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Abstract: - IP networks are evolving from data communication infrastructure into many tight-constraint 

applications such as video conferencing, IP telephony and require stringent Quality-of-Service (QoS) 

requirements. A rudimentary issue in QoS routing is to find a path between source-destination pair that satisfies 

two or more end-to-end constraints. A difficulty in multi constrained routing is that it is intractable. In this 

context, a multi constrained QoS routing algorithm, Delay Coerced Multi Constrained Routing (DCMCR) is 

proposed. It approximates (K-1) constraints while coercing one of the constraints. DCMCR is (1+α) (K-1) 

approximation algorithm and it finds a feasible solution whose first path weight is bound by the first constraint 

and approximating remaining (K-1) constraints. The proposed algorithm is applied where one of the constraints 

is strictly satisfied and it performs well by choosing appropriate values of α and constraint bounds. The variety 

of experimental validations is carried out on different scenario to analyze the performance of the proposed 

scheme. 

 

Key-Words: - QoS routing, coerce, multi constraint, approximation algorithm, Additive, Intractable. 

 

1  Introduction 

 
Determining a feasible path that satisfies a set of 

constraints such as delay, cost and reliability of path 

is a challenging issue in QoS routing [3,5,14] . A 

difficulty in multi constrained routing is that it is 

intractable [2,15,24]. QoS metrics are broadly 

divided into three different categories namely 

additive, multiplicative and concave metrics. 

Additive metric is the summation of all links 

constituting the path e.g. delay, hop-count, delay 

variance, cost [1], [25,18,20,12]. Multiplicative 

metric is the product of all links constituting the 

path. Reliability (1-loss rate) is an example of 

multiplicative metric. If an edge weight represents 

the reliability of the edge then the corresponding 

path weight is the product of the weight associated 

with the edges on the path. Since the logarithm of 

the product of N positive numbers is the sum of the 

logarithm of the N positive numbers. Hence QoS 

metric such as reliability is known as additive metric 

i.e. multiplicative metric can be converted into 

additive metric [17].  Another kind of QoS metric is 

known as concave (bottleneck) metric where the 

corresponding weight of a path is the smallest of the 

weight of the edges on the path e.g. bandwidth i.e. 

consider sub graphs with only those edges whose 

weights are greater than or equal to a particular 

chosen value. The concave metric of a path is the 

maximum or the minimum of the metric overall the 

links in the path. This metric is usually dealt with a 

preprocessing step called topology filtering, wherein 

all the links that do not satisfy the constraint are 

pruned and not considered further in the path 

selection process. The metrics considered should be 

orthogonal to each other so that there is no 

redundant information among the metrics [13].The 

QoS routing problem with a single metric can be 
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solved in polynomial time such as the widest path or 

least delay path, or least cost path problem etc. 

However, multi-constrained QoS routing problems 

where more than one additive parameter is involved, 

such as least delay and cost are intractable [11, 7, 

16]. The MCP problem has been studied 

extensively. Most of the existing works concentrate 

on K=2 where K is the number of constraints, 

known as the delay constrained least cost problem 

where two edge weights are cost and delay and one 

seeks for a least cost path under the constraint that 

the delay of the path is within a given delay 

constraint. Ergun et al [5] presented an fully 

polynomial approximation scheme for the case of 

acyclic graphs. Chen and Nahrstdt [4] studied the 

decision version of the DCLC problem where the 

path that satisfies both the delay constraint and the 

cost constraint. Goel et al [6] presented an 

approximation algorithm for the single source all 

destination delay sensitive routing problem. The 

authors of [8, 23] proposed to use a linear 

combination of the two weights and presented 

simple algorithms for finding a good linear 

combination of the two weights. In this paper MCP 

problem with K≥2 is presented where the first 

constraint is enforced while other K-1 constraints 

are approximated. 

In this paper, a multi constrained routing algorithm 

DCMCR is proposed which coerces one constraint 

while approximating (K-1) remaining constraints 

and it is (K-1) (1+α) approximation algorithm. This 

algorithm is found to be useful where one of the 

constraints is strictly satisfied. When the number of 

constraints is reduced to two this algorithm 

produces (1+α) approximation with better 

performance than that of many other algorithms 

designed for this purpose. The proposed algorithm is 

simulated through experiments on arbitrary and 

other network topologies and found that it 

outperforms other QoS routing schemes in the same 

suite. In this paper, the quality of service such as 

throughput and bandwidth is taken into account 

which is not considered in our earlier work. The 

effect of size of packet is also considered.  

The rest of the paper is organized as follows. 

Section 2 describes DCMCR problem definition. 

The proposed algorithm is explained in section 3. 

Proof of the algorithm is described in section 4. 

Example calculation and experimental results are 

described in section 5 and 6 respectively. Finally 

section 7 concludes the paper.  

 

2  DCMCR Problem Definition  
 

A network is defined by an edge weighted graph 

G={V,E}, where V is the set of ‘v’ vertices and E is 

the set of ‘e’ edges. Each edge ‘e’ associated with K 

weights representing QoS constraints and wk(e)≥0 is 

the K
th
 weight of edge ‘e’,∀ e∈E, 1≤k≤K. In this 

problem, for each edge ‘e’ belongs to graph G, w1(e) 

is denotes the delay of e and wk(e)/W, 2≤k≤K 

denotes the cost of ‘e’. It is to seek the least cost s-d 

path in G with path delay no more than the delay 

constraint bound W1. In this work, D(e) is used 

rather than w1(e) to denote the delay and C(e) rather 

then wk(e)/W to denote cost. ∆d is used rather than 

W1 to denote delay constraint bound and ∆c rather 

than wk(e)/W, 2≤k≤K to denote cost constraint 

bound. For a path ‘pDMR’ in G, the K
th
 weight of 

path pDMR is denoted by wk(pDMR), is the sum of Kth 

weights over the edges on pDMR i.e. 

∑
∈

=
DMRpe

kDMRk )e(w)p(w .  

