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Abstract: - This paper presents a new approach and method for learning and discovering. Concept learning illustrates acquiring 

descriptions that make the structure of generalizations explicit.  Two kinds of concept learning are distinguished inductive and deductive. 

The entity structure in which all components  are encoded  has modeled knowledge  representation scheme. Discovering with process 

knowledge acquisition and learning were applied. Learning by discovering systems enhance their knowledge base. In this paper examines 

the entity structure for chemical system building in organic chemistry. The obtained results has illustrated the development of discovering  

model for surfactants formation.   
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                                    I.   ITRODUCTION 

 

      Learning by discovering is when systems operate autonomously, 

performing experiments to enhance their knowledge base. They can 

proceed either deductively or inductively. They search for interesting 

things, forming conjectures by examining a few examples of 

concepts and noticing coincidences, perhaps attempting to prove 

these conjectures[1]-[4]. One key issue is the mechanism by which 

interesting conjectures are singled out and others discarded. Another 

is the distribution of resources between competing lines of 

development. It is not yet clear  whether  such open ended search is 

capable of being controlled usefully. 

     Concept learning is rendered tractable by constraining the search 

to exclude major portions of the potential space. In existing systems 

the designer does this by ruling out possible forms of a concept. 

Ideally, a mechanism would be provided whereby a  knowledge 

acquisition system could learn  about the constraints which operate 

in a particular domain, but the general problem of learning  

constraints has yet to be tackled. Note that amenable to a purely 

formal treatment, for biasing constraints can only  be expressed in 

logic as properties of predicates, so reasoning about bias entails the 

use of higher order logic. 

     The scientists view toward causality differs  considerably from 

that of philosophers. Scientists are interested in discovering 

functional relationships among physical phenomena in order to 

explain their behavior. Over the years, scientists have studied two 

aspects  of causality: isolation of the variables which represent cause 

phenomena and those which represent effect phenomena, and 

determination of the magnitude and direction of change in effect 

phenomena corresponding to a change in cause phenomena [5]-[8]. 

 

 

II. CONCEPT LEARNING 

 

      Inductive and deductive concept learning can be  represented in 

an appropriately powerful form of logic, such as predicate calculus. 

However, although formal logic provides a sufficient basis for 

deduction, as a foundation for induction it is at once too narrow and 

too powerful. 
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     It is too narrow because induction, based on search, is 

extraordinarily sensitive to the precise structure of the search 

space, and while different representations may be formally 

equivalent, they imply different search spaces.       

     Extending the distinction that is often made between the 

epistemiological adequacy of a representation whether it is 

capable of expressing the facts that one has about the world and 

its heuristic adequacy, one might characterize formal logic as 

epistemiologically adequate but inductively inadequate for 

concept learning 

       On the other hand, logic is too powerful because the need to 

acquire knowledge automatically from teacher or environment 

and integrate it with what is already knows means that only the 

simplest representations are used by programs for system 

learning. It is hardly necessary to say that a data structure is not 

knowledge, any more than an encyclopedia is. 

      Current knowledge acquisition systems perform routine 

housekeeping, permit rote learning of explicitly presented facts, 

and are able  to elicit from experts simple rules based on the 

attributes. Methods of concept learning may be able to overcome 

these imitations, although the present state of the art is primitive 

and suggests ideas rather than well developed algorithms for the 

knowledge acquisition tool box. Concept learning systems take 

examples and create general descriptions, often expressed as 

rules, which expert systems need. 

     Dictionary  definitions of concept  are   remarkably vague, but 

have in common the abstract idea of a class of objects, 

particularly one derived from specific instances or occurrences. 

Learning is an equally broad term, and denotes the gaining of 

knowledge, skill, and understanding from instruction, 

experience, or reflection in other words, knowledge acquisition 

by people. 

    Others have defined terms such as generalization inductive 

learning and inductive modeling  in almost  identical ways. 

