of the 
lower approximate sets in terms of the c th cluster of 
the decision attribute d  and is obtained by 
computing the mean values of the conditional and 
decision attribute values of each record within the 
corresponding sets. Furthermore, m′  is the 
fuzzification parameter and n  is the total number of 
records in the dataset. Finally, the value of 

dND′  is 
equal to the maximum separation distance amongst 
the centroids of all the lower approximate sets in 
terms of the different clusters of the decision 
attribute,  

i.e., ji

N

jiN zzD
d

d
′−′=′

=1,
max  (7) 
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 where iz′  , jz′ are the multi-dimensional centroids 

of the lower approximate sets in terms of the ith and 
jth clusters, respectively, of the decision attribute d .  
 
 
2.3.2 VM-index function 
In contrast to the Huang-index function which is 
based on the RS classification approach, the VM-
index function applies the VPRS classification 
scheme to extend applicability of the Huang-index 
function to handle the uncertain information system. 
The VM-index function proposed in this study has 
the form: 

)1(),(M N
1

M
d

d

D
F
E

C
CV

N
cM ′×

′
×=

β
β α  (8) 

where MC  is the arithmetic mean of numbers of 
clusters of individual attributes; dN is the number of 
clusters of the conditional and decision attributes, 
and 1E is constant and the same as defined in 

Huang-based index method;  
dNF ′β ( ∑

=

′=
dN

c
cE

1
β ) is 

obtained by aggregating the value of cE ′β  for each 

cluster of the decision attribute ( d ), where cE′β  is 
given by 

 c

n

j
cjj

m
cjc zxdxE αμ ββ ∑

=

′
′−=′

1
))((  (9) 

in which cαβ is the accuracy of VPRS classification 
when evaluated in terms of the c -th cluster of the 
decision attribute, ))(( dx jcjμ  is the membership 
function of record jx  in the c-th cluster of the 
decision attribute d  and cz ′  is the multi-
dimensional centroid of the lower approximate sets 
associated with the c -th cluster of the decision 
attribute d  and is obtained by computing the mean 
values of the conditional and decision attributes of 
each record within the corresponding sets, m′  is the 
fuzzification parameter, and n  is the total number of 
records in the dataset;  finally, the value of 

dND′  is 
equal to the maximum separation distance amongst 
the centroids of all the lower approximate sets 
associated with the different clusters of the decision 

attribute, i.e. ji
N

ji
zzD

d

d
′−′=′

=1,
N max . Note that the 

value of 
dND′  is upper bounded by the maximum 

separation distance amongst all possible pairs of 
records in the dataset. 

Note that parameter 
dNF ′β  in the VM-index 

function differs slightly from parameter 
dNF ′   in the 

Huang-index function described in Section 2.3.1. 
The value of 

dNF ′β depends on cαβ in VM-index 
function, while the value of 

dNF ′  depends on cα  in 
Huang-index function. 
 
 
2.4  Particle swarm optimization (PSO) 
theory 
In PSO [25], the positions of particles within the 
swarm describe candidate solutions for the n -
dimensional problem under consideration, and the 
movements of the particles describe the search for a 
better solutions [22, 23]. Let the position of the k th 
particle be described as  

jkx = (
1kx ,

2kx , …
nkx ) (10) 

and let its velocity be represented by  

jkv =(
1kv , 

2kv , …
nkv ) (11) 

 , nj ,...,2,1= . During the search process, the 
particles successively adjust their positions in 
accordance with two features, namely their personal 
best position and the global best position. The 
personal best position 
 kP = (

1kP ,
2kP , …

nkP )  (12) 
of particle k  is defined as the position of this 
particle which yields the highest fitness value to 
date. Meanwhile, the global best position  

gP =(
1gP , 

2gP , …
ngP )  (13) 

is defined as the position which yields the greatest 
fitness value amongst all the particles’ positions to 
date.  
In this study, the velocity and position of the k th 
particle is updated using the “constrict factor 
method” proposed by Clerc [26], i.e.,  

)1( +tv
jk = ϕ ( )(tv

jk + 1C 1r (
jkP - )(tx

jk )+ 

2C 2r (
jgP - )(tx

jk )) (14) 

)1( +tx
jk = )(tx

jk + )1( +tv
jk   (15) 