DCMCR (G,s,d,∆d,∆c,D,C): An edge-weighted 

directed graph G=(V,E,D,C) where each edge 

Ee ∈ is associated with a delay D(e) and  a cost 

C(e). Assume both delay and cost is non-negative 

real values. 
d∆  is the delay constraint and 

c∆  is the 

cost constraint  for the source-destination pair. The 

objective is to find a path ‘pDMR’ for a given s-d in G 

such that C(pDMR)= ∑
∈ DMRpe

)e(C is minimized subject to  

the constraint d

pe

DMR

DMR

)e(D)p(D ∆≤= ∑
∈

. A 

source destination path ‘pDMR’ is called delay 

constrained path if dDMR )p(D ∆≤ . This algorithm 

searches for a least-cost delay constrained path and 

is denoted by DMRp . In this algorithm, the first 

constraint is coerced w1(pDMR)≤∆d in the source-

destination pair. DCMCR algorithm needs to solve 

the instance MCPv2.2. 

 

MCPv2.2(G,s,d,K,∆d,∆c,C,D):A graph G = 

{V,E,D,C}with K edge positive integer valued edge 

weights D(e) and C(e) associated with each edge 

e∈E. A positive delay constraint bound ∆d and a 

positive cost constraint bound ∆c is defined. The 

objective is to find a source-destination path ‘p’ 

such that D(p)≤ ∆d and C(p)≤∆c.  
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3  Algorithm Description  
 

In this section, DCMCR algorithm for K≥2 QoS 

constraints is presented. The proposed algorithm is 

shown in Fig.1. 

UB  Upper bound     

LB   Lower bound 

pDMR  Feasible shortest path  

paux   Auxiliary path 

α  Approximation factor   

c   Smallest constraint 

T   Test value     

v   Number of vertices 

wk(pDMR)   k
th 

weight of feasible path pDMR         

waux(paux)   kth  auxiliary weight of auxiliary path 

paux 

S   Set of vertices V    

Q   Minimum priority queue 

s-d   Source-destination pair   

γ   Real number to construct auxiliary 

graph 

Gaux  Auxiliary graph    

(V,E)  Set of vertices and set of edges 

(u,v)  Edge     

K   Number of QoS constraints  

len[ ][ ] (K-1) dimensional array to store the length 

of the edge.  

pred[ ][ ] (K-1) dimensional array to store the 

predecessor.    

d∆   Delay constraint 

C∆    Cost constraint  

Caux    Auxiliary real value cost   

C   Real value cost    

D    Real value delay  

1. void main( ) { 

2.      int c, C[], D[], Caux[], V, S,E,Q, k, K,i=0; 

3.      int LB[], UB[], len[][], pred[][]; 

4.      int α, a, T, d∆ , C∆ , γ; 

5.      string pDMR, paux, e, u, v, b, s,; 

6.          find_smallest_constraint( ) { 

/* initialize the set S of vertices and minimum 

priority queue Q */ 

7.                    S=0; 

8.                    Q=V(G); 

9.                    while(Q!=0) { 

10.                             Q=V-S; 

11.                              c=Q;} 

/* initialize a lower bound and upper bound such 

that any s-d path   ‘pDMR’ with D(pDMR)<= d∆  */ 

12.                    D(pDMR) =null; C(pDMR)=null; 

13.                    for(ek=1;ek<=pDMR;ek++){ 

14.                           D(pDMR) = D(pDMR) + D(ek);  

15.                        C(pDMR) = C(pDMR) + C(ek); } 

16.           if(D(pDMR)<= d∆ && C(pDMR)>= c) { 

17.                           LB[0]=c; 

18. UB[0]=c*v;}}//endfind_smallest_constraint() 

/*construct an auxiliary graph Gaux which is an 

instance of graph G to find the optimal value xopt of 

DCMCR */ 

19.          construct_auxgraph( ) { 

20.                       γ = (v-1)/LB*α; 

21.                       Caux(e) = γ* C(e);} 

22.                       a = log(v);  

23.                       α = pow(a,2); 

/* perform testing procedure to refine the value of 

lower bound LB and upper bound UB */ 

24.          while (UB[i] >=2(1+ α)LB[i])  { 

25.                      T=sqrt ((LB[i]*UB[i])/(1+α)); 

26.           if(D(p)<= d∆ && Caux(p)<= (v-1)/α) { 

27.                           String Test(T,α)= “yes”; } 

28.                      else { Test(T,α)= “no”; } 

29.                      if(Test(T,α) = = “yes”) { 

30.                              UB[i+1] = T( 1+α); 

31.                              LB[i+1] = LB[i]; } 

32.                      else { UB[i+1]= UB[i]; 

33.                                 LB[i+1]
 
 = T; } } 

34.          i++; 

35.   UB= UB[i]; 

36.   LB = LB[i];} //end construct_auxgraph( ) 

37.           mcpv2.2( ) { 
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/*initialize (K-1) dimensional array to store length 

and predecessor of edges*/ 

38.                      K=3; 

39.                      for(k=2;k<=K;k++) { 

40.                               len[v,ck] = ∞ ; 

41.                               pred[v,ck] = null; 

42.                               len[s,ck] = 0;  } 

                           /* update array values */ 

43.            for(k=2;k<=K;k++) { 

44.              for( (u,v)=1;(u,v)<=E;(u,v)++) { 

45.              if(len[v,ck]  > len[u,bk] +w1(u,v) ) { 

46.           len[v,ck]  = len[u,bk] +w1(u,v); 

47.                                  pred[v,ck] = u;  }}} 

/ * find the s-d path paux such that D(paux) < =  d∆  

and Caux(paux) <=c */ 

48.                    if(len[d,c] < = d∆ ) { 

49.                    pDMR =paux; 

50. printf(“Feasible path is returned %s”,pDMR); 

51.                                break ( ); } 

52.           else { 

53.     printf(“No feasible path found”); 

54. break ( );}}// end mcpv2.2() 

55. }//end main 

Fig.1. DCMCR Algorithm 

Line 1-5: The pseudo code begins with the 

initialization process that the DCMCR algorithm 

initializes all parameters.  