Moreover, what is learned is sometimes called a generalization, a 

description, a concept, a model, or  a hypothesis. A satisfactory  

technical vocabulary has not yet been developed, which term one 

favor seems purely a matter of taste. 

       Concept learning involves acquiring descriptions that make the 

structure of generalizations explicit. When a person learns a new 

concept, he or she gains knowledge that they can use  in a rich  

variety of different ways, apply it to  other ideas, and so on. For a 

person, learning is not simply  a matter  of acquiring a description, 
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but involves taking something new and integrating it fully with  

existing though processes. However, they do acquire descriptions 

that are explicit in the sense that they can be communicated 

economically for example, in the form of rules, and could plausibly 

support a variety of different kinds of reasoning. This orientation 

rules out, for example, connectionist model of learning, which 

embed knowledge in high dimensional numerically parameterized 

spaces, making learning a process of weight adjustments. 

       While the phrase may conjure up an alluring promise  of the 

magic of human intelligence, systems for concept learning are rooted 

firmly in the reality of practical algorithms. The essence  is a 

constrained search of what is invariably an astronomically large 

space of possible descriptions. The  framework  can classify into 

areas of representing concepts and examples, biasing the search for 

concepts and interacting with a teacher. 

     There are two kinds of concept learning inductive and deductive. 

For the inductive concept learning, one must infer a general 

conclusion from empirical examples [4]. This can be formalized as 

follows. Along with initial background knowledge  -BK,  examples -

E of a desired concept are given. A concept C is said to be induced 

if:  

 

BK≠ >E                 the examples are not logical 

                                consequences of the knowledge 

 

BK E∪ ≠ >-C       the concept is not inconsistent  

                                with the knowledge and 

                                examples 

 

BK∪ C≡> E         the examples are logical 

                                consequences of the concept and  

                                knowledge together 

 

Normally BK E∪ ≠ >C , C is induced rather than deduced. If E is 

known to be exhaustive, the learner may be able to deduce a concept. 

The inference of a statement from information that is known to exhaust 

all possibilities is a special case of induction  known as summative 

induction, and lies on the borderline with deduction[4],[5]. 

     Suppose examples and concept are both deducible from background 

knowledge, even though neither are explicitly, present in it. This is an 

instance of deductive concept learning (Fig. 1). Although, excluded by 

the above formalization, it can be viewed as a kind of learning, for the 

examples show which deductions are important namely those that 

represent the reasoning involved in the examples and enable this 

important knowledge to operation in an  explicit description. In most 

cases an impossibly large set of operational concepts can be deduced 

from background knowledge, and the problem is to select one 

appropriate to the examples.  

   Deductive concept learning may be formalized as follows: 

 

BK=>E      the examples are logical consequence 

                   of the background knowledge 

 

C ∉BK      the concept is not an explicit part of  

                   the background knowledge  

 

 BK=>C     the concept is the logical consequence       

                  of the background knowledge 

    

C=>E        the examples are the logical  

consequence of the concept.  
      In other words, the concept operationalizes the relevant part 

of background knowledge. This kind of learning is often called 

explanation based. The distinction between deductive and 

inductive concept learning can be viewed as a modern 

reincarnation of the long philosophical tradition of distinguishing 

necessary from contingent truths. Concepts and examples are the 

output  and input  of the knowledge acquisition system, what is 

learned and what is provided by a teacher  or  other external 

agent (Fig.2). To be useful, a framework for representing 

concepts must provide knowledge engineers with methods for 

selecting appropriate representations for examples, concepts and 

background knowledge. Separate representations are required for 

examples and concepts. 

      Methods for determining a preference order inevitably 

depend on the syntax of the language used to express concepts. 

One concept is simpler than another if it is shorter when written 

down. Length can be measured in various ways including  

number of disjuncts in logical expression, number of function 

calls in functional expressions, number of function calls plus 

total number of function arguments, length of function 

expressions represented as character  strings, number of loops 

and conditionals in procedures, and number of states or 

transitions in a state diagram representation. 