, nj ,...,2,1= .  
where 1r  and 2r  are elements from two uniform 
random sequences in the range )1,0( ; 1C (2.05) is the 
individual factor; 2C (2.05) is the societal factor; 
and 

ϕ = CCC 422 2 −−−  (16) 

, where 21 CCC += .  
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The positions of particles in each dimension are 
clamped to a maximum position maxx . If the sum of 
velocities would cause the position of that 
dimension to exceed maxx , which is a parameter 
specified by the user, then the position of that 
dimension is limited to maxx .  
In the attribute values clustering problem considered 
in this study, the particles represent candidate 
solutions for the number of clusters assigned to the 
corresponding attribute of datasets and have the 
form of a string of real-valued numbers, where the 
length of the string corresponds to the total number 
of attributes in the dataset, while each element ,

iaN , 
of the string represents the number of clusters 
assigned to the corresponding attribute by a 
random function. In other words, the particle has 
the form (

1aN ,
2aN .......

kaN , dN ). In this form, k  
denotes the number of conditional attributes, 

iaN  

indicates the number of clusters assigned to the i th 
conditional attribute ia , and dN  represents the 
number of clusters assigned to the decision attribute 
d . 
 
 
3 PSOVPRS-index Method 
The PSOVPRS-index method proposed in this study 
is used to extend applicability of the PSORS-index 
method [25], discretizes the values of the individual 
attributes within the dataset and achieves both the 
optimal number of clusters and the optimal 
classification accuracy. This method consists of a 
PSO and a FV-index method. In the FV-index 
method, the conditional and decision attribute 
values of the records in the dataset are fuzzified and 
discretized using the Fuzzy C-means (FCM) method 
in accordance with the cluster vectors given by the 
PSO and a rounding function specifying the number 
of clusters per attribute. Then, RS theory is first 
applied to determine the centroids of the lower 
approximate sets associated with each cluster of the 
decision attribute are determined by computing the 
mean conditional and decision attribute values of all 
the records within the corresponding sets. Secondly, 
VPRS theory is applied to determine the β-lower 
and β-upper approximate sets associated with each 
cluster of the decision attribute. Finally, the 
accuracy of VPRS classification of each cluster of 
the decision attribute is then computed as the 
cardinality ratio of the β-lower approximate sets to 
the β-upper approximate sets. The cluster centroids 
and accuracy of VPRS classification are then 
processed by a modified form of the Huang-index 

function, designated as the VM-index function, in 
order to determine the optimality of the 
discretization/classification results. In the event that 
the termination criteria are not satisfied, the PSO 
modifies the initial population of cluster vectors and 
the FV-index, comprising FCM, VPRS and VM-
index function, procedures are repeated. The entire 
process is repeated iteratively until the termination 
criteria are satisfied. The maximum value of the VM 
cluster validity index is then identified, and the 
corresponding cluster vector is taken as the optimal 
classification result. 
In accordance with the PSOVPRS-index method, 
each attribute of element ( iX ) in U  is mapped to an 
appropriate cluster amongst all of the clusters 
associated with the corresponding conditional 
attribute ( nCC ~1 ) or decision attribute ( d ). The 
detailed parameters of the PSOVPRS-index function 
are presented in the following section. Table 1 
summarizes the major components of the 
PSOVPRS-index function and the Huang-index 
function in order to emphasize the differences 
between them. 
 
 
3.1  Details of proposed PSOVPRS-index 
method 
Figure 1 illustrates the basic framework of the 
proposed PSOVPRS-index method. The details of 
each processing step are described in the following 
paragraphs. 
 
 
Step 1: Generate PSO particles 
As described in Section 2.4, the particles in the PSO 
algorithm have the form (

1aN ,
2aN .......

kaN , dN ), 
where 

iaN  indicates the number of clusters assigned 
to the i th conditional attribute ia , and dN  
represents the number of clusters assigned to the 
decision attribute d . The values of 

iaN and dN  are 

assigned by the random function. The number of 
decision attributes is indicated by default as one and 
the number, k , of conditional attributes is indicated 
in advance by the user. The PSO algorithm 
initializes by generating an initial population 
of 04=P  random candidate solutions and setting the 
specified number of iterations 001=M , where the 
values of each element of the particles is limited to 
the interval [2, maxN ]. This interval bounds the 
search space of the solution procedure for each 
attribute. That is, the minimum permissible value of 
the rounding function for each attribute is specified 
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as 2, while the maximum permissible values of the 
rounding function is specified as maxN . Note that 
the upper bound value of maxN  was specified by 
applying the Huang-based index method to a dataset 
with 2 conditional attributes and 1 decision attribute, 
and was used to provide a satisfactory classification 
performance. In order to ensure that the values of 
each element within the particle has a positive 
integer value derived from a rounding function, i.e. 