Line 6-11: DCMCR performs a function called 

find_smallest_constraint ( ) that is to find smallest 

constraint ‘c’ for graph G. To accomplish this 

operation DCMCR algorithm uses a conventional 

shortest path algorithm. 

Line 12-18: DCMCR algorithm initializes the lower 

and upper bounds to compute the optimal value xopt. 

To accomplish this DCMCR finds the delay and 

cost of each edge along the path pDMR. Then 

compare the delay of path D(pDMR) with delay 

constraint ∆d and cost of the path C(pDMR) with the 

smallest constraint ‘c’. If the delay and cost satisfies 

the condition then DCMCR initializes the lower and 

upper bounds to compute the optimal value xopt. 

DCMCR uses the following equation to compute 

lower and upper bounds such that LB= c and UB = 

c*v where ‘v’ is the number of vertices in graph G. 

LB and UB denote the sequence of lower and upper 

bound pair. The value of xopt lies between lower and 

upper bound values i.e. LB≤xopt≤UB. 

Line 19-23: DCMCR uses construct auxgraph ( ) to 

construct an auxiliary graph Gaux=(V,E,D,Caux), 

which is an instance of graph G=(V,E,D,C). The 

auxiliary graph is same as G except that the edge 

cost weighting function C is changed to Caux such 

that Caux(e) = [C(e)*γ] for every e∈E. 

Line 24-36: DCMCR refines the upper and lower 

bound values until the condition UB≤2(1+α)LB 

satisfies as explained in while loop. DCMCR uses 

the testing procedure to refine the lower and upper 

bound values.  In testing procedure, DCMCR uses a 

positive real number γ. An auxiliary graph 

Gaux=(V,E,D,Caux), an instance of graph 

G=(V,E,D,C), which is same as G except that the 

edge cost weighting function C is changed to Caux, 

such that Caux(e) = C(e)*γ for every Ee ∈ . For 

given real numbers T > 0,α > 0, TEST(T,α) = “yes”, 

if MCPv2.2(Gaux,s,d,∆d,(v-1/α),D,Caux) has feasible 

solution where γ = (v-1/T.W.α) and define 

TEST(T,α) = “no”, if MCPv2.2       (Gaux,s,d,∆d,(v-

1/α),D,Caux) has infeasible solution. It can be proved 

that TEST(T,α) = “yes” implies that xopt <T(1+α) 

and TEST(T,α) = “no” implies xopt >T.  Let xopt is 

the optimal value of DCMCR. Using testing 

procedure DCMCR algorithm refines the lower and 

upper bound values such that if TEST(T,α) = “yes” 

then UB = T(1+α) and if  TEST(T,α) = “no” then 

LB=T. If UB≤2(1+α)LB then DCMCR decide the 

lower bound and upper bound values for further 

calculations.  

Line 37-47: DCMCR applies mcpv2.2( ), an 

instance of DCMCR to compute an source-

destination feasible path for auxiliary graph. 

mcpv2.2( ) initializes the (K-1) dimensional arrays 

such as len[ ][ ] and pred[ ][ ] to store the length and 

predecessor of each edge along the auxiliary graph. 

DCMCR uses the edge relaxation method to update 

the length and predecessor of each edge. Thus, it 

updates the length of entire source-destination pair. 

Here, MCPv2.2 checks whether or not the length of 

edge ‘v’ is greater than the summation of path 

length of edge ‘u’ and edge weight of edge (u,v). If 

this condition satisfies, it updates each edge along 

the path.  

Line 48-54: DCMCR checks whether the length of 

s-d path len[d,ck] is less than or equal to auxiliary 

delay constraint bound ∆d such that len[d,ck]≤∆d. If 

the length is less then MCPv2.2 returns the path paux 

is feasible path for DCMCR, otherwise not. 
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4  Proof of MCPv3 Algorithm 

It is to be proved that the path paux found by 

MCPv2.2 algorithm is guaranteed to be (1+ α) 

approximation of DCMCR.This algorithm, for any 

given value α > 0 returns a path ‘pDMR’ for a source-

destination pair s-d that is an (1+α) approximation 

of DCMCR (G, s, d, K, ∆d, D, C). Find bottleneck 

edge cost ‘c’ such that an s-d path pDMR, with 

D(pDMR)≤
d∆  and C(e)≤c for all e ∈pDMR. Then any 

source-destination path ‘p’, D(p)≤ d∆  must contain 

at least one edge ‘e’C(e)≥c.It is known that c ≤ xopt ≤ 

c.v, where ‘v’ is the number of vertices and ‘c’ is 

the smallest constraint.  

LB[0] ≤ xopt  ≤ UB[0] ≤ v.LB[0]    (Since LB=c and 

UB=c.v)                                                           (1)  

Let pDMR denote optimal solution of 

DCMCR(G,s,d,K,∆d,D,C) that is pDMR is an s-d path 

such that, 

D(pDMR) ≤  ∆d,  C(pDMR) ≤ xopt                                (2) 

 Construct an auxiliary graph Gaux, 

having an auxiliary edge weight, Caux(e)=[C(e).γ].  

Let
α⋅

−
=γ

LB

)1v(
. 

Here, construct an auxiliary graph Gaux, an instance 

of graph G to find the optimal value xopt of 

algorithm DCMCR. To find a xopt, a testing 

procedure defined in this algorithm is performed. 

Hence,          

 [ ]∑
∈

+γ⋅=
DMRpe

DMRaux 1))e(C()p(C  

                  [ ]∑
∈

−+γ⋅≤
DMRpe

)1v())e(C(   [pDMR has at 

most (v-1) edges]. 