    A different approach model maximization uses the extension 

rather than the intension  of a concept. One concept is preferred 

over another if its extension is a superset of the others. The 

knowledge acquisition system must know how to order concepts 

according to their extensions, the ordering will be partial as 

extensions may overlap (Fig.3). 

      A concept learning system practical utility obviously depends 

critically on its teaching requirements. Teaching differs from 

programming in that a teacher does not use a formal model of the 

learner, whereas a programmer normally expects to know exactly 

how his instructions are going to be interpreted. In other words, a 

teacher  adopt the intentional stance while a programmer adopts 

the design stance. Ideally, therefore, to be a good teacher one 

need know nothing about the internal structure of the learner, no 

about the representation it uses for concepts.  

      Moreover, experts who acquire  their knowledge from 

example cases are unlikely to have  a clear analytical  

understanding of the task domain, otherwise more explicit 

methods of knowledge transfer will probably prove more 

appropriate. In general, people find it difficult to translate their 

own expertise into explicit descriptions. Consequently concept 

learning systems should be able to work with the kind of 

examples that a teacher finds it natural to provide, ordered in 

way that is natural to him. 

       The third concerns the cooperation and pedagogical skills of 

the teacher. Learning situations range from having no teacher at 

all  through a naive user, a domain expert, a skilled  trained 

teacher to a teacher who is prepared  to program in a 

conventional  programming language and thereby circumvent  

the need for learning. Must the teacher show all working give 

examples, teach simple concepts before complex ones. 

      A skilled teacher will select illuminating examples himself and 

thereby simplify the learners task. The benefits of carefully 

constructed examples were appreciated in the earliest research 

efforts in concept learning. The notion of sympathetic teacher has 

been formalized in terms of felicity conditions, constraints imposed 
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on or satisfied by a teacher that make learning better than from 

random examples. The teacher should classify examples correctly, 

point out absences explicitly, show all work, avoid glossing over 

intermediate results, and introduce only essentially new feature per 

lesson. Although it does not increase formal learning power, the 

possibility of a system constructing its own examples and having 

them classified by an informant has a system considerable potential 

to speed up learning and reduce dependence on the skill of the 

teacher. 

     Isolated attempts have been to meet what is perhaps the major 

shortcoming of similarity based learning, that examples are lifted 

out of the world, cleaned up, and presented to system by a teacher 

who makes all the important decisions about when to create new 

concepts. Still the most impressive to discover interesting concepts 

in elementary mathematics and interesting heuristics for further 

discovery. 

      What  is certain to be required is an integrative framework that 

permits different mechanisms to be compared and contrasted 

learning techniques in a way that makes them readily accessible to 

potential users. Anything that  is learned must be communicated 

through the expert or user  interface. 

      Faced with practical problem, the first decisions to make are 

how to represent concepts  and examples. Suitable forms of 

concepts representation will be dictated by the requirements of the  

knowledge based system and the kind of examples available. 

Sometimes  the example representation dominate the decision, 

while in other situations the desired concept format will force 

examples into  a particular mode. 

      Logical representations are indicated by the  predominance of 

logical relationships in example or concepts. The possibility of 

using attribute values strongly suggests the simpler prepositional 

calculus representation. Similarity based system methods are 

appropriate when many examples are available, or when it is not  

possible to define a domain theory in advance. If concept must be 

built on earlier learned ones, a hierarchical method is indicated. If 

a domain theory is known, then an explanation or discovery based 

system can utilize it. 

      Given a set of objects that represent examples and 

counterexamples of concept, a similarity based learner attempts to 

induce generalized description that encompasses all the examples 

and none of the counterexamples. Interesting general issues 

include the conditions under which the procedure converges to a 

single description, weather the system can know that it has 

converges, whether the final concept may depend on the order of 

presentation of examples, and whether the training  sets expected 

to be exhaustive  or representative. 