( )
ii aa NfloorN =  (17) 

 is applied as random values of 
iaN and dN had 

determined for each candidate solution within the 
specified search range. So, the each number of 
clusters assigned to the i th conditional attribute ia , 
and decision attribute d  round down into the form  
(

1aN ,
2aN .......

kaN , dN ).  

 
 
Step 2: Fuzzify attributes of dataset using FCM 
method 
In this step, a continuous valued dataset can be 
converted into an equivalent fuzzy dataset using the 
Fuzzy C-Means clustering method. 
 
 
Step 3: Assign each attribute of records to 
appropriate conditional or decision attribute 
clusters 
Using the index function given in Section 2.1, each 
conditional or decision attribute cluster to which 
each attribute of each record belong is determined. 
 
 
Step 4: Identify VPRS approximate sets and 
compute corresponding accuracy of VPRS 
classification 
Having mapped the attribute values of all the 
records to the appropriate conditional or decision 
attribute clusters, the β -lower and β -upper 
approximate sets associated with each cluster c of 
the decision attribute d are extracted. The accuracy 
of VPRS classification associated with each cluster 
of the decision attribute is then obtained by 
calculating the cardinality ratio of the corresponding 
β -lower approximate sets to the β -upper 
approximate sets. 
 
 

Step 5: Compute centroids of lower 
approximate sets associated with each cluster 
of the decision attribute 
Using RS theory, the multi-dimensional centroids of 
the lower approximate sets associated with each 
cluster of the decision attribute d are obtained by 
computing the mean attribute values (both 
conditional and decision) of all of the records within 
the corresponding lower approximate sets. 
 
 
Step 6: Determine value of VM-index 
function 
Having determined the number of clusters per 
attribute, the membership function values of all the 
attributes of all the records, the accuracy of VPRS 
classification and the centroids of the lower 
approximate sets, the optimality of the discretization 
and classification solution is analyzed using the 
VM-index function. 
 
 
Step 7: Compute fitness value 
In the existent case, each particle specifies a 
possible number of clusters for each conditional and 
decision attribute, and the aim of the PSO 
optimization approach is to make sure the number of 
attribute clusters which optimizes both the 
separation of the clusters in the dataset and the 
corresponding accuracy of VPRS classification. 
Hence, in analyzing the relative quality of each 
potential clustering / classifying solution, the fitness 
of the solution is defined as the negative value of the 
corresponding VM-index function. In other words, 
the objective of the PSO approach is to specify the 
number of clusters for each conditional and decision 
attribute which provides the minimum fitness value 
(i.e. the maximum value of the VM-index function). 
 
 
Step 8: Examine whether or not the 
termination criteria are satisfied 
Having calculated the values of the VM-index 
function for each of the 40 particles in the current 
position, a check is made to see whether or not the 
termination criteria are satisfied (e.g. “is the fitness 
values of all particles are the same?”, “has the 
simulation run time reached the specified value?”, 
“have the specified number of iterations been 
evolved?”, and so on). If the termination criteria are 
not satisfied, the PSO creates a new candidate 
solutions using the updating operations of velocity 
and position described in Section 2.4. The FV-index 
computation approaches described in the steps 
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above are then repeated in order to identify the 
optimal solution in the new population. Once the 
termination criteria are satisfied, the iteration 
approach ends. 
 
 
Step 9: Recognize value of VM cluster 
validity index 
Once the termination criteria have been satisfied, the 
particle in the current time which yields the 
maximum value of the VM-index function is 
recognized. The corresponding value of the VM-
index function is then recognized as the VM cluster 
validity index for the clustering / classification 
problem. 
 