                 ∑
∈

γ+−≤
DMRpe

)e(C)1v(  

                 )p(C)1v( DMRγ+−≤                           (3) 

                 
α⋅

−
+−≤

LB

)1v(
)p(C)1v( DMR  

 Substitute the value of C(pDMR) from 

Equation (2) , 

                 
α⋅

−
⋅+−=
LB

)1v(
x)1v()p(C optDMRaux  

 Substitute the value of xopt from 

Equation (1), 

α⋅

−⋅
+−=

LB

)1v(UB
)1v()p(C DMRaux                    (4) 

 The value of Caux(pDMR) is scaled down 

to nearest lower integer. From Equation (4), the path 

pDMR is feasible solution of MCPv2.2 

)C,D),1v(
LB

)1v(UB
,,d,s,G( auxdaux −+






α⋅

−⋅
∆  

Therefore, find a path paux (from auxiliary graph) 

and this path paux may be different from pDMR. If paux 

is feasible, it is guaranteed to return a feasible path 

in DCMCR.  

Now, it is to prove that path paux found by algorithm 

MCPv2.2 is guaranteed to be an (1+α)-

approximation of DCMCR. Since paux is computed 

by the algorithm,  

 daux )p(D ∆≤   and  

)1v(
LB

)1v(UB
)p(C auxaux −+






α⋅

−⋅
≤                    (5) 

and  )p(C)p(C DMRauxauxaux ≤                          (6) 

 It is known that, [ ]γ⋅= )e(C)e(Caux  

 [ ]γ⋅= )p(C)p(C auxauxaux ,  

   

 )p(C
1

)p(C auxauxaux ⋅
γ

=  

 From Equation (5),  

)p(C
1

)p(C DMRauxaux ⋅
γ

=  

 From Equation (3),  

                 [ ])1v()p(C
1

)p(C DMRaux −+⋅γ⋅
γ

=  

           

 [since

aux DMR DMRC (p ) (v -1) + γ.C(p )≤ ] 

 It is known that C (pDMR) ≤ xopt, 

therefore, 

                 [ ])1v(x
1

)p(C optaux −+⋅γ⋅
γ

=   

                 
γ

−
+≤

)1v(
xopt  

                 

α⋅

−

−
+≤

LB

)1v(

)1v(
xopt ,      [Q ]

)1(

α
γ

⋅

−
=

LB

v
. 
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                α⋅+≤ LBxopt   

      α⋅+≤ optopt xx ,            [Q LB ≤  xopt] 

                        )1(x)p(C optaux α+≤                           (7) 

 

Equation (7) shows that paux is an (1+α) approximation 

of DCMCR.This proves that paux is an 

)1( α+ approximation to DCMCR. Here delay is 

coerced and remaining constraints are approximated 

when 2k ≥ .       

 

5  Example Calculation 

 
A feasible path PDMR such that C(PDMR) 

=

DMRe P

c(e)
∈

∑ is minimized subject to the constraint 

D(PDMR) =

DMR

d

e P

D(e)
∈

≤ ∆∑  where ∆d=10,  

D(e)=w1(e) and C(e)= kw (e)
max

W

 
 
 

, 2≤k≤K. 

Arbitrary topology shown in Fig. 2 is considered to 

compute the feasible paths. 

m p
(6,8,9)

b f h j
(1,2,2) (1,2,1)

(1,2,1)

(7,8,7)
(8,9,9)

(7,7,6)

s

(1,1,2)

c

a

(1,1,2)

(4,5,6)

(2,3,1)

e

(1,2,3)

g i k
(1,2,2) (1,2,3) (1,3,1)

(6,5,3)

d

(1,3,2)

(5,4,5) (9,9,8)

l n

(6,7,6)
(6,8,7)

(8,6,7)

(6,7,6)

(6,7,6)
(1,2,3)

(1,2,2)

(1,1,1)

(9,7,5)

(1,2,2) (5,3,2)

 

Fig.2.  Arbitrary Topology 

For each edge D(e) and C(e) are to be found as 

follows: 

 D(s,b) = 1 D(k,d) = 1 

 D(b,f) = 1 D(b,c) = 2 

 D(f,h)  = 1 D(c,a) = 4 

 D(h,j)  = 1 D(c,e) = 1 

 D(j,d)  = 1 D(a,e) = 1 

 D(s,a)  = 1 D(f,e) = 1  

 D(a,g)  = 1 D(g,f) = 6 

 D(g,i)  = 1 D(f,i) = 1 

 D(i,k)  = 1 D(i,h) = 5 

 D(j,i)  = 5 D(b,m) = 7 

 D(m,p) = 6 D(m,h) = 8 

 D(p,j) = 7 D(a,l) = 6 

 D(l,n) = 8 D(l,i) = 6 

 D(n,k) = 6 D(n,g) = 9 

 D(i,d) = 6 D(h,d) = 9 

             Delay of Each path is to be calculated as 

shown below: 

1) D(sbfhjd) = 5 

2) D(sbfikd) = 5 

3) D(sbfihjd) = 10 

4) D(sbfhjikd) = 11 

5) D(sagikd) = 5 

6) D(sagihjd) = 10 

7) D(sagfikd) = 11 

8) D(sagfhjd) = 11 

9) D(sagfhjikd) = 17 

10) D(sagfihjd) = 16 

11) D(sbcagikd) = 11 

12) D(sbcagihjd) = 16 

13) D(sbcagfikd) = 17 

14) D(sbcagfhjd) = 17 

15) D(sbcagfihjd) = 22 

16) D(sbcagfhjikd) = 23 

17) D(sbmpjd) = 22 

18) D(sbmhjd) = 18 

19) D(sbmhd) = 25 

20) D(sagid) =   9 

21) D(salnkd) = 22 

22) D(salikd) = 15 

23) D(salid) = 19 

For each edge find C(e)= 








W

ewk )(
max , 2≤k≤K 

The cost of each edge is as follows: 

C(s,b)= max(1/22, 2/20)= max( 0.05, 0.1)=0.1 

C(b,f)=  max( 2/22, 2/20)=max(0.09,0.1)=0.1 

C(f,h) =  max(,2/22,1/20)= max( 0.09,0.05)=0.09 

C(h,j) =  max(2/22,1/20)  = max(0.09,0.05)=0.09 

C(j,d)=  max(2/22,2/20)= max(0.09,0.1)=  0.1 

C(s,a) =  max(1/22,2/20) = max(0.045,0.1)=0.1 

C(a,g)= max(2/22,2/20)= max(0.09,0.1)= 0.1 
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C(g,i) =  max(2/22,3/20)=max(0.09,0.15)=0.15 