      The version space approach to concept learning transforms the 

inductive  problem of generalization into  a deductive one by  

circumscribing the way  in which  descriptions are expressed  and 

searching for ones that fit the examples given. It postulates a 

language  in which objects are expressed. Given asset of positive 

and negative examples of a target description, a simple search 

algorithm exists that finds all descriptions that are consistent with 

the examples (Eq.1). This set is called the version space. 

 

E=f(concept1,concept2…. , example1,example2,….…bias)  (1)        

 

The seeking value E of introduced concept and bias and 

examples is a major task.  Fig.1 shows trajectory for concept 

introducing in discovering process. The method applies simply 

and directly when each object is described by a fixed set of 

properties, usually epresented as an attribute vector, which is 

equivalent to a description in propositional logic. Its performance 

in such domains has been studied extensively. Allowing 

disjunction in the description language causes the version space 

to explode, while even with purely conjunctive concepts, one 

version space boundary can grow exponentially in the number of 

examples. 

      In  structural domains, each example comprises a scene 

containing several objects, expressed in predicate logic. Part of 

the problem in matching  a scene with a structural description is 

determining an appropriate mapping between objects in the scene 

and those specified in the description. This mapping will have 

different interpretations depending on whether the scene is to 

compromise or merely to contain the desired object. Several 

theoretical results indicate that, even in the simplest cases, 

extreme computational complexity can be involved in working 

with version spaces of structural objects. 
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Fig.1      Concept development 

   

Fig.3 shows model for knowledge extension. 
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                                      Fig.2 Learning  method 
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                                             Fig.3 Model construction 
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III.  CURRENT AND PREVIUOUSLY PHENOMENA 

 

       It is not possible, in the state present of the art, to supply a 

comprehensive set rules to determine which concept learning 

scheme to use, given desire concept and example representations, 

background knowledge available, form of teacher interaction, and 

appropriate biases for concept representations.     The scientists view 

toward causality differs  considerably from that of philosophers. 

Scientists are interested in discovering functional relationships 

among physical phenomena in order to explain their behavior. Over 

the years, scientists have studied two aspects  of causality: isolation 

of the variables which represent cause phenomena and those which 

represent effect phenomena, and determination of the magnitude and 

direction of change in effect phenomena corresponding to a change 

in cause phenomena [7].   The identified variables  along with their 

functional relationships can serve as a useful computational model 

for making inference. Causal structure can be establish by 

examining some statistics associated with  the variables of interest. 

The question “Is correlation proof of causation?” is very important.                                                                                                         

Causal modelling attempts to resolve questions about possible 

causes so as to provide explanations of phenomena  as a results of 

previous phenomena . The quantitative approach to causal modelling 

and inference involves computing  the path coefficients between the 

cause and the effect variables and using  the resulting equation  to 

predict the change  in the cause. It is a technique for selecting 

variables which are potential determinants of effects and then 

attempting to isolate the separate contributions to the effects by each 

cause [8]. The two areas of model development and analysis are 

addressed through the discussion of generic simulation environment. 

The knowledge based simulation environment is an expression of 

some control law or cognitive theory. To the extent that the rule base 

is derived from set of assumptions about the environment and 

performance expectations, it is a belief system. However, in the 

existing form, the goals are not expressed and the underlying 

assumptions are not evident. Consequently, they are opaque to the 

analyst and cannot be directly applied to the learning process.  When 

expressed in hierarchical form the relationship that exist between 

goals and subgoals provide a basis for relating overall goal based 

system performance  to specific assumptions about the variability 

and contribution of the supporting subgoals [9]. In this form, the 

belief system  is a full expression of some control theory in that the 

system’s relationship with the environment, as expressed in a set of  

feasible state conditions, can be related either in overall system 

performance measures to be relationships and the subgoals that 

support them. In the case of a tree, the root specifies an attributte to 

be selected and tested first, then depending on its value subordinate 

nodes dictate tests on further attributes. The leaves are marked to 

show the classifications of the objects they represent. For two class 

problems these are simply »positive«or »negative«, but it easy to 

distinguish more than two classes. The Quinlan's algorithm [3] uses 

an information theoretic heuristic to find a simple tree which 

classifies all examples given. With noisy data, it construct huge 

decision trees which reflect the detail of every example seen. In the 

case of production rules, the training set is used to construct a set of 

rules which can be interpreted by an expert system in standard 

forward or backward chaining manner. While any decision tree can 

easily be converted to rules, the rules may contain redudances which 

can  be eliminated by generating them directly from the examples. It 

would be attractive if learning systems could build upon already 

learned  and use them as components in newly constructed 

descriptions. This might allow learning to be  sustained over  an 

extended  period of time, insteaded of being done on a one off basis. 

