
Delay Coerced Multi Constrained Quality of Service Routing Algorithm

PRAKASH P.S

 Department of Computer Science and Engineering

AnnaUniversity of Technology, Coimbatore

Sri Ramakrishna Engineering College, Coimbatore 641 022

INDIA

prakashpsrajan@rediffmail.com

 SELVAN.S

Principal

Anna University, Chennai 600 025

Alpha College of Engineering, Chennai 602 107

INDIA

Abstract: - IP networks are evolving from data communication infrastructure into many tight-constraint

applications such as video conferencing, IP telephony and require stringent Quality-of-Service (QoS)

requirements. A rudimentary issue in QoS routing is to find a path between source-destination pair that satisfies

two or more end-to-end constraints. A difficulty in multi constrained routing is that it is intractable. In this

context, a multi constrained QoS routing algorithm, Delay Coerced Multi Constrained Routing (DCMCR) is

proposed. It approximates (K-1) constraints while coercing one of the constraints. DCMCR is (1+α) (K-1)

approximation algorithm and it finds a feasible solution whose first path weight is bound by the first constraint

and approximating remaining (K-1) constraints. The proposed algorithm is applied where one of the constraints

is strictly satisfied and it performs well by choosing appropriate values of α and constraint bounds. The variety

of experimental validations is carried out on different scenario to analyze the performance of the proposed

scheme.

Key-Words: - QoS routing, coerce, multi constraint, approximation algorithm, Additive, Intractable.

1 Introduction

Determining a feasible path that satisfies a set of

constraints such as delay, cost and reliability of path

is a challenging issue in QoS routing [3,5,14] . A

difficulty in multi constrained routing is that it is

intractable [2,15,24]. QoS metrics are broadly

divided into three different categories namely

additive, multiplicative and concave metrics.

Additive metric is the summation of all links

constituting the path e.g. delay, hop-count, delay

variance, cost [1], [25,18,20,12]. Multiplicative

metric is the product of all links constituting the

path. Reliability (1-loss rate) is an example of

multiplicative metric. If an edge weight represents

the reliability of the edge then the corresponding

path weight is the product of the weight associated

with the edges on the path. Since the logarithm of

the product of N positive numbers is the sum of the

logarithm of the N positive numbers. Hence QoS

metric such as reliability is known as additive metric

i.e. multiplicative metric can be converted into

additive metric [17]. Another kind of QoS metric is

known as concave (bottleneck) metric where the

corresponding weight of a path is the smallest of the

weight of the edges on the path e.g. bandwidth i.e.

consider sub graphs with only those edges whose

weights are greater than or equal to a particular

chosen value. The concave metric of a path is the

maximum or the minimum of the metric overall the

links in the path. This metric is usually dealt with a

preprocessing step called topology filtering, wherein

all the links that do not satisfy the constraint are

pruned and not considered further in the path

selection process. The metrics considered should be

orthogonal to each other so that there is no

redundant information among the metrics [13].The

QoS routing problem with a single metric can be

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 65 Issue 2, Volume 8, February 2011

solved in polynomial time such as the widest path or

least delay path, or least cost path problem etc.

However, multi-constrained QoS routing problems

where more than one additive parameter is involved,

such as least delay and cost are intractable [11, 7,

16]. The MCP problem has been studied

extensively. Most of the existing works concentrate

on K=2 where K is the number of constraints,

known as the delay constrained least cost problem

where two edge weights are cost and delay and one

seeks for a least cost path under the constraint that

the delay of the path is within a given delay

constraint. Ergun et al [5] presented an fully

polynomial approximation scheme for the case of

acyclic graphs. Chen and Nahrstdt [4] studied the

decision version of the DCLC problem where the

path that satisfies both the delay constraint and the

cost constraint. Goel et al [6] presented an

approximation algorithm for the single source all

destination delay sensitive routing problem. The

authors of [8, 23] proposed to use a linear

combination of the two weights and presented

simple algorithms for finding a good linear

combination of the two weights. In this paper MCP

problem with K≥2 is presented where the first

constraint is enforced while other K-1 constraints

are approximated.

In this paper, a multi constrained routing algorithm

DCMCR is proposed which coerces one constraint

while approximating (K-1) remaining constraints

and it is (K-1) (1+α) approximation algorithm. This

algorithm is found to be useful where one of the

constraints is strictly satisfied. When the number of

constraints is reduced to two this algorithm

produces (1+α) approximation with better

performance than that of many other algorithms

designed for this purpose. The proposed algorithm is

simulated through experiments on arbitrary and

other network topologies and found that it

outperforms other QoS routing schemes in the same

suite. In this paper, the quality of service such as

throughput and bandwidth is taken into account

which is not considered in our earlier work. The

effect of size of packet is also considered.

The rest of the paper is organized as follows.

Section 2 describes DCMCR problem definition.

The proposed algorithm is explained in section 3.

Proof of the algorithm is described in section 4.

Example calculation and experimental results are

described in section 5 and 6 respectively. Finally

section 7 concludes the paper.

2 DCMCR Problem Definition

A network is defined by an edge weighted graph

G={V,E}, where V is the set of ‘v’ vertices and E is

the set of ‘e’ edges. Each edge ‘e’ associated with K

weights representing QoS constraints and wk(e)≥0 is

the K
th
 weight of edge ‘e’,∀ e∈E, 1≤k≤K. In this

problem, for each edge ‘e’ belongs to graph G, w1(e)

is denotes the delay of e and wk(e)/W, 2≤k≤K

denotes the cost of ‘e’. It is to seek the least cost s-d

path in G with path delay no more than the delay

constraint bound W1. In this work, D(e) is used

rather than w1(e) to denote the delay and C(e) rather

then wk(e)/W to denote cost. ∆d is used rather than

W1 to denote delay constraint bound and ∆c rather

than wk(e)/W, 2≤k≤K to denote cost constraint

bound. For a path ‘pDMR’ in G, the K
th
 weight of

path pDMR is denoted by wk(pDMR), is the sum of Kth

weights over the edges on pDMR i.e.

∑
∈

=
DMRpe

kDMRk)e(w)p(w .

DCMCR (G,s,d,∆d,∆c,D,C): An edge-weighted

directed graph G=(V,E,D,C) where each edge

Ee ∈ is associated with a delay D(e) and a cost

C(e). Assume both delay and cost is non-negative

real values.
d∆ is the delay constraint and

c∆ is the

cost constraint for the source-destination pair. The

objective is to find a path ‘pDMR’ for a given s-d in G

such that C(pDMR)= ∑
∈ DMRpe

)e(C is minimized subject to

the constraint d

pe

DMR

DMR

)e(D)p(D ∆≤= ∑
∈

. A

source destination path ‘pDMR’ is called delay

constrained path if dDMR)p(D ∆≤ . This algorithm

searches for a least-cost delay constrained path and

is denoted by DMRp . In this algorithm, the first

constraint is coerced w1(pDMR)≤∆d in the source-

destination pair. DCMCR algorithm needs to solve

the instance MCPv2.2.