C(i,k) =  max(3/22,1/20)=max(0.14,0.05)=0.14 

C(k,d)=  max(3/22,2/20)=max(0.14,0.1)=0.14 

C(b,c)=  max(3/22,1/20)=max(0.14,0.05)= 0.14 

C(c,e)=  max(2/22,2/20) =max(0.09,0.1)= 0.1 

C(a,e)=  max(2/22,3/20)=max(0.09,0.15)= 0.15 

C(f,e)=  max(1/22,1/20)=max(0.045,0.05)=0.05 

C(f,i) =  max(2/22,3/20)=max(0.09,0.15) = 0.15 

C(i,d)=  max(7/22,6/20)=max(0.318,0.3) =0.318 

C(i,h)=  max(4/22,5/20)=max(0.18,0.25)=0.25 

C(c,a)=  max(5/22,6/20)=max(0.23,0.3)=0.3 

C(j,i)=  max(3/22,2/20)=max(0.14,0.1)=0.14 

C(g,f)=  max(5/22,3/20)=max(0.23,0.15)=0.23 

C(h,d)=  max(9/22,8/20)= max(0.41,0.4)=0.41 

C(b,m)=  max(8/22,7/20)=max(0.36,0.35)=0.36 

C(m,h)=  max(9/22,9/20)= max(0.41,0.45)=0.45 

C(m,p)=  max(8/22,9/20)=max(0.36,0.45)=0.45 

C(p,j)=  max(7/22,6/20)=max(0.318,0.3)=0.318 

C (l,n)=  max(6/22,7/20)= max(0.27,0.35)=0.35 

C(n,k)=  max(7/22,6/20)=max(0.318,0.3)=0.318 

C(a,l)=  max(7/22,8/20)=max(0.32,0.4)=0.4 

C(l,i)=  max(8/22,7/20)=max(0.36,0.35)=0.36 

C(n,g)=  max(7/22,5/20)= max(0.318,0.25)=0.318 

The arbitrary topology with appropriate edge cost 

values are shown in Fig.3. 
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Fig. 3.  Arbitrary Topology with  

DCMCR Cost Values 

Cost of each path is calculated as summation of 

edge weights of the paths as shown below: 

1) D(sbfhjd)  = 0.48 

2) D(sbfikd) = 0.63 

3) D(sbfihjd) = 0.79 

4) D(sbfhjikd) = 0.8 

5) D(sagikd) = 0.63 

6) D(sagihjd) = 0.79 

7) D(sagfikd) = 0.86 

8) D(sagfhjd) = 0.71 

9) D(sagfhjikd) = 1.03 

10) D(sagfihjd) =  1.02 

11) D(sbcagikd) = 1.07 

12) D(sbcagihjd) = 1.23 

13)  D(sbcagfikd) = 1.30 

14) D(sbcagfhjd) = 1.15 

15)  D(sbcagfihjd) = 1.46 

16) D(sbcagfhjikd) = 1.47 

17) D(sbmpjd) = 1.328 

18) D(sbmhjd) =  1.1 

19) D(sbmhd) = 1.32 

20) D(sagid) = 0.668 

21) D(salnkd) = 1.228 

22) D(salikd) = 1.058  

23) D(salid) = 1.096 

Then, to find the feasible path(s) using DCMCR 

Algorithm 

 1)  Consider p(sbfhjd) path 

         D(p) = 5 ≤ 10 (i.e. it satisfies the 

delay constraint) 

          C(p) = 0.48 

 2)  Consider p(sbfikd) path  

             D(p) = 5 

             C(p)=0.63 

 3)  Consider p(sbfihjd) path 

        D(p) =10 

        C(p)= 0.79 

 4)  Consider p(sagikd) path  

        D(p) =5 

       C(p)= 0.63 

 5)  Consider p(sagihjd) path 

      D(p) =10 

        C(p)= 0.79 

 6)  Consider p(sagid) 

  D(p)= 9 

  C(p)= 0.668 

These six paths are selected in the 23 total available 

paths. In other paths, the first constraint is not 

satisfied and hence those paths are not selected.  
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DCMCR returns the following path as optimum as 

its cost is least in all six feasible paths. 

 PDMR  (sbfhjd) = D(P) =5 

                 C(P)= 0.48 

From the Fig. 4  it is observed that the region below 

the plane offers the feasible paths. 

5.1 Testing Procedure 

DCMCR uses the testing to refine the lower and 

upper bound values. For testing procedure construct 

an auxiliary graph Gaux(G,s,d,K.∆d, 

(V-1/α),D,Caux) and define Test (T, α) =YES if 

MCPv2.2(Gauxs,s,d,K.∆d,(V-1/α),D,Caux) has feasible 

solution, otherwise define Test(T, α) =NO where T 

and α are real numbers i.e. find an source-

destination path Paux in Gaux such that D(P)= ∆d and 

C(P)≤ (V-1)/ α. 
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Fig. 4.  Optimal Path Weights of DCMCR  

on 3D Plane 

In MCPv2.2 cost constraint is defined as Caux and               

Caux(e)=C(e).γ where γ = 






 −

α..

1

WT

V
. In the arbitrary 

topology the following values are defined. The 

value of γ determines the auxiliary graph i.e. based 

on Testing values, weight bound and approximation 

factor γ is computed. 

  N=16, T=1, α=1 and W=10. 

 γ = 






 −

α..

1

WT

V
= 1.5 

 Consider the path p(sbfhjd) 

  C(p)= 








W

pwk )(
max  where 2≤k≤K. 