 

       IV. KNOWLEDGE EXTRACTION 

 

      The quantitative approach  to causal modeling and inference 

involves computing  the path coefficients between the cause and 

the effect variables and using  the resulting equation  to predict 

the change  in the cause (Fig.4). Historically, this is the most 

important approach for  analyzing  causality  and  has  already  

been   explored   to  great extent in sociology, economics,  

medicine and etc..   

      Although the quantitative approach has proven very useful 

for dealing with many real-world problems, it is neither 

sufficient nor necessary under some circumstances. Furthermore, 

because in reality, there may not exist enough quantitative 

knowledge to permit full quantitative modelling, abstract 

qualitative models are worthwhile to explore. Qualitative causal 

modeling has become one major line of research toward the 

representation of deep models in knowledge based systems. Two 

well qualitative causal simulation techniques will be describe 

here.   

      The first approach refers to the technique which predicts the 

possible qualitative behaviors of a system on the basis of the 

model comprising the predefined physical parameters and 

constraint predicates.  

      These parameters  and  constraints  are  abstracted  from   the 

mathematical equations describing the system dynamic behavior. 

This model provides a snapshot of the qualitative characteristics 

of the system at each defined time frame, and is especially useful 

when we want to know the dynamic trends of the cause  and  the 

effect. 

    In the second approach causal knowledge is modeled as  

causal networks in which the nodes represent propositions (or 

variables), the arcs signify  direct dependencies between the 

linked propositions, and the strengths of these dependences are 

quantified by conditional  probabilities. Stochastic simulation is 

a method of computing probabilities by counting the fraction of 

time an event occurs in a series of simulation run. If a causal 

model is available, it can be used to generate random samples of 

hypothetical scenarios that are likely to develop in the domain. 

The probability of an event or any combination of events can be 

computed by recording the fraction of time it registers true in the 

samples generated. 

       This approach can arrive at stationary estimates of a 

posteriori probabilities based on a priori probabilities. As a 

contrast, in quantitative approach, the probability factors are 

already incorporated in regression coefficients. 

 

 

                  V.  DISCOVERING SYSTEM MODELLING 

 

       In this article multifaceted modelling, knowledge based 

simulation and causality were demonstrated. This work was 

motivated by the need  to provide a more flexible than existing 

approaches modelling framework for simulating changes and for  

predicting the behaviour of the system in general.  

      Causal modelling attempts to resolve questions about 

possible causes so as to provide explanations of phenomena  as a 
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results of previous phenomena. It is a technique for selecting 

variables which are potential determinants of effects and then 

attempting to isolate the separate contributions to the effects by 

each cause. Causal ordering is an important part of causal 

modelling. It is an asymmetrical relationship among variables of 

a set of simultaneous equations representing functional 

relationships. The objective of causal ordering is to establish 

direct causality or determine the number of intervening levels for 

indirect causality. 

    Many causal models have been developed without losing 

generality, a causal model consists of a representation of the 

phenomena along with directions indicating the cause - and -effect 

relationship among the phenomena. A direct graph is a means of 

how this causal structure can be visualized, in which a node is 

labeled by domain concept and an arc points from a cause node to an 

effect node. Since to perform causal reasoning requires the 

knowledge of the quantitative and qualitative characteristics of 

causal relationships and the interaction manner among causal 

influences.  