 
3.2 A step-by-step example showing 
calculation of VM-index value 
This section illustrates the derivation of the VM-
index value for a simple hypothetical dataset 
comprising just four entries. An assumption is made 
that each entry has two conditional attributes, 1a , 2a , 
and one decision attributes, d . Let the four 
instances be defined as )75.0-,30.0,90.0(1x , 

)65.0-,20.0,10.1(2x , )30.0-,45.0,45.1(3x and 
)20.0-,55.0,55.1(4x , respectively. In accordance with 

the PSOVPRS-index method, a PSO algorithm is 
first applied to initialize a set of random candidate 
solutions which indicate the numbers of clusters 
assigned to the conditional and decision attributes. 
Suppose that each conditional and decision attribute 
is partitioned into 2 clusters. Then, the continuous 
data in the hypothetical dataset are discretized using 
the FCM technique. The membership function 
values of each attribute of each instance are 
summarized in Table 2(a). The attribute values of 
each instance are then assigned to appropriate 
conditional or decision attribute clusters by applying 
the index function maxI  to the corresponding 
membership function values. The mapping results 
are shown in Table 2(b). As shown, the discretized 
vectors of the four instances ix  (

1aI ,
2aI , dI ) have 

the form )2,2,2(1x , )2,2,2(2x , )1,1,1(3x , and )1,1,1(4x , 
respectively.  
The upper and lower approximate sets associated 
with each cluster of the decision attribute are 
calculated in accordance with the formulation given 
in Section 2.3.2 of Ref [20] and are also shown in 
Table 2(b). Moreover, the threshold parameter β  
associated with first and second clusters of the 
decision attribute are determined in accordance with 

the procedure given in Section 2.2.2 of Ref [11] and 
are 0.974 and 0.939, respectively. Thus, the β-upper 
and β-lower approximate sets obtained using VPRS 
are the same as the upper and lower approximate 
sets obtained using RS. The accuracy of VPRS 
classification associated with each cluster of the 
decision attribute is obtained by computing the 
cardinality ratio of the corresponding β-lower 
approximate sets to the β-upper approximate sets. In 
the present example, the classification accuracies 
are therefore equal to 1α =2/2=1.000 and 2α = 
2/2=1.000, respectively.  
The PSOVPRS procedure then determines the 
multi-dimensional centroids of the lower 
approximate sets associated with each cluster of the 
decision attribute by calculating the mean attribute 
values (both conditional and decision) of all the 
instances within the corresponding sets using RS 
theory. Thus, in the present example, the centroids 
of the lower approximate sets associated with the 
two cluster of the decision attribute are obtained as 

2z ′ = )2)(),(|( =∈ xCXRxxmean d =
}),{|( 21 xxxxmean ∈ =

)2)65.075.0(,2/)20.030.0(,2)10.10.90(( −−++ =
)70.0,0.25,.001( − and )1)(),(|(1 =∈=′ xCXRxxmeanz d

= }),{|( 43 xxxxmean ∈ = )0.25- 0.50,,1.50( , 
respectively.   
Having determined the membership function values 
of all the instances, the centroids of the lower 
approximate sets, and the accuracy of VPRS 
classification, the optimality of the discretization / 
classification outcome is evaluated using the VM-
index function (i.e., 

)1(),(M N
1

M
d

d

D
F
E

C
CV

N
cM ′×

′
×=

β
β α ). In 

describing the derivation of 
dNF ′β  

(where ∑ ′=′
=

d

d

N

c
cN EF

1
ββ ), the following discussions 

arbitrarily consider the computation of '
1Eβ . (Note, 

that '
2Eβ  is computed in an identical manner.). The 

first instance in the dataset, 1x , has attribute values 
of )75.0-,30.0,90.0(1x . In addition, the centroid of the 
lower approximate sets associated with the first 
cluster of the decision attribute is given 
by )0.25- 0.50,,1.50(1z ′ . As a result, 

))()(( 1111 azax ′− = )50.1(0.90− = -0.60 , 
))()(( 2121 azax ′− = 0.50)30.0( − = 02.0- , and 

))()(( 11 dzdx ′− = 25)).0((-0.75 −− = -0.50 . Therefore, 
the vector of 1111 zxx ′−=  has the form 
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( ) ( ) ( )[ ]dxaxax 11211111 ,, = [ ]05.0-,02.0-,0.60- , and the 
corresponding norm is equal to 11 zx ′−  = 