MCPv2.2(G,s,d,K,∆d,∆c,C,D):A graph G =

{V,E,D,C}with K edge positive integer valued edge

weights D(e) and C(e) associated with each edge

e∈E. A positive delay constraint bound ∆d and a

positive cost constraint bound ∆c is defined. The

objective is to find a source-destination path ‘p’

such that D(p)≤ ∆d and C(p)≤∆c.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 66 Issue 2, Volume 8, February 2011

3 Algorithm Description

In this section, DCMCR algorithm for K≥2 QoS

constraints is presented. The proposed algorithm is

shown in Fig.1.

UB Upper bound

LB Lower bound

pDMR Feasible shortest path

paux Auxiliary path

α Approximation factor

c Smallest constraint

T Test value

v Number of vertices

wk(pDMR) k
th

weight of feasible path pDMR

waux(paux) kth auxiliary weight of auxiliary path

paux

S Set of vertices V

Q Minimum priority queue

s-d Source-destination pair

γ Real number to construct auxiliary

graph

Gaux Auxiliary graph

(V,E) Set of vertices and set of edges

(u,v) Edge

K Number of QoS constraints

len[][] (K-1) dimensional array to store the length

of the edge.

pred[][] (K-1) dimensional array to store the

predecessor.

d∆ Delay constraint

C∆ Cost constraint

Caux Auxiliary real value cost

C Real value cost

D Real value delay

1. void main() {

2. int c, C[], D[], Caux[], V, S,E,Q, k, K,i=0;

3. int LB[], UB[], len[][], pred[][];

4. int α, a, T, d∆ , C∆ , γ;

5. string pDMR, paux, e, u, v, b, s,;

6. find_smallest_constraint() {

/* initialize the set S of vertices and minimum

priority queue Q */

7. S=0;

8. Q=V(G);

9. while(Q!=0) {

10. Q=V-S;

11. c=Q;}

/* initialize a lower bound and upper bound such

that any s-d path ‘pDMR’ with D(pDMR)<= d∆ */

12. D(pDMR) =null; C(pDMR)=null;

13. for(ek=1;ek<=pDMR;ek++){

14. D(pDMR) = D(pDMR) + D(ek);

15. C(pDMR) = C(pDMR) + C(ek); }

16. if(D(pDMR)<= d∆ && C(pDMR)>= c) {

17. LB[0]=c;

18. UB[0]=c*v;}}//endfind_smallest_constraint()

/*construct an auxiliary graph Gaux which is an

instance of graph G to find the optimal value xopt of

DCMCR */

19. construct_auxgraph() {

20. γ = (v-1)/LB*α;

21. Caux(e) = γ* C(e);}

22. a = log(v);

23. α = pow(a,2);

/* perform testing procedure to refine the value of

lower bound LB and upper bound UB */

24. while (UB[i] >=2(1+ α)LB[i]) {

25. T=sqrt ((LB[i]*UB[i])/(1+α));

26. if(D(p)<= d∆ && Caux(p)<= (v-1)/α) {

27. String Test(T,α)= “yes”; }

28. else { Test(T,α)= “no”; }

29. if(Test(T,α) = = “yes”) {

30. UB[i+1] = T(1+α);

31. LB[i+1] = LB[i]; }

32. else { UB[i+1]= UB[i];

33. LB[i+1]

 = T; } }

34. i++;

35. UB= UB[i];

36. LB = LB[i];} //end construct_auxgraph()

37. mcpv2.2() {

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 67 Issue 2, Volume 8, February 2011

/*initialize (K-1) dimensional array to store length

and predecessor of edges*/

38. K=3;

39. for(k=2;k<=K;k++) {

40. len[v,ck] = ∞ ;

41. pred[v,ck] = null;

42. len[s,ck] = 0; }

 /* update array values */

43. for(k=2;k<=K;k++) {

44. for((u,v)=1;(u,v)<=E;(u,v)++) {

45. if(len[v,ck] > len[u,bk] +w1(u,v)) {

46. len[v,ck] = len[u,bk] +w1(u,v);

47. pred[v,ck] = u; }}}

/ * find the s-d path paux such that D(paux) < = d∆

and Caux(paux) <=c */

48. if(len[d,c] < = d∆) {

49. pDMR =paux;

50. printf(“Feasible path is returned %s”,pDMR);

51. break (); }

52. else {

53. printf(“No feasible path found”);

54. break ();}}// end mcpv2.2()

55. }//end main

Fig.1. DCMCR Algorithm

Line 1-5: The pseudo code begins with the

initialization process that the DCMCR algorithm

initializes all parameters.

Line 6-11: DCMCR performs a function called

find_smallest_constraint () that is to find smallest

constraint ‘c’ for graph G. To accomplish this

operation DCMCR algorithm uses a conventional

shortest path algorithm.

Line 12-18: DCMCR algorithm initializes the lower

and upper bounds to compute the optimal value xopt.

To accomplish this DCMCR finds the delay and

cost of each edge along the path pDMR. Then

compare the delay of path D(pDMR) with delay

constraint ∆d and cost of the path C(pDMR) with the

smallest constraint ‘c’. If the delay and cost satisfies

the condition then DCMCR initializes the lower and

upper bounds to compute the optimal value xopt.

DCMCR uses the following equation to compute

lower and upper bounds such that LB= c and UB =

c*v where ‘v’ is the number of vertices in graph G.

LB and UB denote the sequence of lower and upper

bound pair. The value of xopt lies between lower and

upper bound values i.e. LB≤xopt≤UB.

Line 19-23: DCMCR uses construct auxgraph () to

construct an auxiliary graph Gaux=(V,E,D,Caux),

which is an instance of graph G=(V,E,D,C). The

auxiliary graph is same as G except that the edge

cost weighting function C is changed to Caux such

that Caux(e) = [C(e)*γ] for every e∈E.

Line 24-36: DCMCR refines the upper and lower

bound values until the condition UB≤2(1+α)LB

satisfies as explained in while loop. DCMCR uses

the testing procedure to refine the lower and upper

bound values. In testing procedure, DCMCR uses a

positive real number γ. An auxiliary graph

Gaux=(V,E,D,Caux), an instance of graph

G=(V,E,D,C), which is same as G except that the

edge cost weighting function C is changed to Caux,

such that Caux(e) = C(e)*γ for every Ee ∈ . For

given real numbers T > 0,α > 0, TEST(T,α) = “yes”,

if MCPv2.2(Gaux,s,d,∆d,(v-1/α),D,Caux) has feasible

solution where γ = (v-1/T.W.α) and define

TEST(T,α) = “no”, if MCPv2.2 (Gaux,s,d,∆d,(v-

1/α),D,Caux) has infeasible solution. It can be proved

that TEST(T,α) = “yes” implies that xopt <T(1+α)

and TEST(T,α) = “no” implies xopt >T. Let xopt is

the optimal value of DCMCR. Using testing

procedure DCMCR algorithm refines the lower and

upper bound values such that if TEST(T,α) = “yes”

then UB = T(1+α) and if TEST(T,α) = “no” then

LB=T. If UB≤2(1+α)LB then DCMCR decide the

lower bound and upper bound values for further

calculations.