Caux (s,b) =C(s,b).γ 

Caux (s,b) =[0.1*1.5] = 0.15 

Caux(s,b)  =[0.1*1.5]  =  0.15 

Caux (b,f)  =[0.1*1.5] =  0.15 

Caux (f,h)  =[0.09*1.5] =  0.135 

Caux (h,j)  =[0.09*1.5] =  0.135 

Caux (j,d)  =[0.1*1.5] =  0.15 

Caux (s,a)  =[0.1*1.5] =  0.15 

Caux (a,g)  =[0.1*1.5]  =  0.15 

Caux (g,i)  =[0.15*1.5] =  0.225 

Caux (i,k)  =[0.14*1.5] =  0.21 

Caux (k,d)  =[0.14*1.5] =  0.21 

Caux (a,e)  =[0.15*1.5] =  0.225 

Caux (b,c)  =[0.14*1.5] =  0.21 

Caux (c,e)  =[0.1*1.5] =  0.15 

Caux (c,a)  =[0.3*1.5] =  0.45 

Caux (g,f)  =[0.23*1.5] =  0.345 

Caux (h,d)  =[0.41*1.5] =  0.615 

Caux (f,i)  =[0.15*1.5] =  0.225 

Caux (i,h)  =[0.25*1.5] =  0.375 

Caux (j,i)  =[0.14*1.5] =  0.21 

Caux (f,e) =[0.05*1.5] =  0.075 

Caux (a,l)  = [0.318*1.5]=0.477 

Caux (l,n)  = [0.35*1.5]= 0.525 

Caux (l,i)  = [0.36*1.5]=  0.54 

Caux (n,g)  = [0.318*1.5]= 0.477 

Caux (n,k)  = [0.32*1.5]= 0.48 

Caux (b,m) = [0.36*1.5]=0.54 

Caux (m,p) = [0.45*1.5]=0.675 

Caux (m,h) =[0.45*1.5] = 0.675 

Caux (p,j)  =[0.318*1.5]=  0.477 

Caux (i,d)  =[0.318*1.5]= 0.477 

Fig.5. represents the auxiliary graph with new 
weights. 
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Fig. 5.  Auxiliary Graph with New Weights 
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D(p(sbfhjd))=D(s,b)+D(b,f)+D(f,h)+D(h,j)+D(j,d) 

 = 1+1+1+1+1= 5≤∆d 

C(p(sbfhjd))=C(s,b)+C(b,f)+C(f,h)+C(h,j)+C(j,d) 

 =0.15+0.15+0.135+0.135+0.15=0.72 

                       ≤∆c 

Caux(p) ≤ (V-1)/α=15 , Caux(p) ≤ 15  

∴ MCPv2.2(Gauxs,d, ∆d , (V-1)/α, D, Caux) has a 

feasible solution so define Test (T, α) = YES, this 

implies UB=T(1+ α) 

 ∴ UB= 1(1+ α)= 2. 

In arbitrary topology, the least delay weight ratio is 

0.5 and the least cost weight is 0.48. The least delay 

weight ratio and the least cost weight ratio of 

ARPANET is 0.6 and 0.73 respectively. Similarly 

for ANSNET the values are 0.8 and 0.69 as shown 

in Fig. 6. 
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6 Experimental Results 

 

MCPv3, K-approximation and greedy algorithms 

OMCR were implemented and tested with DCMCR 

for performance evaluation. Arbitrary topology, 

ANSNET and ARPANET are used for simulation. 

The edge weights are uniformly selected in the 

range (1, 10). Constraint bound values are chosen as 

W=3, 10 and 20. The value of K is chosen as 3. The 

source-destination pairs are randomly generated so 

that the minimum hop-count between them is at 

least two. Simulations were carried out in NS-2 

[26]. The experiments are conducted in Core2Duo, 

2.4 GHz, 1 GB Memory with Linux operating 

system computer. The node configuration is shown 

in Table 1. 

6.1 Comparison of MCPv3 and DCMCR 

Execution time of DCMCR (Delay Coerced Multi 

Constrained Routing) is compared with MCPv3. 

Both algorithms perform almost similar in terms of 

execution time. However, DCMCR takes a little 

more time than MCPv3. This is due to coercing one 

constraint. DCMCR computing path with 

coercement of one constraint and finds (1+α)(K-1) 

approximated optimum solution. But, MCPv3 

considers all K constraints equally and computes 

(1+ α) approximated path. In fact, DCMCR is found 

useful where a particular constraint bound W is to 

be strictly satisfied e.g. tight constraint applications. 

Table 1 Node Configuration 

S.No Number 

of  

Nodes 

Area in Sq.m 

1 40-60 500 × 500 

2 80-100 1000 × 1000 

3 120 1500 × 1500 

 
Various simulation details are shown in Table 2. 

Table 2 Various Simulation Details 

S.No Simulation  

Parameter 

Remarks 

1 Placement of Node Random 

2 Topology Chosen  Arbitrary,  

ARPANET  

and ANSNET 

3 Distance Between  

Nodes  

Euclidean 

4 Range of Value of  

Constraints 

Between 1 and 10 

5 Nature of  

Constraints 

Additive 

6 Packet size  512 bytes 

Moreover, whenever topology changes DCMCR 

adopts edge relaxation. Topology changes should 

reflect in the node where changes occur and also in 

its parent node. Some edges or nodes or both are 

pruned so that the path computed is always feasible 

and optimum for a particular source-destination 

pair. MCPv3 also performs edge relaxation 

methodologies whenever a change in topology 

found, but running time is less compared to 

DCMCR as MCPv3 considers all K-constraints 

equally and is evident from the Fig. 7. However the 
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two other algorithms i.e. Greedy and K-

approximation obviously take longer time to 

compute the path while comparing to MCPv3 and 

DCMCR. 

Fig.8. shows the effect of running time of MCPv3 

and DCMCR with reference to number of nodes. In 

this case both algorithms perform in similar fashion. 

When the number of node increases, the execution 

time also increases and it is negatively correlated 

with approximation factor (α) for both algorithms. 