2
11

2
211

2
111 )()()( dxaxax ++  = 

222 0.50)()20.0(60).(-0 −+−+  = 0.806 . Let the 

fuzzification parameter m′  be specified as 2.0. 
Applying the notation 1jx′ = ))((2

1 dx jjμ × 1zx j ′−  , 

the effect of instance 1x on 1z′ , i.e., 11x′ , is obtained 
by multiplying 11 zx ′−  by the square of the 
corresponding membership function value, i.e., 

( )( ) 000.0001.0 2
1

2
11 ==dxμ . Thus, 11x′  has a value 

of 000.0 . 12x′ , 13x′  and 14x′  are calculated using 
an identical procedure. The corresponding results 
are shown in Table 2(c). The value of 1E ′β  is thus 

obtained as 1E ′β  = 1
4

1
1

2
1 )))((( αμ β∑ ′−

=j
jjj zxdx  = 

1
4

1
1 )( αβ∑ ′

=j
jx  = 1411211 )...( αβxxx ′++′+′  = 

(0.000+0.000+0.084+0.085)/1.000=0.169. Utilizing 
an identical approach to that described above, the 
value of 2E ′β  is obtained as 0.239. 

dNF ′β  is thus 

found to have a value of ∑ ′=′
=

2

1
2

c
cEF ββ =0.408.  

Factor 1E  in the VM-index function is a constant 
for a given dataset in which the instances belong to 
only one cluster. As a result, the attribute values of 
the centroid 1z of the illustrative dataset can be 
obtained using the arithmetic mean function 

)4,...,2,1},{|( =∈ ixxxmean i as 

)))20.0()30.0()65.0()75.0((
),55.045.020.030.0(
),55.11.4510.10.90((

−+−+−+−
+++
+++  = )475.0,375.0,25.1(1 −z . 

Based on the vector of centroid 1z , it can be shown 
that ))()(( 1111 azax − = 250).1(0.90− = 350.0− , 

))()(( 2121 azax − = 0.375)03.0( − = 507.0- , and 
))()(( 11 dzdx − = 0.475))(57.0(- −− = 752.0− . Therefore, 

the vector of 1111 zxx −=  has the form 
( ) ( ) ( )[ ]dxaxax 11211111 ,, = [ ]275.0,075.0,350.0- −− , and 

the corresponding norm is equal to 11 zx −  = 
2

11
2

211
2

111 )()()( dxaxax ++  = 
222 )275.0()075.0()350.0( −+−+− = 0451 . Similarly, 

the norms of 12 zx − , 13 zx −  and 14 zx −  are 
found to be 289.0 , 276.0 and 443.0 , respectively. 
The value of 1E  in the VM-index function is then 

obtained by summing the norms of 1j zx −  

where 4,...,2,1=j , yielding a value of 1E  = 460.1 .  
The value of 

d
DN′  in the VM-index function is 

obtained by calculating the maximum separation 
distance between the centroids of the lower 
approximate sets associated with the first and 
second clusters of the decision attribute. In the 
present example, these centroids are given 
by )25.0 0.50,,1.50(1 −′z and )70.-0,0.25,.001(2z ′ , 
respectively. Thus, the vector of 2121 zzz ′−′=  which 

maximizes the value of ji
N

ji
zzD

d

d
′−′=′

=1,
N max  has the 

form ( ) ( ) ( )[ ]dzazaz 12212121 ,, = [ ]45.0,0.50,0.25 . The 
corresponding norm is therefore equal to 

222 45.025.050.0 ++  = 187.0 .  
Given the parameter values specified / derived 
above (i.e., 2=MC  , 1E  = 460.1 , 2F ′β =0.408 and 

0.718N =′
d

D ), the VM-index function 

( )1(),(M N
1

M
d

d

D
F
E

C
CV

N
cM ′×

′
×=

β
β α ) returns a 

value of 1.284. 
 