    Each arc associates with function describing the characteristics 

of the designated causal relationship and associate each node with a 

function for combining causal influences from different sources. A 

formal description of this visual representation for causal structures 

is given in Fig.4. 

      Each variable Xi assumes either symbolic or numerical values. 

As shown in Fig.4, each arc in the network is labeled (associated) 

with an influence function. If function fij   is associated with arc  Xi          

Xj, the influence of variable Xi   on variable Xj  is  fij(Xi). Each such 

influence function fij   is specified by the qualitative and, or 

quantitative relationships between Xi        and Xj,. Each variable is 

associated with a fusion function. Suppose fusion function gj is 

associated with variable Xi, which receives influences from variables 

X1 , X2 ,  X3 ,…. Xk with corresponding influence function    f1j ,  , f2j ,    
f3j  ,…….. fkj  respectively, then  

 

)).()....(),(( 2211 kkjjjji XfXfXfgX =                       (1) 

 

       Composing  all  the influence functions: 

 

     ),....,,( 21 kjj XXXGX =                                        (2) 

     

  In a dynamic system, let further consider the time 

dimension and modify  the above expression into 

 

    ))(),....,(),(()( 21 tXtXtXGtX kjj =                     (3) 

    

   If there  is a differentiation operator on the left hand side, it can be 

eliminated by taking integration on both sides. If there is a circular 

loop, it be removed by transforming the causal network into a form 

without circularity. The notion of causal lag can also be integrated  

into the above form. Function Gj  can represent any quantitative or 

qualitative mapping. Thus, equation (3) may represent  a single or 

set  of equations or rules.  

    Causal knowledge in the given can be represented at multiple 

levels of abstraction.  The traversal mechanism between levels 

must be defined, which should provide correspondence in 

knowledge between levels and should make discovery.  The 

model representational methods can also be organized as a 

taxonomy. Process abstraction allows simulationists to construct 

models composed of a set of interconnected levels. Each level in 

the network represents the process at some given level of 

abstraction and is encoded using a model type appropriate to that 

level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 A  graph with functional labels. 

 

     A taxonomy of process abstraction methods is  introduced to 

characterize the fundamental concept of level traversal. Traversal 

mechanisms can be implemented as rules which discovery 

making.  

    In causal modeling, the quantitative method and the qualitative 

method treat as two different levels of abstraction. Translation 

quantitative knowledge into qualitative knowledge need to 

define. Traversal mechanisms need to discover new rules.  

 

 

                      VI. APPLICATION IN CHEMISTRY 

 

The framework used in modelling of one type of natural systems, 

structural chemical system can be depicted. It can be indicated 

two possible approaches to complex chemical contains 

modelling. The first, identified with structural knowledge, 

follows a deductive reasoning approach in which one tries to 

deduce from an existing theory model relationships for a given 

problem. The second, identified with a posterior empirical 

knowledge, follows an inductive approach in which one tries to 

develop a model  from the sampled data. Ideally, these two 

approaches act as complementary stages of the modelling 

process. One follows all six steps with model calibration and 

model validation serving as an empirical test bed for a prior 

model as a learning tool. Yet, in some situations characterized by 

difficulties in obtaining empirical data due to a budget  and time 

constraints or peliminary scope of the analysis, the model 
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specification may be reduced to the a priori stage.  

      In this paper, it was demonstrated how modelling and 

knowledge based simulation can integrate steps  required to model 

chemical structure of organic compounds. This work motivated  by 

the need to provide a more flexible than existing approaches 

modelling framework for simulating changes in chemical structure  

in particular, and for predicting the behavior of chemical systems. 

For the application domain, chemical system simulation  has been 

selected carbon, hydrogen and oxigen atoms  generaly.  

 

 

VII. LEARNING BY DISCOVERING 

 

     Learning by discovering is when systems operate 

autonomously, performing experiments to enhance their 

knowledge base. They can proceed either deductively or 

inductively. They search for interesting things, forming conjectures 

by examining a few examples of concepts and noticing 

coincidences, perhaps attempting to prove these conjectures. One 

key issue is the mechanism by which interesting conjectures are 

singled out and others discarded. Another is the distribution of 

resources between competing lines of development. It is not yet 

clear  whether  such open ended search is capable of being 

controlled usefully. 