Line 37-47: DCMCR applies mcpv2.2(), an

instance of DCMCR to compute an source-

destination feasible path for auxiliary graph.

mcpv2.2() initializes the (K-1) dimensional arrays

such as len[][] and pred[][] to store the length and

predecessor of each edge along the auxiliary graph.

DCMCR uses the edge relaxation method to update

the length and predecessor of each edge. Thus, it

updates the length of entire source-destination pair.

Here, MCPv2.2 checks whether or not the length of

edge ‘v’ is greater than the summation of path

length of edge ‘u’ and edge weight of edge (u,v). If

this condition satisfies, it updates each edge along

the path.

Line 48-54: DCMCR checks whether the length of

s-d path len[d,ck] is less than or equal to auxiliary

delay constraint bound ∆d such that len[d,ck]≤∆d. If

the length is less then MCPv2.2 returns the path paux

is feasible path for DCMCR, otherwise not.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 68 Issue 2, Volume 8, February 2011

4 Proof of MCPv3 Algorithm

It is to be proved that the path paux found by

MCPv2.2 algorithm is guaranteed to be (1+ α)

approximation of DCMCR.This algorithm, for any

given value α > 0 returns a path ‘pDMR’ for a source-

destination pair s-d that is an (1+α) approximation

of DCMCR (G, s, d, K, ∆d, D, C). Find bottleneck

edge cost ‘c’ such that an s-d path pDMR, with

D(pDMR)≤
d∆ and C(e)≤c for all e ∈pDMR. Then any

source-destination path ‘p’, D(p)≤ d∆ must contain

at least one edge ‘e’C(e)≥c.It is known that c ≤ xopt ≤

c.v, where ‘v’ is the number of vertices and ‘c’ is

the smallest constraint.

LB[0] ≤ xopt ≤ UB[0] ≤ v.LB[0] (Since LB=c and

UB=c.v) (1)

Let pDMR denote optimal solution of

DCMCR(G,s,d,K,∆d,D,C) that is pDMR is an s-d path

such that,

D(pDMR) ≤ ∆d, C(pDMR) ≤ xopt (2)

 Construct an auxiliary graph Gaux,

having an auxiliary edge weight, Caux(e)=[C(e).γ].

Let
α⋅

−
=γ

LB

)1v(
.

Here, construct an auxiliary graph Gaux, an instance

of graph G to find the optimal value xopt of

algorithm DCMCR. To find a xopt, a testing

procedure defined in this algorithm is performed.

Hence,

 []∑
∈

+γ⋅=
DMRpe

DMRaux 1))e(C()p(C

 []∑
∈

−+γ⋅≤
DMRpe

)1v())e(C([pDMR has at

most (v-1) edges].

 ∑
∈

γ+−≤
DMRpe

)e(C)1v(

)p(C)1v(DMRγ+−≤ (3)

α⋅

−
+−≤

LB

)1v(
)p(C)1v(DMR

 Substitute the value of C(pDMR) from

Equation (2) ,

α⋅

−
⋅+−=
LB

)1v(
x)1v()p(C optDMRaux

 Substitute the value of xopt from

Equation (1),

α⋅

−⋅
+−=

LB

)1v(UB
)1v()p(C DMRaux (4)

 The value of Caux(pDMR) is scaled down

to nearest lower integer. From Equation (4), the path

pDMR is feasible solution of MCPv2.2

)C,D),1v(
LB

)1v(UB
,,d,s,G(auxdaux −+






α⋅

−⋅
∆

Therefore, find a path paux (from auxiliary graph)

and this path paux may be different from pDMR. If paux

is feasible, it is guaranteed to return a feasible path

in DCMCR.

Now, it is to prove that path paux found by algorithm

MCPv2.2 is guaranteed to be an (1+α)-

approximation of DCMCR. Since paux is computed

by the algorithm,

 daux)p(D ∆≤ and

)1v(
LB

)1v(UB
)p(C auxaux −+






α⋅

−⋅
≤ (5)

and)p(C)p(C DMRauxauxaux ≤ (6)

 It is known that, []γ⋅=)e(C)e(Caux

 []γ⋅=)p(C)p(C auxauxaux ,

)p(C
1

)p(C auxauxaux ⋅
γ

=

 From Equation (5),

)p(C
1

)p(C DMRauxaux ⋅
γ

=

 From Equation (3),

 [])1v()p(C
1

)p(C DMRaux −+⋅γ⋅
γ

=

 [since

aux DMR DMRC (p) (v -1) + γ.C(p)≤]

 It is known that C (pDMR) ≤ xopt,

therefore,

 [])1v(x
1

)p(C optaux −+⋅γ⋅
γ

=

γ

−
+≤

)1v(
xopt

α⋅

−

−
+≤

LB

)1v(

)1v(
xopt , [Q]

)1(

α
γ

⋅

−
=

LB

v
.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 69 Issue 2, Volume 8, February 2011

 α⋅+≤ LBxopt

 α⋅+≤ optopt xx , [Q LB ≤ xopt]

)1(x)p(C optaux α+≤ (7)

Equation (7) shows that paux is an (1+α) approximation

of DCMCR.This proves that paux is an

)1(α+ approximation to DCMCR. Here delay is

coerced and remaining constraints are approximated

when 2k ≥ .

5 Example Calculation

A feasible path PDMR such that C(PDMR)

=

DMRe P

c(e)
∈

∑ is minimized subject to the constraint

D(PDMR) =

DMR

d

e P

D(e)
∈

≤ ∆∑ where ∆d=10,

D(e)=w1(e) and C(e)= kw (e)
max

W

 
 
 

, 2≤k≤K.

Arbitrary topology shown in Fig. 2 is considered to

compute the feasible paths.

m p
(6,8,9)

b f h j
(1,2,2) (1,2,1)

(1,2,1)

(7,8,7)
(8,9,9)

(7,7,6)

s

(1,1,2)

c

a

(1,1,2)

(4,5,6)

(2,3,1)

e

(1,2,3)

g i k
(1,2,2) (1,2,3) (1,3,1)

(6,5,3)

d

(1,3,2)

(5,4,5) (9,9,8)

l n

(6,7,6)
(6,8,7)

(8,6,7)

(6,7,6)

(6,7,6)
(1,2,3)

(1,2,2)

(1,1,1)

(9,7,5)

(1,2,2) (5,3,2)

Fig.2. Arbitrary Topology

For each edge D(e) and C(e) are to be found as

follows:

 D(s,b) = 1 D(k,d) = 1

 D(b,f) = 1 D(b,c) = 2

 D(f,h) = 1 D(c,a) = 4

 D(h,j) = 1 D(c,e) = 1

 D(j,d) = 1 D(a,e) = 1

 D(s,a) = 1 D(f,e) = 1

 D(a,g) = 1 D(g,f) = 6

 D(g,i) = 1 D(f,i) = 1

 D(i,k) = 1 D(i,h) = 5

 D(j,i) = 5 D(b,m) = 7

 D(m,p) = 6 D(m,h) = 8

 D(p,j) = 7 D(a,l) = 6

 D(l,n) = 8 D(l,i) = 6

 D(n,k) = 6 D(n,g) = 9

 D(i,d) = 6 D(h,d) = 9

 Delay of Each path is to be calculated as

shown below:

1) D(sbfhjd) = 5

2) D(sbfikd) = 5

3) D(sbfihjd) = 10

4) D(sbfhjikd) = 11

5) D(sagikd) = 5

6) D(sagihjd) = 10

7) D(sagfikd) = 11

8) D(sagfhjd) = 11

9) D(sagfhjikd) = 17

10) D(sagfihjd) = 16

11) D(sbcagikd) = 11

12) D(sbcagihjd) = 16

13) D(sbcagfikd) = 17

14) D(sbcagfhjd) = 17

15) D(sbcagfihjd) = 22

16) D(sbcagfhjikd) = 23

17) D(sbmpjd) = 22

18) D(sbmhjd) = 18

19) D(sbmhd) = 25

20) D(sagid) = 9

21) D(salnkd) = 22

22) D(salikd) = 15

23) D(salid) = 19

For each edge find C(e)= 








W

ewk)(
max , 2≤k≤K

The cost of each edge is as follows:

C(s,b)= max(1/22, 2/20)= max(0.05, 0.1)=0.1

C(b,f)= max(2/22, 2/20)=max(0.09,0.1)=0.1

C(f,h) = max(,2/22,1/20)= max(0.09,0.05)=0.09

C(h,j) = max(2/22,1/20) = max(0.09,0.05)=0.09

C(j,d)= max(2/22,2/20)= max(0.09,0.1)= 0.1

C(s,a) = max(1/22,2/20) = max(0.045,0.1)=0.1

C(a,g)= max(2/22,2/20)= max(0.09,0.1)= 0.1

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 70 Issue 2, Volume 8, February 2011

C(g,i) = max(2/22,3/20)=max(0.09,0.15)=0.15

C(i,k) = max(3/22,1/20)=max(0.14,0.05)=0.14

C(k,d)= max(3/22,2/20)=max(0.14,0.1)=0.14

C(b,c)= max(3/22,1/20)=max(0.14,0.05)= 0.14

C(c,e)= max(2/22,2/20) =max(0.09,0.1)= 0.1

C(a,e)= max(2/22,3/20)=max(0.09,0.15)= 0.15

C(f,e)= max(1/22,1/20)=max(0.045,0.05)=0.05

C(f,i) = max(2/22,3/20)=max(0.09,0.15) = 0.15

C(i,d)= max(7/22,6/20)=max(0.318,0.3) =0.318

C(i,h)= max(4/22,5/20)=max(0.18,0.25)=0.25

C(c,a)= max(5/22,6/20)=max(0.23,0.3)=0.3

C(j,i)= max(3/22,2/20)=max(0.14,0.1)=0.14

C(g,f)= max(5/22,3/20)=max(0.23,0.15)=0.23

C(h,d)= max(9/22,8/20)= max(0.41,0.4)=0.41

C(b,m)= max(8/22,7/20)=max(0.36,0.35)=0.36

C(m,h)= max(9/22,9/20)= max(0.41,0.45)=0.45

C(m,p)= max(8/22,9/20)=max(0.36,0.45)=0.45

C(p,j)= max(7/22,6/20)=max(0.318,0.3)=0.318

C (l,n)= max(6/22,7/20)= max(0.27,0.35)=0.35

C(n,k)= max(7/22,6/20)=max(0.318,0.3)=0.318

C(a,l)= max(7/22,8/20)=max(0.32,0.4)=0.4

C(l,i)= max(8/22,7/20)=max(0.36,0.35)=0.36

C(n,g)= max(7/22,5/20)= max(0.318,0.25)=0.318

The arbitrary topology with appropriate edge cost

values are shown in Fig.3.

m p

b f h j
(0.1) (0.09)

(0.09)

s

(0.1)

c

a

(0.1)

e

g i k
(0.1) (0.15) (0.14)

d

(0.14)

l n

(0.1)

(0.14)

(0.3)

(0.1)

(0.15)

(0.15)

(0.23)

(0.25)

(0.14)

(0.05)

(0.318)

(0.35)

(0.36)
(0.318)

(0.32)

(0.45)

(0.36)
(0.45)

(0.318)

(0.41)

(0.318)

Fig. 3. Arbitrary Topology with

DCMCR Cost Values

Cost of each path is calculated as summation of

edge weights of the paths as shown below:

1) D(sbfhjd) = 0.48

2) D(sbfikd) = 0.63

3) D(sbfihjd) = 0.79

4) D(sbfhjikd) = 0.8

5) D(sagikd) = 0.63

6) D(sagihjd) = 0.79

7) D(sagfikd) = 0.86

8) D(sagfhjd) = 0.71

9) D(sagfhjikd) = 1.03

10) D(sagfihjd) = 1.02

11) D(sbcagikd) = 1.07

12) D(sbcagihjd) = 1.23

13) D(sbcagfikd) = 1.30

14) D(sbcagfhjd) = 1.15

15) D(sbcagfihjd) = 1.46

16) D(sbcagfhjikd) = 1.47

17) D(sbmpjd) = 1.328

18) D(sbmhjd) = 1.1

19) D(sbmhd) = 1.32

20) D(sagid) = 0.668

21) D(salnkd) = 1.228

22) D(salikd) = 1.058

23) D(salid) = 1.096

Then, to find the feasible path(s) using DCMCR

Algorithm

 1) Consider p(sbfhjd) path

 D(p) = 5 ≤ 10 (i.e. it satisfies the

delay constraint)

 C(p) = 0.48

 2) Consider p(sbfikd) path

 D(p) = 5

 C(p)=0.63

 3) Consider p(sbfihjd) path

 D(p) =10

 C(p)= 0.79

 4) Consider p(sagikd) path

 D(p) =5

 C(p)= 0.63

 5) Consider p(sagihjd) path

 D(p) =10

 C(p)= 0.79

 6) Consider p(sagid)

 D(p)= 9

 C(p)= 0.668

These six paths are selected in the 23 total available

paths. In other paths, the first constraint is not

satisfied and hence those paths are not selected.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 71 Issue 2, Volume 8, February 2011

DCMCR returns the following path as optimum as

its cost is least in all six feasible paths.

 PDMR (sbfhjd) = D(P) =5

 C(P)= 0.48

From the Fig. 4 it is observed that the region below

the plane offers the feasible paths.

5.1 Testing Procedure

DCMCR uses the testing to refine the lower and

upper bound values. For testing procedure construct

an auxiliary graph Gaux(G,s,d,K.∆d,

(V-1/α),D,Caux) and define Test (T, α) =YES if

MCPv2.2(Gauxs,s,d,K.∆d,(V-1/α),D,Caux) has feasible

solution, otherwise define Test(T, α) =NO where T

and α are real numbers i.e. find an source-

destination path Paux in Gaux such that D(P)= ∆d and

C(P)≤ (V-1)/ α.