 
4 Performance evaluation of 

PSOVPRS-index Method 
The validity and effectiveness of the proposed 
PSOVPRS-index method is evaluated by an 
illustrative example relating to electronic stock data 
extracted from the financial database maintained by 
the Taiwan Economic Journal (TEJ) [9, 25] for the 
first quarter of 2006. This database comprises 53 
financial indices (attributes) for each stock item 
(instance). However, for simplicity, the performance 
evaluations conducted in this present case were 
restricted to just 6 conditional attributes (i.e., (i) 
Business Profit Rate, (ii) Pretax Income %, (iii) Net 
Nonop.Inc./Rev, (iv) PS-Pre_Tax Income, (v) 
Oper.Income/Capital, and (vi) Pre Tax 
Income/Capital) and 1 decision attribute (i.e., 
EPSNet Income). A total of 307 records were 
obtained (See Table 3 for indicative values of each 
index for a selected subset of these 307 records) as 
the records for which some of the data was 
incomplete had deleted.  
In performing the evaluations, the effectiveness of 
the proposed method is explored by comparing the 
classification results with the results obtained from 
PSORS-index method and pseudo-supervised 
classification method. The PSOVPRS-index method 
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provides the means to discretize the continuous 
values of the individual attributes within a dataset 
and to classify datasets in which the records do not 
provide any class information. In contrast, 
supervised classification methods cluster attributes 
based on a consideration of class information. There 
are currently no classifiers available for the 
supervised classification of datasets with no class 
information. Therefore, it is impossible to establish 
a direct comparison between the classification 
performance obtained by the PSOVPRS-index 
method and those obtained from a supervised 
method. Accordingly, in this illustrative example, 
the classification performance of the PSOVPRS-
index method is compared with those of pseudo-
supervised decision-tree classification method, in 
which pseudo-class information is added to a dataset 
which initially lacks class information. The pseudo-
class information is obtained by applying the 
PSOVPRS-index method to the target dataset in 
order to identify the optimal number of clusters for 
the decision attribute. The maxI function presented 
in Section 2.1 is then used to acquire the appropriate 
decision attribute cluster for each record in the 
dataset. The resulting cluster index is then treated as 
pseudo-class information for the record. Meanwhile, 
the classification performance of the PSOVPRS-
index method is also compared with those of 
PSORS-index method using in [25] in which VPRS 
classification module was replaced by the 
conventional RS classification model. In this 
illustrative example, the PSOVPRS-index method, 
PSORS-index method, and the pseudo-supervised 
decision-tree classification method are used to 
classify training and testing datasets based upon a 
common 10-fold subsample of the stock market 
dataset. The optimal number of clusters for the 
decision attribute in this dataset is equal to 15, and 
thus the pseudo-class information added to the 
dataset to facilitate discretizing using the decision-
tree classification method has a value in the interval 
[1, 15]. A common k -fold subsample ( k =10) was 
used to confirm the performance of a classification 
method. Of the k  subsamples, one subsample was 
retained for use as validation data in testing the 
method, while the remaining k − 1 subsamples were 
used as training data.  
The classification performance of the three methods 
is evaluated in terms of the classification accuracy 
(CA). For the case of the PSOVPRS- (or PSORS-) 
index method, CA is defined as the ratio of the total 
cardinality of theβ-lower (or lower) approximation 
sets associated with each cluster of the decision 
attribute to the total number of samples in the 