Approximation factor (αααα)
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Fig. 7.  Running Time of MCPv3 and DCMCR 

Vs Approximation Factor 
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Fig.8 Running Time of MCPv3 and DCMCR 

 Vs Number of Nodes 

 

However, DCMCR takes little more time because of 

coercing one constraint. This is especially true when 

the size of the network grows. Because DCMCR has 

to satisfy the first constraint strictly in all the paths 

computed. Longer running time is experienced 

especially when the source and destination nodes 

are far apart. This is the reason why the time 

difference is kept increasing when the number of 

nodes increase. But DCMCR has the performance 

guarantee, as that of MCPv3 and the ability to bring 

the feasible path almost in all situations i.e. the error 

ratio is small. Simulation results revealed that 

DCMCR and MCPv3 perform almost in similar 

fashion irrespective of value W and both algorithms 

find feasible optimum paths.   

6.2 Analysis of Success Ratio 

Arbitrary networks are generated by using Waxman 
graph algorithm [22]. Here ‘n’ nodes are randomly 
distributed and each node is placed at a location 
with integer coordinates. The Euclidean metric is 
then used to determine the distance between each 
pair of nodes. On the other hand edges are 
introduced between pairs of nodes s-d with a 
probability that depends on the distance between 
them. The edge probability is given by p(u,v) = 
βexp(-d(u,v)/αL) where d(u,v) is the distance from 
node ‘u’ to ‘v’,     L is the maximum distance 
between two nodes and α, β are parameters in the 
range between 0 and 1. Larger values of β result in 
graphs with higher edge densities, while small 
values of α increase the density of short edges 
relative to lower ones [9, 21].  

Success Ratio (SR) of various algorithms at 
different nodes with n=40, 80 and 120 is shown in 
Fig.9. Success Ratio is defined as the percentage of 
time that the algorithm finds a feasible path, at least 
one exists [10, 19]. High success ratio could be 
achieved when the number of nodes is between 80 
and 100. MCPv3 achieves better success ratio than 
greedy and K-approximation algorithms almost in 
all the three cases. These tests are experimented in 
randomly generated graphs. Success ratio and 
number of nodes are positively correlated for 
MCPv3. Success ratio of DCMCR is little less than 
MCPv3 due to coercing one constraint. 
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DCMCR algorithm provides approximation solution 

to restricted shortest path problem and is readily 

applicable to underlying MCP problem. By coercing 

one constraint, it is obvious that the number of 

feasible paths is fewer than MCPv3. However 

DCMCR is much suited for an application where a 

constraint is to be strictly satisfied. In greedy and K-

approximation algorithms, the success ratio is 

comparatively lower and moreover time consumed 

to find the feasible paths are also high. 

A routing algorithm behaves well, when its success 

ratio is high and the cost of the routes is low. Higher 

success ratios and lower costs result in better 

‘overall performance’. Fig.10 illustrates the 

variation of success ratio with the increasing 

number of feasible paths for different randomly 

generated graphs whose size is varying from 20 to 

120. Success ratio of MCPv3 increases when the 

value of K=3 for any number of nodes. MCPv3 

finds feasible paths irrespective of nature of 

constraints i.e. tight or loose constraints. This is due 

to optimum selection of approximation factor and 

xopt. MCPv3 is able to determine paths irrespective 

of size of network.  
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In fact, DCMCR and MCPv3 perform similarly 

even though DCMCR need to coerce one constraint. 

DCMCR approximates remaining two constraints 

and hence its performance is compared with 

MCPv3. But greedy and K-approximation 

algorithms are not comparatively better. This is due 

to absolute selection of weight in greedy algorithm 

and K-approximation is simple in nature and its time 

complexity is not linear. Therefore when the number 

of constraints K≥3 the success ratio is not 

comparable with MCPv3 and DCMCR. It is 

particularly true when the link weights are 

negatively correlated, finding a feasible path becomes 

hard for K-approximation algorithm. 

The effect of success ratio Vs different number of 

constraints is considered shown in Fig.11. Success 

ratio and number of constraints are negatively 

correlated in all the algorithms. However, the 

performance of Greedy and K-approximation 

algorithms affected by the number of constraints is 

more serious than the proposed algorithms. When 

the number of constraints is more than three, the 

performance of Greedy and   

K-approximation algorithms are poor. Greedy 

algorithm considers the true path length and K-

approximation uses upper bound of the path while 

making decisions. Appropriate testing procedures 

are conducted to choose xopt in MCPv3 and 

DCMCR algorithms and hence better performance 

is achieved. 
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Fig. 11  Number of Constraints Vs Success Ratio 

 

Fig.12 shows effect of success ratio with the 

increasing number of feasible paths for different 

number of nodes. It is obvious that the success ratio 

and feasible paths are positively correlated 

regardless of number of nodes. It is observed that 

the success ratio varies sharply especially when 

number of nodes is between 60 and 120 and the 

number of feasible paths p≥2. More number of 

feasible paths can be achieved by better edge 

relaxation techniques and better average node 

degree. An average node degree between 7 and 8 is 

achieved in the generated random graph. In this case 

also DCMCR and MCPv3 outperform the other 

algorithms. 
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6.3 Effect of Throughput, Delay and 

Bandwidth on Various Number of Nodes 
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Fig. 13. Throughput Vs Number of Nodes 

The effect of throughput for various number of 

nodes is shown in Fig.13 All the nodes are 

connected by directed links and each node has a 

node degree of 3 and above. The delay of each link 

is between 1 ms and 10 ms. Routing requests are 

generated randomly. The network throughput starts 

to decrease when the load of the network increases. 

In DCMCR, due to the one constraint coercement 

the throughput starts to decline when the number of 

nodes is high. When the network size grows, the 

available throughput decreases due to more number 

of flows. But, the rate at which the throughput is 

decreases is lesser in MCPv3 than DCMCR.  

However, both algorithms can be applied to 

distributed network environment. If the number of 

nodes is high there will be more bottleneck 

bandwidth and hence the throughput decreases. 