6

8

10

12

14

16

5

6

7

8

9

10

9.0
9.5

10.0
10.5

11.0
11.5

12.0
12.5

ωωωω
3333

ωωωω 1111

ωωωω2222

(5,9,8)

(5,10,9)

(10,13,15)

(5,11,10)

(9,13,12)

Fig. 4. Optimal Path Weights of DCMCR

on 3D Plane

In MCPv2.2 cost constraint is defined as Caux and

Caux(e)=C(e).γ where γ = 






 −

α..

1

WT

V
. In the arbitrary

topology the following values are defined. The

value of γ determines the auxiliary graph i.e. based

on Testing values, weight bound and approximation

factor γ is computed.

 N=16, T=1, α=1 and W=10.

 γ = 






 −

α..

1

WT

V
= 1.5

 Consider the path p(sbfhjd)

 C(p)= 








W

pwk)(
max where 2≤k≤K.

Caux (s,b) =C(s,b).γ

Caux (s,b) =[0.1*1.5] = 0.15

Caux(s,b) =[0.1*1.5] = 0.15

Caux (b,f) =[0.1*1.5] = 0.15

Caux (f,h) =[0.09*1.5] = 0.135

Caux (h,j) =[0.09*1.5] = 0.135

Caux (j,d) =[0.1*1.5] = 0.15

Caux (s,a) =[0.1*1.5] = 0.15

Caux (a,g) =[0.1*1.5] = 0.15

Caux (g,i) =[0.15*1.5] = 0.225

Caux (i,k) =[0.14*1.5] = 0.21

Caux (k,d) =[0.14*1.5] = 0.21

Caux (a,e) =[0.15*1.5] = 0.225

Caux (b,c) =[0.14*1.5] = 0.21

Caux (c,e) =[0.1*1.5] = 0.15

Caux (c,a) =[0.3*1.5] = 0.45

Caux (g,f) =[0.23*1.5] = 0.345

Caux (h,d) =[0.41*1.5] = 0.615

Caux (f,i) =[0.15*1.5] = 0.225

Caux (i,h) =[0.25*1.5] = 0.375

Caux (j,i) =[0.14*1.5] = 0.21

Caux (f,e) =[0.05*1.5] = 0.075

Caux (a,l) = [0.318*1.5]=0.477

Caux (l,n) = [0.35*1.5]= 0.525

Caux (l,i) = [0.36*1.5]= 0.54

Caux (n,g) = [0.318*1.5]= 0.477

Caux (n,k) = [0.32*1.5]= 0.48

Caux (b,m) = [0.36*1.5]=0.54

Caux (m,p) = [0.45*1.5]=0.675

Caux (m,h) =[0.45*1.5] = 0.675

Caux (p,j) =[0.318*1.5]= 0.477

Caux (i,d) =[0.318*1.5]= 0.477

Fig.5. represents the auxiliary graph with new
weights.

m p

b f h j
(0.15) (0.135)

(0.135)

s

(0.15)

c

a

(0.15)

e

g i k
(0.15) (0.225) (0.21)

d

(0.21)

l n

(0.15)

(0.21)

(0.45)

(0.15)

(0.225)

(0.225)

(0.345)

(0.375)

(0.21)

(0.075)

(0.477)

(0.525)

(0.54)
(0.477)

(0.48)

(0.675)

(0.54) (0.477)
(0.675)

(0.477)

(0.615)

Fig. 5. Auxiliary Graph with New Weights

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 72 Issue 2, Volume 8, February 2011

D(p(sbfhjd))=D(s,b)+D(b,f)+D(f,h)+D(h,j)+D(j,d)

 = 1+1+1+1+1= 5≤∆d

C(p(sbfhjd))=C(s,b)+C(b,f)+C(f,h)+C(h,j)+C(j,d)

 =0.15+0.15+0.135+0.135+0.15=0.72

 ≤∆c

Caux(p) ≤ (V-1)/α=15 , Caux(p) ≤ 15

∴ MCPv2.2(Gauxs,d, ∆d , (V-1)/α, D, Caux) has a

feasible solution so define Test (T, α) = YES, this

implies UB=T(1+ α)

 ∴ UB= 1(1+ α)= 2.

In arbitrary topology, the least delay weight ratio is

0.5 and the least cost weight is 0.48. The least delay

weight ratio and the least cost weight ratio of

ARPANET is 0.6 and 0.73 respectively. Similarly

for ANSNET the values are 0.8 and 0.69 as shown

in Fig. 6.

W
e

ig
h

t
ra

ti
o

(w
)

0.0

0.2

0.4

0.6

0.8

1.0

ω
delay

ωcost

ARBITRARY ARPANET ANSNET

Fig. 6. Ratio of Path Weight of DCMCR Algorithm

6 Experimental Results

MCPv3, K-approximation and greedy algorithms

OMCR were implemented and tested with DCMCR

for performance evaluation. Arbitrary topology,

ANSNET and ARPANET are used for simulation.

The edge weights are uniformly selected in the

range (1, 10). Constraint bound values are chosen as

W=3, 10 and 20. The value of K is chosen as 3. The

source-destination pairs are randomly generated so

that the minimum hop-count between them is at

least two. Simulations were carried out in NS-2

[26]. The experiments are conducted in Core2Duo,

2.4 GHz, 1 GB Memory with Linux operating

system computer. The node configuration is shown

in Table 1.

6.1 Comparison of MCPv3 and DCMCR

Execution time of DCMCR (Delay Coerced Multi

Constrained Routing) is compared with MCPv3.

Both algorithms perform almost similar in terms of

execution time. However, DCMCR takes a little

more time than MCPv3. This is due to coercing one

constraint. DCMCR computing path with

coercement of one constraint and finds (1+α)(K-1)

approximated optimum solution. But, MCPv3

considers all K constraints equally and computes

(1+ α) approximated path. In fact, DCMCR is found

useful where a particular constraint bound W is to

be strictly satisfied e.g. tight constraint applications.

Table 1 Node Configuration

S.No Number

of

Nodes

Area in Sq.m

1 40-60 500 × 500

2 80-100 1000 × 1000

3 120 1500 × 1500

Various simulation details are shown in Table 2.

Table 2 Various Simulation Details

S.No Simulation

Parameter

Remarks

1 Placement of Node Random

2 Topology Chosen Arbitrary,

ARPANET

and ANSNET

3 Distance Between

Nodes

Euclidean

4 Range of Value of

Constraints

Between 1 and 10

5 Nature of

Constraints

Additive

6 Packet size 512 bytes

Moreover, whenever topology changes DCMCR

adopts edge relaxation. Topology changes should

reflect in the node where changes occur and also in

its parent node. Some edges or nodes or both are

pruned so that the path computed is always feasible

and optimum for a particular source-destination

pair. MCPv3 also performs edge relaxation

methodologies whenever a change in topology

found, but running time is less compared to

DCMCR as MCPv3 considers all K-constraints

equally and is evident from the Fig. 7. However the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 73 Issue 2, Volume 8, February 2011

two other algorithms i.e. Greedy and K-

approximation obviously take longer time to

compute the path while comparing to MCPv3 and

DCMCR.