       One key issue is the mechanism by which interesting 

conjectures are singled out and others discarded. Another is the 

distribution of resources between competing lines of development. 

It is not yet clear  whether  such open ended search is capable of 

being controlled usefully. 

        Note that amenable to a purely formal treatment, for biasing 

constraints can only  be expressed in logic as properties of 

predicates, so reasoning about bias entails the use of higher order 

logic. 

     In functional representation composition bias determines the 

vocabulary of built in functions and operators, and the syntax by 

which concepts may be constructed. In both procedural and 

functional representations, compositional constraints can be used 

to govern  how terms match, ensuring  that data types and physical  

quantities are combined appropriately. Composition bias in 

procedural representations is reflected in the use  of limited 

repertoire of control constructs, like if …then…else… and 

while….do…, and even  in the presuppositions  of sequential 

execution. In future there may be greater use of parallel procedural 

representations, where a construct like sequence is necessary to 

indicate sequentially explicitly. 

 There is interesting relationship  between conceptual and 

compositional bias, and formal grammars. A grammar has a 

terminal vocabulary, the set of all symbols in the language it 

generates, and set of production rules for sentence formation. To 

any concept space there corresponds a grammar that generates 

possible concepts. Conceptual biasing determines a vocabulary. It 

specifies  only content symbols (refer to things in the domain) and  

not the non-content symbols such  as logical  connectives. 

     Hypothesis can not be justified deductively, they are induced 

from observed examples. There is no formal way to choose between 

competing ones, so long as they explain the examples given and can 

successfully predict crucial examples not in the original set.  

     A system entity structure is a labeled tree. Nodes of the tree are 

classified as entities, aspects, specializations, and multiple 

decompositions. Variables can be attached to nodes. They are 

called attached variables types. An entity signifies a conceptual 

part of the system being represented by the entity structure.  An 

aspect is a mode of decomposing an entity. A specialization is a 

mode of classifying an entity. An entity may have several 

specializations or decompositions, each  specialization may have 

several entities. The original entity is called a general  type 

relative to the entities of a specialization.  The entities of a 

specialization are called specialized types. Since each entity may 

have several specializations, a hierarchical structure called 

taxonomy results.  A multiple decompositions  is a means of 

representing varying number of entities. An attached variable type 

is an attribute of an object represented by the entity with which the 

variable type is associated. 

     Fig. 5 depicts high level view of the entity structure for 

chemical system building in organic chemistry. The root entity, 

named CHEM-1 denoted the model structure of C-carbon, H-

hydrogen and O-oxygen. It has one attached variable, model 

constituent whose legal values are: SYSTEM CHO, SYSTEMS, 

CHEM-NEW and CD. Each value of the model constituent  

variable acts as a pointer to one of the specialized entities. The 

specialized entities are in turn decomposed along a segmentation 

aspect into k- entities, corresponding to abstract atomic segment  

models, such as: SUBSYSTEM1011, PS,PEPTIDE, SYSTEMA, 

SYSTEMI, EKB and CKB. 

        SUBSYSTEM 1011  means system with 10- carbon atoms, 

1- oxygen, and 1-means deficit of  hydrogen atoms. PEPTIDE  

gives cyclic and non-cyclic structure. SYSTEM generates 

applications for different users. SYSTEMI  gives isomeric 

structure and numbering. SYSTEMS builds  compounds  which 

contain N- nitrogen, H-hydrogen and  S-sulfur in configuration 

with C-carbon, H-hydrogen and O-oxygen atoms. PS gives partial 

structure (NMR), EKB means empirical knowledge base, CKB 

represents component knowledge base, and CD system for 

comparing data from different sources. 