Nevertheless even when the network load is high the 

proposed algorithms are more efficient since the 

throughput is less; because both MCPv3 and 

DCMCR are path constrained algorithms. Any 

bottleneck bandwidth may simply be omitted in the 

process of finding feasible paths. MCPv3 and 

DCMCR achieve load balancing by using more than 

one path. Other algorithms drop the packets because 

of congestion in a single path. Throughput is not 

affected much by the link quality when there are 

only a few hops. When the network size increases 

the proposed algorithm suffer from accumulative 

link loss. 

The effect of delay and throughput is shown in 

Fig.14. Both algorithms maintain the delay less than 

150 msec for almost all the throughput value. In 

fact, increasing throughput results in increased 

delays. These effects are more conspicuous during 

periods of congestion. Higher delay may be 

experienced when the source and destination are far 

apart or when the network experiencing congestion. 
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Fig. 14. Delay Vs Throughput 

Any good routing algorithm should keep the delay 

as low as possible for almost all values of 

throughput. In MCPv3 and DCMCR delay start to 

rise only when the network size grows beyond 200 

nodes, or if the network experience congestion. As 

long as the network size is below 200 both 

algorithms experience reasonably acceptable delay 

limits. DCMCR shows little excess delay due to the 

delay coercement. Moreover, by choosing 
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appropriate approximation factor and other 

parameters MCPv3 and DCMCR are perform better.  

The Number of Messages for various bandwidths is 

shown in Fig. 15. Routing messages are counted that 

each node sends to its neighbours in order to 

establish an end-to-end delay-throughput 

constrained route. The performance of MPOR and 

DMR in tight bandwidth requirement seems to be 

worse. This is due to more control messages are to 

be sent to update the network when compared to 

OMCR. The performance of DMR and OMCR are 

almost similar. But MPOR is drastically 

underperforms; this is due to it produces large 

amount of packets in the case of network failures. 

The convergence time is also less because of the 

less number of packets that are being exchanged in 

case of network failures. Multiple vectors reduce the 

overhead in OMCR and hence the available 

bandwidth is effectively utilized in the proposed 

algorithms. But in MPOR only one message 

accommodates in one packet and hence the 

bandwidth is being wasted in the case of network 

failure. Due to effective utilization of throughput the 

convergence time is less in OMCR.  
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Fig.15. Number of Messages Vs Bandwidth 

The effect of throughput on various network load is 

shown in Fig.16.When the network load increases 

throughput of all the proposed algorithms are kept 

decreasing. In the case of OMCR the throughput 

steadily deceases when the network load increase. 

MCPv3 and DCMCR normally avoid the links that 

have little bandwidth by proper edge relaxation. 

However, at heavy loads and/or the number of 

nodes of the network increases the throughput 

declines. In OMCR, due to better vector 

transformation techniques the throughput is 

effectively managed. However, whenever the 

network traffic increases significantly throughput 

declines. This is especially true when most of the 

capacity of each link is reserved for guaranteed 

sessions. 
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 Fig. 16. Network Load Vs Throughput  

6.4  Effect of Packet Size 
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          Fig. 17.  Packet Size Vs Running Time 

The effect of running time for different packet sizes  

is shown in Fig.17 .The better performance of the 

proposed schemes is achieved when the packet size 

is 512 or 1024 bytes. Beyond this range the 

performance of the proposed algorithms are slightly 

less. Smaller packets can cause more router 

overhead in terms of checksum overhead i.e. each 

packet has to undergo error checking and hence 

more time is consumed in router. Because of this 

reason the running time is high when the packet size 

is 128 bytes. Error checking process is less in the 

case of 512 or 1024 byte packets. If the packet size 

is high i.e. 2048 or 4096, the routers may start to 
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drop the packets because of the bottleneck 

bandwidth or congestion. Otherwise the packets are 

to be fragmented, if the packet size is greater than 

the MTU (Maximum Transmission Unit) of a link 

e.g. Ethernet the MTU is 1500 bytes and for point to 

point networks is 532 bytes.  This causes time delay 

in reaching the destination and hence running time 

of the algorithm is increased.  

The effect of success ratio for different packet size 

is shown Fig.18. .In OMCR success ratio is subdued 

when the packet size is too small or too big. Small 

packets cause the router to get congested because of 

the header processing delay i.e. time taken to read 

the header checksum. But in larger packets cannot 

be accommodated due to bandwidth constraints. 

Either they must be fragmented or to be dropped at 

router. Fragmentation and reassembly consumes 

time and hence the success ratio is affected if the 

packet size is beyond 512 to 1024 bytes.  
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           Fig..18. Packet Size Vs % Success Ratio 

 Generally if the packet size is too low, 

streams of traffic is broken up into a relatively large 

number of small packets that adversely affects the 

performance. On the other hand if the packet size is 

set too high, it may exceed the networks physical 

MTU and degrade performance because each packet 

needs to be subdivided into smaller ones i.e. 

fragmentation. The default value of maximum 

packet size is 1500 bytes for broadband connection 

and 576 bytes for dialup connection. 

 

7  Conclusion 

 

The proposed algorithm is a multi-constrained (1+α) 

(K-1) approximation algorithm with K≥2 additive 

constraints. DCMCR approximates (K-1) 

constraints while coercing one of the constraints. 

This algorithm finds a feasible solution whose path 

weight is bound by first constraint and 

approximating remaining (K-1) constraints. 

DCMCR is applied where one of the QoS 

constraints is coerced and remaining constraints are 

approximated. By choosing appropriate value of α 

and constraint bounds, the proposed algorithm 

outperforms its contenders. When the K is equal to 

2, this algorithm produces (1+α) approximation with 

better running time than that of its contenders 

designed for this purpose. Experimental validation 

reveals that DCMCR performs better to achieve 

comparatively reduced running time and delivers 

well in tight constraint scenario. DCMCR shows 

better overall performance when the number of 

nodes is high. The proposed algorithm outperforms 

in terms of running time, success ratio and 

scalability by choosing appropriate approximation 

factor, xopt and effective testing procedures. 
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