Fig.8. shows the effect of running time of MCPv3

and DCMCR with reference to number of nodes. In

this case both algorithms perform in similar fashion.

When the number of node increases, the execution

time also increases and it is negatively correlated

with approximation factor (α) for both algorithms.

Approximation factor (αααα)

0.0 0.2 0.4 0.6 0.8 1.0

R
u

n
n

in
g

ti

m
e

 (
s

e
c

)

0

5

10

15

20

25

30
MCPv3

MCPv3

DCMCR

DCMCR

 W = 20

W = 10

W = 10

W = 20

Fig. 7. Running Time of MCPv3 and DCMCR

Vs Approximation Factor

Number of Nodes (V)

40 60 80 100 120

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

10

20

30

40
MCPv3

DCMCR

Fig.8 Running Time of MCPv3 and DCMCR

 Vs Number of Nodes

However, DCMCR takes little more time because of

coercing one constraint. This is especially true when

the size of the network grows. Because DCMCR has

to satisfy the first constraint strictly in all the paths

computed. Longer running time is experienced

especially when the source and destination nodes

are far apart. This is the reason why the time

difference is kept increasing when the number of

nodes increase. But DCMCR has the performance

guarantee, as that of MCPv3 and the ability to bring

the feasible path almost in all situations i.e. the error

ratio is small. Simulation results revealed that

DCMCR and MCPv3 perform almost in similar

fashion irrespective of value W and both algorithms

find feasible optimum paths.

6.2 Analysis of Success Ratio

Arbitrary networks are generated by using Waxman
graph algorithm [22]. Here ‘n’ nodes are randomly
distributed and each node is placed at a location
with integer coordinates. The Euclidean metric is
then used to determine the distance between each
pair of nodes. On the other hand edges are
introduced between pairs of nodes s-d with a
probability that depends on the distance between
them. The edge probability is given by p(u,v) =
βexp(-d(u,v)/αL) where d(u,v) is the distance from
node ‘u’ to ‘v’, L is the maximum distance
between two nodes and α, β are parameters in the
range between 0 and 1. Larger values of β result in
graphs with higher edge densities, while small
values of α increase the density of short edges
relative to lower ones [9, 21].

Success Ratio (SR) of various algorithms at
different nodes with n=40, 80 and 120 is shown in
Fig.9. Success Ratio is defined as the percentage of
time that the algorithm finds a feasible path, at least
one exists [10, 19]. High success ratio could be
achieved when the number of nodes is between 80
and 100. MCPv3 achieves better success ratio than
greedy and K-approximation algorithms almost in
all the three cases. These tests are experimented in
randomly generated graphs. Success ratio and
number of nodes are positively correlated for
MCPv3. Success ratio of DCMCR is little less than
MCPv3 due to coercing one constraint.

S
u

c
c

e
s

s
 R

a
ti

o

0.70

0.75

0.80

0.85

0.90

0.95

1.00

GREEDY

K-APPROX

MCPv3

DCMCR

40 80 120

Fig.9. Success Ratio of Various Algorithms

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 74 Issue 2, Volume 8, February 2011

DCMCR algorithm provides approximation solution

to restricted shortest path problem and is readily

applicable to underlying MCP problem. By coercing

one constraint, it is obvious that the number of

feasible paths is fewer than MCPv3. However

DCMCR is much suited for an application where a

constraint is to be strictly satisfied. In greedy and K-

approximation algorithms, the success ratio is

comparatively lower and moreover time consumed

to find the feasible paths are also high.

A routing algorithm behaves well, when its success

ratio is high and the cost of the routes is low. Higher

success ratios and lower costs result in better

‘overall performance’. Fig.10 illustrates the

variation of success ratio with the increasing

number of feasible paths for different randomly

generated graphs whose size is varying from 20 to

120. Success ratio of MCPv3 increases when the

value of K=3 for any number of nodes. MCPv3

finds feasible paths irrespective of nature of

constraints i.e. tight or loose constraints. This is due

to optimum selection of approximation factor and

xopt. MCPv3 is able to determine paths irrespective

of size of network.

Number of Nodes

20 40 60 80 100 120

S
u

c
c

e
s

s
 R

a
ti

o

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

GREEDY

K-APPROX

DCMCR

MCPv3

Fig.10. Success Ratio Vs Number of Nodes when

K=3 for Various Algorithms

In fact, DCMCR and MCPv3 perform similarly

even though DCMCR need to coerce one constraint.

DCMCR approximates remaining two constraints

and hence its performance is compared with

MCPv3. But greedy and K-approximation

algorithms are not comparatively better. This is due

to absolute selection of weight in greedy algorithm

and K-approximation is simple in nature and its time

complexity is not linear. Therefore when the number

of constraints K≥3 the success ratio is not

comparable with MCPv3 and DCMCR. It is

particularly true when the link weights are

negatively correlated, finding a feasible path becomes

hard for K-approximation algorithm.

The effect of success ratio Vs different number of

constraints is considered shown in Fig.11. Success

ratio and number of constraints are negatively

correlated in all the algorithms. However, the

performance of Greedy and K-approximation

algorithms affected by the number of constraints is

more serious than the proposed algorithms. When

the number of constraints is more than three, the

performance of Greedy and

K-approximation algorithms are poor. Greedy

algorithm considers the true path length and K-

approximation uses upper bound of the path while

making decisions. Appropriate testing procedures

are conducted to choose xopt in MCPv3 and

DCMCR algorithms and hence better performance

is achieved.

Number of Constraints

2.0 2.5 3.0 3.5 4.0

S
u

c
c

e
s

s
 R

a
ti

o

0.4

0.6

0.8

1.0

MCPv3

DCMCR

K-APPROX

GREEDY

Fig. 11 Number of Constraints Vs Success Ratio

Fig.12 shows effect of success ratio with the

increasing number of feasible paths for different

number of nodes. It is obvious that the success ratio

and feasible paths are positively correlated

regardless of number of nodes. It is observed that

the success ratio varies sharply especially when

number of nodes is between 60 and 120 and the

number of feasible paths p≥2. More number of

feasible paths can be achieved by better edge

relaxation techniques and better average node

degree. An average node degree between 7 and 8 is

achieved in the generated random graph. In this case

also DCMCR and MCPv3 outperform the other

algorithms.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 75 Issue 2, Volume 8, February 2011

Number of Nodes

60 70 80 90 100 110 120

S
u

c
c

e
s

s
 R

a
ti

o

0.94

0.95

0.96

0.97

0.98

p=1

p=2

p=3

p=4

p=5

Fig.12. Number of Feasible Paths Vs Success

Ratio for Various Number of Nodes

6.3 Effect of Throughput, Delay and

Bandwidth on Various Number of Nodes

Number of Nodes

80 100 120 140 160

T
h

ro
u

g
h

p
u

t
(K

b
/s

)

0.5

1.0

1.5

2.0

2.5

MCPv3

DCMCR

OMCR

Fig. 13. Throughput Vs Number of Nodes

The effect of throughput for various number of

nodes is shown in Fig.13 All the nodes are

connected by directed links and each node has a

node degree of 3 and above. The delay of each link

is between 1 ms and 10 ms. Routing requests are

generated randomly. The network throughput starts

to decrease when the load of the network increases.