       The system entity structure organizes a variety of system  

decompositions and, consequently, a variety of model 

constructions. Its generative  capability facilities convenient 

definition and representation of models and their attributes at 

multiple levels of aggregation and abstraction.  
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VIII. SYSTEM ENTITY STRUCTURE ANALYSIS  

 

      Multifacetted methodology denotes a modelling   approach 

which recognizes the existence of multiplicities of objectives and 

models in any  simulation project. It provides formal 

representation schemes that support the modeler in organizing  

the model construction process, in aggregating  partial  models, 

and in specifying simulation expirements. Modelling objectives 

drive three fundamental processes in the methodology; they 

facilitate the representation of model’s structure, retrieval, and 

manipulation of structures, the specification of model’s behavior, 

and the specification of experimental conditions under which 

models are evaluated by a simulation study. As a step toward a 

complete knowledge representation scheme for modeling 

support, it has combined the decomposition, taxonomic and 

coupling relationships 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS J. B. Savkovic-Stevanovic

ISSN: 1790-0832 1012 Issue 7, Volume 7, July 2010



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Organic compounds structure 
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in a knowledge representation scheme called the system entity 

structure. Previous works identified the need for representing the 

structure and behavior of systems, in a declarative scheme related to 

frame theoretical and object based formalisms. The elements 

represented are motivated, on the one hand, by system theory 

concepts of decomposition, how a system is hierarchically broken 

down into components and coupling how these components may be 

interconnected to reconstitute the original system. On the other hand, 

systems theory has not focused on taxonomic relations, as 

represented for example in frame hierarchy knowledge 

representation schemes. In the system entity structure scheme, such 

representation concerns the admissible variants of components in 

decompositions and the further specializations of such variants. 

 

     

                  IX.  SYSTEM CONSTRUCTION 

       

      A model is synthesized from components stored in the model 

base. A synthesis specification  is the results of pruning a 

substructure from the system entity structure (Fig.6). Pruning  results 

in a model structure candidate for a best match to the set of 

modelling objectives. It can be viewed as a search through the space 

of candidate solutions to the problem. Production rules  represent the 

knowledge consisting of modelling objectives, coupling constraints, 

user requirements and performance expectations. The aim of pruning 

is to recommended plausible candidates for an optimal solution to 

the problem with respect to the requirements and constraints.   

      Model construction process was begin with conceptualizing 

decompositions and specializations of components of the system 

being modeled. The system entity structure base  was utilized as a 

repository of previous modelling experience. Models associated with 

new atomic entities must be developed and placed in the model base.  

     A rule base is developed and used in the pruning process. The 

pruning process generates model composition trees. For each 

component  atomic model represented by the tip node of the 

composition tree. 

    From subsystem CHEM-1 which including nitrogen and 

halogens can make surfactants as shown in Fig.6. 

 

 

    X. CONCLUSION 

 

    In this article multifacieted, knowledge based and causality 

modelling  were studied with the aim to learne and to discovere. 

Models may have several submodels  represented and managed  

by the system entity structure. The entity structure in which all 

components  are encoded in the form of models constituentes  a 

modelling knowledge representation scheme. Models were 

coupled in hierarchical way.  

     Deriving a simulation model from an understanding of the 

system to be simulated is perhaps the most complex and time 

consuming task of the simulation life cycle. This paper was 

focused for organic compounds structure formation. Model 

development  for surfactants production was illustreted.   

    Simulation in data bases environment is significant simulation 

technique which has advantages in common parameters 

generating and concurrent parameters comparison.  

       The entity structure for chemical system building in organic 

chemistry was examined. The obtained results has illustrated 

discovering  method for surfactants formation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IF   f4,1 (R)   is  C9H11  and  f7,1(R)  is C16H33  THEN  is 

obtained compound  cetyl-di-mehyl-benzyl-ammonium-

chloride. 

 

 

 
 

 

 

 

 

Fig.6   A surfactant construction 
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                         CHEM-1 

   f4j(RNH2)    f 7j(RCL) 

 

         [CH3(CH2)15 N
+
C6H5 CH2(CH3)2]CL
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