dataset, i.e. UXR
dN

c
P∑

=1
)(β ( or UXR

dN

c
P∑

=1
)( ). For 

the pseudo-supervised decision-tree classification 
method, the CA is defined as the ratio of the number 
of records for which the measured class information 
is identical to the added pseudo-class information to 
the total number of records in the dataset. First, to 
compare the CA obtained for each training data and 
testing data through the PSOVPRS-index method 
with those through PSORS-index method [25], the 
CA obtained for each training data and testing data 
through the PSOVPRS-index method is higher than 
those through the PSORS-index method and 
pseudo-supervised decision-tree classification 
method, respectively, as shown in Table 4. 
Meantime, the average CA and the deviation of the 
CA obtained for the training and testing datasets by 
the PSOVPRS-index method, PSORS-index method 
and pseudo-supervised decision-tree classification 
method are shown in Table 4. It can be found that 
the PSOVPRS-index method produces an average 
CA of 0.79 for the training dataset and 0.99 for the 
testing dataset. In contrast, the PSORS-index 
method produces an average CA of 0.74 for the 
training dataset and 0.97 for the testing dataset, and 
the pseudo-supervised decision-tree classification 
method produces average CAs of 0.29 and 0.13 for 
the training dataset and testing dataset, respectively. 
In other words, the average CA obtained by the 
PSOVPRS-index method is higher than those 
obtained by the PSORS-index method and pseudo-
supervised decision-tree classification method for 
both datasets, respectively. In addition, it is seen 
that the lowest CA values obtained by the 
PSOVPRS-index method for the training and testing 
datasets (i.e. 0.74 and 0.87, respectively) are higher 
than or equal to those obtained by the PSORS-index 
method (i.e. 0.68 and 0.87, respectively). 
Meanwhile, the lowest CA results obtained by the 
PSOVPRS-index method for the training and testing 
datasets are also higher than those obtained by the 
pseudo-supervised decision-tree classification 
method. Thus, the performance of the PSOVPRS-
index method in optimizing the classification 
accuracy using a VPRS classification model is 
superior to those of the PSORS-index method in 
which the RS classification method is applied and 
pseudo-supervised classification decision-tree 
method in which a pseudo number of clusters is 
assigned to the decision attribute, respectively. 
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5 Conclusion 
This study has presented a method designated as the 
PSOVPRS-index method for clustering and 
classifying complex, real-world datasets. This 
method is based on a PSO, VPRS theory and a VM-
index function. The method provides the means to 
determine the optimal number of attribute clusters 
within the dataset and the optimal accuracy of 
VPRS classification. It should be conclude, from 
what has been said above, that:  
(1) The PSOVPRS-index method is applicable to 
continuous value datasets in which the records do 
not provide any class information and may be 
imprecise and uncertain. Therefore, it is impossible 
to establish a direct comparison between the 
classification results of the PSOVPRS-index method 
and those of supervised methods since supervised 
methods depend on categorical information to 
cluster the attributes. However, it has been shown 
that the accuracy of VPRS classification of the 
PSOVPRS-index method is better than those of 
pseudo-supervised decision-tree classification 
method when applied to a dataset to which pseudo-
class information is added to each record in order to 
facilitate classification.  
 (2) Applying a cross validation method to examine 
the accuracy of VPRS classification of the 
PSOVPRS-index method, the VRPS β-lower 
approximate set contains a greater number of 
instances than the RS lower approximate set. 
Therefore, the classification accuracy (CA) obtained 
for each training data and testing data through the 
PSOVPRS-index method is higher than those 
obtained through the PSORS-index method. In other 
words, the PSOVPRS-index method provides an 
extended applicability of classification using VPRS 
theory.  
Overall, the evaluation results given in this research 
have confirmed that the proposed PSOVPRS-index 
method provides a practical tool for optimizing both 
the number of clusters of attributes and the accuracy 
of VPRS classification when applied to the 
clustering/classification of complex, real-world 
datasets. Consequently, the proposed PSOVPRS-
index method will be used as the basis for an 
automatic portfolio selection mechanism designed 
to maximize the rate of return on the user’s 
investment. 
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Fuzzify attributes of dataset using FCM method 

Assign each attribute of records to appropriate conditional or 
decision attribute clusters 

Identify VPRS approximate sets and compute 
corresponding accuracy of VPRS classification 

Compute centroids of lower approximate sets associated 
with each cluster of the decision attribute 

Determine value of VM-index function 

 

Enter evolutionary 
l

Are termination criteria 
satisfied? 

Compute fitness value 

End 

Recognize value of VM cluster validity index 

Fig. 1 Flow chart showing basic steps in proposed PSOVPRS-index method.  

Generate PSO particles 
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Table 1 Detailed definitions of VM-index and Huang-based index methods.  
Formulation VM-index Huang-index [20] 
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MC  is the arithmetic mean of numbers of clusters of 

individual attributes; dN is the number of clusters of 

the conditional and decision attributes 

dN is the number of clusters of the conditional and decision 
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 (1) ))(( dx jcjμ  is the membership function of record jx  in the c th cluster of the decision attribute d . 

 (2) cz′  is the multi-dimensional centroid of the lower approximate sets associated with the c -th cluster of the decision attribute 

d  and is obtained by computing the mean values of the conditional and decision attributes of each record within the 
corresponding sets. 

 (3.1) cj zx ′− is the length of the vector (norm) between the jx record and cz′ . 