In DCMCR, due to the one constraint coercement

the throughput starts to decline when the number of

nodes is high. When the network size grows, the

available throughput decreases due to more number

of flows. But, the rate at which the throughput is

decreases is lesser in MCPv3 than DCMCR.

However, both algorithms can be applied to

distributed network environment. If the number of

nodes is high there will be more bottleneck

bandwidth and hence the throughput decreases.

Nevertheless even when the network load is high the

proposed algorithms are more efficient since the

throughput is less; because both MCPv3 and

DCMCR are path constrained algorithms. Any

bottleneck bandwidth may simply be omitted in the

process of finding feasible paths. MCPv3 and

DCMCR achieve load balancing by using more than

one path. Other algorithms drop the packets because

of congestion in a single path. Throughput is not

affected much by the link quality when there are

only a few hops. When the network size increases

the proposed algorithm suffer from accumulative

link loss.

The effect of delay and throughput is shown in

Fig.14. Both algorithms maintain the delay less than

150 msec for almost all the throughput value. In

fact, increasing throughput results in increased

delays. These effects are more conspicuous during

periods of congestion. Higher delay may be

experienced when the source and destination are far

apart or when the network experiencing congestion.

Throughput (Kb/s)

2 4 6 8 10

D
e
la

y
 (

m
s

e
c
)

50

100

150

200

250

MCPv3

DCMCR

Fig. 14. Delay Vs Throughput

Any good routing algorithm should keep the delay

as low as possible for almost all values of

throughput. In MCPv3 and DCMCR delay start to

rise only when the network size grows beyond 200

nodes, or if the network experience congestion. As

long as the network size is below 200 both

algorithms experience reasonably acceptable delay

limits. DCMCR shows little excess delay due to the

delay coercement. Moreover, by choosing

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 76 Issue 2, Volume 8, February 2011

appropriate approximation factor and other

parameters MCPv3 and DCMCR are perform better.

The Number of Messages for various bandwidths is

shown in Fig. 15. Routing messages are counted that

each node sends to its neighbours in order to

establish an end-to-end delay-throughput

constrained route. The performance of MPOR and

DMR in tight bandwidth requirement seems to be

worse. This is due to more control messages are to

be sent to update the network when compared to

OMCR. The performance of DMR and OMCR are

almost similar. But MPOR is drastically

underperforms; this is due to it produces large

amount of packets in the case of network failures.

The convergence time is also less because of the

less number of packets that are being exchanged in

case of network failures. Multiple vectors reduce the

overhead in OMCR and hence the available

bandwidth is effectively utilized in the proposed

algorithms. But in MPOR only one message

accommodates in one packet and hence the

bandwidth is being wasted in the case of network

failure. Due to effective utilization of throughput the

convergence time is less in OMCR.

Number of Messages

200 400 600 800 1000 1200 1400 1600

B
a
n

d
w

id
th

 (
K

b
/s

)

2

4

6

8

10

OMCR

DMR

MPOR

Fig.15. Number of Messages Vs Bandwidth

The effect of throughput on various network load is

shown in Fig.16.When the network load increases

throughput of all the proposed algorithms are kept

decreasing. In the case of OMCR the throughput

steadily deceases when the network load increase.

MCPv3 and DCMCR normally avoid the links that

have little bandwidth by proper edge relaxation.

However, at heavy loads and/or the number of

nodes of the network increases the throughput

declines. In OMCR, due to better vector

transformation techniques the throughput is

effectively managed. However, whenever the

network traffic increases significantly throughput

declines. This is especially true when most of the

capacity of each link is reserved for guaranteed

sessions.

Network Load (KB/s)

100 120 140 160 180 200

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

2

4

6

8

10

MCPv3

DCMCR

OMCR

 Fig. 16. Network Load Vs Throughput

6.4 Effect of Packet Size

Packet Size(Byte)

1000 2000 3000 4000

R
u

n
n

in
g

 T
im

e
(s

e
c
)

16

18

20

22

24

26

MCPv3

DCMCR

 Fig. 17. Packet Size Vs Running Time

The effect of running time for different packet sizes

is shown in Fig.17 .The better performance of the

proposed schemes is achieved when the packet size

is 512 or 1024 bytes. Beyond this range the

performance of the proposed algorithms are slightly

less. Smaller packets can cause more router

overhead in terms of checksum overhead i.e. each

packet has to undergo error checking and hence

more time is consumed in router. Because of this

reason the running time is high when the packet size

is 128 bytes. Error checking process is less in the

case of 512 or 1024 byte packets. If the packet size

is high i.e. 2048 or 4096, the routers may start to

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 77 Issue 2, Volume 8, February 2011

drop the packets because of the bottleneck

bandwidth or congestion. Otherwise the packets are

to be fragmented, if the packet size is greater than

the MTU (Maximum Transmission Unit) of a link

e.g. Ethernet the MTU is 1500 bytes and for point to

point networks is 532 bytes. This causes time delay

in reaching the destination and hence running time

of the algorithm is increased.

The effect of success ratio for different packet size

is shown Fig.18. .In OMCR success ratio is subdued

when the packet size is too small or too big. Small

packets cause the router to get congested because of

the header processing delay i.e. time taken to read

the header checksum. But in larger packets cannot

be accommodated due to bandwidth constraints.

Either they must be fragmented or to be dropped at

router. Fragmentation and reassembly consumes

time and hence the success ratio is affected if the

packet size is beyond 512 to 1024 bytes.

%
 S

u
c

c
e

s
s
 R

a
ti

o

88

90

92

94

96

98

128 Bytes

256 Bytes

512 Bytes

1024 Bytes

2048 Bytes

4096 Bytes

OMCR DMR

 Fig..18. Packet Size Vs % Success Ratio

 Generally if the packet size is too low,

streams of traffic is broken up into a relatively large

number of small packets that adversely affects the

performance. On the other hand if the packet size is

set too high, it may exceed the networks physical

MTU and degrade performance because each packet

needs to be subdivided into smaller ones i.e.

fragmentation. The default value of maximum

packet size is 1500 bytes for broadband connection

and 576 bytes for dialup connection.

7 Conclusion

The proposed algorithm is a multi-constrained (1+α)

(K-1) approximation algorithm with K≥2 additive

constraints. DCMCR approximates (K-1)

constraints while coercing one of the constraints.

This algorithm finds a feasible solution whose path

weight is bound by first constraint and

approximating remaining (K-1) constraints.

DCMCR is applied where one of the QoS

constraints is coerced and remaining constraints are

approximated. By choosing appropriate value of α

and constraint bounds, the proposed algorithm

outperforms its contenders. When the K is equal to

2, this algorithm produces (1+α) approximation with

better running time than that of its contenders

designed for this purpose. Experimental validation

reveals that DCMCR performs better to achieve

comparatively reduced running time and delivers

well in tight constraint scenario. DCMCR shows

better overall performance when the number of

nodes is high. The proposed algorithm outperforms

in terms of running time, success ratio and

scalability by choosing appropriate approximation

factor, xopt and effective testing procedures.

References:

[1] Abdelhamid Mellouk, Said Hoceini, and

Sherali Zeadally, “Design and performance

analysis of an inductive QoS routing

algorithm”, Computer Communications,

Elsevier Publications, Vol. 32, 2009, pp. 1371-

1376.

[2] BenAli, N., Belghith, A., Moulierac, J. and

Molnar, M., “QoS Multicast aggregation under

multiple additive constraints”, Computer

Communications, Elsevier Publications, Vol.

31, 2008, pp. 3564-3578.

[3] Chen Shigang and Nahrstedt Klara, “An

overview of quality of service routing for next-

generation high speed networks: Problems and

Solutions”, Journal on IEEE Network, Vol. 12,

No. 6, 1998, pp 64-79.

[4] S. Chen and K. Nahrstedt, “On finding multi-

constrained paths,” In Proc. IEEE ICC, 1998,

pp. 874–879.

[5] Ergun Funda, Sinha Rakesh and Zhang Lisa,

“An improved FPTAS for restricted shortest

path”, Information Processing Letters, Vol. 83,

No. 5, 2002, pp. 287-291.

[6] A. Goel, K. G. Ramakrishnan, D. Kataria, and

D. Logothetis, “Efficient computation of delay-

sensitive routes from one source to all

destinations,” In Proc. IEEE INFOCOM, 2001,

pp. 854–858.

[7] Hua Wang, Xiangxu Meng, Shuai Li and Hong

Xu, “A tree-based particle swarm optimization

for multicast routing”, Computer Networks: The

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 78 Issue 2, Volume 8, February 2011

International Journal of Computer and

Telecommunications Networking, Vol. 54 ,

No. 15, 2010, pp. 2775-2786.

[8] A. Juttner, B. Szviatovszki, I. Mecs, and Z.

Rajko, “Lagrange relaxation based method for

the QoS routing problem,” in IEEE INFOCOM,

2001, pp. 859–868.

[9] Keen-Mun Yong, Gee-Swee Poo, and Tee-

Hiang Cheng,“Proactive rearrangement in

delay constrained dynamic membership

multicast”, Computer Communications, Vol.

31, 2008, pp. 2566-2580.

[10] Khadivi, P., Samavi, S. and Todd, T.D.,

“Multi-constraint QoS routing using a new

single mixed metrics”, Journal of Network and

Computer Applications, Elsevier Publications,

Vol. 31, 2008, pp. 656-676.

[11] Kwei-Jay Lin, Jing Zhang, Yanlong Zhai and

Bin Xu, “The design and implementation of

service process reconfiguration with end-to-end

QoS constraints in SOA”, Journal of Service

Oriented Computing and Applications, Vol. 4,

No. 4, 2010,pp. 157-168.

[12] Leela, R., Thanulekshmi, N. and Selvakumar,

S., “Multi-constraint QoS Unicast Routing

Using Genetic Algorithm (MURUGA)”,

Applied Soft Computing, Elsevier Publications

(Accepted for Publication), 2010.

[13] Li, Z., “A distributed approach for multi-

constrained path selection and routing

optimization”, In Proc. of ACM International

Conference Proceeding Series, 3
rd

 International

Conference on Quality of Service in

Heterogeneous Wired/Wireless Networks 2006

(QSHINE “06), Vol. 191, 2006,Article No. 36.

[14] Lorenz, D.H. and Raz, D., “A simple efficient

approximation scheme for the restricted

shortest path problem”, Operation Research

Letters, Vol. 28, No. 5, 2001,pp. 213-219.

[15] Ping, Chen Bingcai, Gu Xuemai and Liu

Gongliang, “Multi-constraint quality of service

routing algorithm for dynamic topology

networks”, Journal of Systems Engineering and

Electronics, Elsevier Publications, Vol. 19, No.

1, 2008, pp. 58-64.

[16] Ronghui Hou, King-Shan Lui, Ka-Cheong

Leung and Fred Baker, “Approximation

algorithm for QoS routing with multiple

additive constraints”, In Proc. IEEE International

Conference on Communications 2009 (ICC

2009), Vol. 1, 2009,pp. 1-5.

[17] Sameer Qazi and Tim Moors, “On the impact

of routing matrix inconsistencies on statistical

path monitoring in overlay networks”,

Computer Networks, Elsevier Publications,

Vol.54,No.10, 2010, pp. 1554-1572.

[18] Shuchita Upadhyaya and Gaytri Dhingra,

“Exploring issues for QoS based routing

algorithms”, International Journal on

Computer Science and Engineering, Vol. 2,

No. 5, 2010, pp. 1792-1795.

[19] Teerapat Sanguankotchakorn and Newton

Perera, “Hybrid Multi Constrained Optimal

Path QoS Routing with inaccurate link state”,

In Proc. Ninth International Conference on

Networks (ICN), 2010, pp. 321-326.

[20] Therence Houngbadji and Samuel Pierre,

“QoSNET: An integrated QoS network for

routing protocols in large scale wireless sensor

networks”, Computer Communications,

Elsevier Publications, Vol. 33, No. 11, 2010,

pp. 1334-1342.

[21] Tzu-Lun Huang and Lee, D.T., “A distributed

multicast routing algorithm for real-time

applications in wide area networks”, Journal of

Parallel Distributed Computing, Vol. 67, 2007,

pp. 516-530.

[22] Waxman, B.M., “Routing of multipoint

connection”, IEEE Journal on Selected Areas

in Communications, Vol. 6, No. 9, 1988, pp.

1617-1622.

[23] G. Xue, “Minimum cost QoS multicast and

unicast routing in communication networks,”

IEEE Trans. Commun., vol. 51, no. 5, 2003, pp.

817–824.

[24] Yan Xing Zheng, Turgay Korkmaz and

Wenhua Dou, “Two additive- constrained path

selection in the presence of inaccurate state

information”, Computer Communications,

Elsevier Publications, Vol. 30, 2007,pp. 2096-

2112

[25] Yu Wang, Lemini Li and Du Xu, “Pervasive

QoS routing in next generation networks”,

Computer Communication, Elsevier

Publications, Vol. 31, 2008, pp. 3485-3491.

[26] Kevin Fall and Kannan Varathan, “The ns

Manuals, The Vint Project”, University of

California, Berkeley, USA, pp. 28-130, 2007.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. S. Prakash, S. Selvan

ISSN: 1790-0832 79 Issue 2, Volume 8, February 2011