 

(3.2) c
n

j
jcc xE αββ ∑ ′=′

=1
, where 

cjj
m
cjjc zxdxx ′−=′ ′ ))((μ ; cαβ is the 

accuracy of VPRS classification when evaluated in 
terms of the c -th cluster of the decision attribute. 

 (3.2) c
n

j
jcc xE α∑ ′=′

=1
, where 

( )( ) cjj
m
cjjc zxdxx ′−=′ ′μ ; cα is the corresponding 

accuracy of approximation when evaluated in terms of the c th cluster 
of the decision attribute d  

ji
N

ji
zzD

d

d
′−′=′

=1,
N max  is the maximum separation distance among the centroids of all the lower approximate sets associated with the different 

clusters of the decision attribute. 
 
 
 
Table 2(a) Membership function values of each attribute of each instance 

Conditional attributes Decision attribute Code of  
instances 

1a  2a  d  

1 0.025 0.975 0.061 0.939 0.010 0.990 

2 0.063 0.937 0.025 0.975 0.015 0.985 

3 0.988 0.012 0.939 0.061 0.985 0.015 

4 0.992 0.008 0.974 0.026 0.990 0.010 
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Table 2(b). Lower approximate sets and upper approximate sets associated with c -th cluster of decision 
attribute 

Code of  
instances 

lower approximate sets ),(x):( XxcCXR d ∈=  

1 2 2 2 

2 2 2 2 
),2(x):( XxCXR d ∈=  

3 1 1 1 

4 1 1 1 
),1(x):( XxCXR d ∈=  

# Each of the lower approximate sets ),(x):( XxcCXR D ∈= is equal to the corresponding upper 

approximate set ),)(:( XxcxCXR D ∈= .  

 
 
Table 2(c) Values of jcx′ (= ))((2

c dx jjμ × cj zx ′− ) 

jx  cz′  

j  c=1 c=2 

1 0.120 0.000 

2 0.000 0.000 

3 0.615 0.084 

4 0.786 0.085 

∑ ′
=

4

1j
jcx  0.239 0.169 

 
 
Table 3 Illustrative financial data extracted from TEJ database for first 
quarter in 2006 
Code of 
companies (a) (b) (c) (d) (e) (f) (g) 

1 -23.4 31.22 54.62 0.07 -0. 34 0.57 -0.03

2 4.14 7.86 3.72 0.231 1.23 2.34 -0.58

3 0.75 0.11 -0.65 0.01 0.73 0.11 2.01 

… … … … … … … … 

305 10.22 11.99 1.77 1.50 12.79 15.01 4.01 

306 5.27 7.54 2.26 0.94 6.50 9.28 5.17 

307 2.38 -1.42 -3.79 -0.18 3.04 -1.81 -2.88

The attributes of columns are (a) Business Profit Rate (b) Pre-Tax Income % 
(c) Net Non-op.Inc./Rev. (d) PS-Pre_Tax Income (e) Oper.Income/Capital (f) 
Pre Tax Income/Capital (g) EPS-Net Income 

 
 
 
 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Kuang Yu Huang

ISSN: 1790-0832 142 Issue 3, Volume 8, March 2011



 
 
Table 4 Comparison of classification accuracy (CA) obtained from PSOVPRS-index method, PSORS-index method, and pseudo-supervised decision-tree 
classification method for 10-fold subsamples. 
 PSOVPRS-index method PSORS-index method Pseudo-supervised decision-tree 

classification method 
i th subsamples training dataset testing dataset training dataset testing dataset training dataset testing dataset 
1 0.76 1.00 0.69 0.94 0.34 0.13 
2 0.85 1.00 0.81 1.00 0.31 0.06 
3 0.91 1.00 0.76 1.00 0.30 0.16 
4 0.80 1.00 0.72 1.00 0.27 0.16 
5 0.77 1.00 0.68 1.00 0.30 0.03 
6 0.74 1.00 0.71 1.00 0.25 0.10 
7 0.77 0.87 0.72 0.87 0.29 0.13 
8 0.81 1.00 0.77 0.93 0.26 0.07 
9 0.77 1.00 0.76 0.93 0.30 0.27 
10 0.78 1.00 0.77 1.00 0.31 0.17 
average CA 0.79 0.99 0.74 0.97 0.29 0.13 
deviation of CA 4.87% 4.08% 4.11% 4.60% 2.75% 6.74% 
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