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Abstract: In the paper there is introduced the newly developed optimization method the Stochastic Optimization 
Algorithm with Probability Vector (PSV). It is related to Stochastic Learning Algorithm with Probability Vector for 
artificial neural networks. Both algorithms are inspired by stochastic iterated function system SIFS for generating the 
statistically self similar fractals. The PSV is gradient method where the direction of individual future movement from 
the population is based stochastically. PSV was tested on mathematical function minimization and on the travelling 
sales man problem. The influence of the quantity of individuals upon the best achieved fitness function was also tested 
on the mathematical functions minimization.  
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1  Introduction 
There are many optimization algorithms, e.g. gradient, 
stochastic, inspired by collective behaviour of biological 
individuals etc [1, 3, 4, 9 and 10]. The PSV algorithm 
that is introduced in this paper is a modified version of 
the stochastic learning algorithm [5, 6]. The algorithm is 
inspired by the stochastic iterated function system SIFS 
for generating the statistically self similar fractals [11, 
12]. It is based on the group of separate individuals, 
which do not share information with each other. It is 
based on the similar principle as the stochastic hill 
climbing [2, 7] or random walk (RW). 
 

2  Algorithm PSV 
PSV algorithm uses individuals from the group in the 
similar way as in the stochastic hill climbing. There is 
defined a vector of transformations (1). 
  

( )ntttT ,,, 21 ⋯=     (1) 

 
Each of them can modify any parameter of an 

individual in a specific way. In every step the 
transformation is chosen randomly but with regard to the 
probability in the probability vector (2) that has to satisfy 
the conditions (3) and (4). This step is similar to the 
algorithm random walk (RW) [7].  
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Each value in the probability vector can be 

interpreted as the probability (5) and the direction of 
movement (6). 
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( ) directionpsign i −     (6) 

 
If the chosen transformation is accepted, then 

the probability of this transformation increases. 
Transformation is accepted if the fitness function gives 
better result after its applying. On the other hand if the 
transformation gives worse results its probability 
decreases. Let’s have an individual ∈kW W. This 

individual consists of a set of parameters (7). 
 

( )nk wwwW ,,, 21 ⋯=     (7) 

 
At first the fitness function of the selected 

individual is evaluated. Secondly the roulette wheel 
selection is used to choose and apply the transformation 
from (1). 
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( )individualtindividual inew =    (8) 

 
Finally the fitness function of the new individual 

is evaluated. In the case the new individual has higher 
fitness function than the previous the related probability 
pi is increased. 
 

( )αiinewi psignpp +=_    (9) 

 
Symbol α is coefficient used for increasing the 

probability. If the new individual has lower fitness 
function than the previous the related probability pi is 
decreased. 
 

( )( )β−+= iinewi psignpp _    (10) 

 
Symbol β is the coefficient used for decreasing 

the probability. Example of the basic transformations is 
(11). 
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Transformation (11) transforms parameter wi of 

the individual Wk in specific direction and the coefficient 
λ is a learning (for artificial neural networks) or moving 
rate. 
 

3  Function minimization and travelling 

salesman problem 
 
We successfully tested the PSV method as the learning 
algorithm for artificial neural networks [5, 6]. In this 
paper was introduced the modified PSV algorithm. It is 
used to solve the travelling salesman problem and to find 
extremes of selected mathematical testing functions. 
 
We used the following test functions: 

1. 1st De Jong 
2.  Rodenbrock’s saddle 
3. 3rd De Jong 
4. 4rd De Jong 
5. Rastrigin’s function 
6. Schwefel’s function 
7. Griewangk’s function 
8. Sine envelope wave function 
9. Stretched V sine wave function 
10. Test function Ackley 
11. Ackley’s function 
12. Michalewicz’s function 
13. Masters’s cosine wave function 

 

 Optimization of the travelling salesman problem was 
tested on the circle and randomly deployed cities.  
 
3.1  Function minimization 
The examples of the tested functions are in Tab. 1 
together with the best results found after 100 000 steps. 
Every function was tested with 50 individuals and 
different sets of the variables with parameters α, β, λ. 
 

f.num. var. x1 var. x2 fit.fun. 
1 0.0009 0.0025 ⇒0 
2 0.9974 0.9955 ⇒0 
3 -0.0010 -0.0013 0.0024 
4 -0.0005 -0.0013 ⇒0 
5 0.0107 -0.0054 0.0286 
6 420.975 420.957 -837.9658
7 -0.0916 0.0784 0.0057 
8 -1.1773 -1.6985 -1.4915 
9 -0.0013 0.0032 0.0668 
10 -1.5148 -0.7686 -4.5888 
11 0.0028 -0.0008 0.00537 
12 2.2031 1.5708 -1.8013 
13 0.0731 -0.0261 -0.9591 

Tab. 1 Function results 
 
On the figures in paragraph 3.1.1 - 3.1.8 there are 
examples of the some function from the Tab.1. Markers 
(ellipse and cross) represent estimated position of global 
minimum in the specific interval. The red dot represents 
the individual with the best fitness function. 
 
3.1.1  Rastrigin’s function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 
 

 
Fig.1 Rastrigin’s function 
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Fig.2 Rastrigin’s function starting position 

 

 
Fig.3 Rastrigin’s function position after 100 000 

steps 
 

3.1.2  Schwefel’s function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 
 

 
Fig.4 Schwefel function 

 

 
Fig.5 Schwefel function starting position 

 

 
Fig.6 Schwefel function position after 100 000 

steps 
 

3.1.3  Griewangk’s function 

Tested with parameters α = 0.3, β= 0.4, λ= 1. 
 

 
Fig.7 Griewangk’s function 
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Fig.8 Griewangk’s function starting position 

 

 
Fig.9 Griewangk’s function position after 

100 000 steps 
 

3.1.4  Ackley function 

Tested with parameters α = 0.1, β= 0.9, λ= 1. 
 

 
Fig.10 Ackley function 

 

 
Fig.11 Ackley function starting position 

 

 
Fig.12 Ackley function position after 100 000 

steps 
 

3.1.5  Sine envelope wave function 

Tested with parameters α = 0.3, β= 0.4, λ= 1. 
 

 
Fig.13 Sine envelope wave function 
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Fig.14 Sine envelope wave function starting position 

 
 

 
Fig.15 Sine envelope wave function position after 

100 000 steps 
 

3.1.6  Test function Ackley 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 
 

 
Fig.16 Test function Ackley 

 

 
Fig.17 Test function Ackley starting position 

 

 
Fig.18 Test function Ackley position after 100 000 steps 
 
3.1.7  Michalewicz function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.01. 
 

 
 

Fig.19 Michalewicz function 
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Fig.20 Michalewicz function starting position 

 

 

 
Fig.21 Michalewicz function position after 

100 000 steps 
 

3.1.8  Master’s cosine wave function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 
 

 
Fig.22 Master’s cosine wave function 

 

 
Fig.23 Masters’s cosine wave function starting position 
 

 
Fig.24 Master’s cosine wave function position 

after 100 000 steps 
 

3.2  Travelling salesman problem 
The PSV algorithm was slightly modified for the 
purposes of the travelling salesman problem. Because 
the combination of the cities is discrete, the step λ equals 
1 and the probability vector only determines the 
direction of the movement. Then the transformation (11) 
is modified to (12). 
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Parameters of the algorithm are α = 0.3, β = 0.3, 

λ = 1, number of individuals = 5. 
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3.2.1  Random cities position 

 
Fig.25 Random cities position 

 

 
Fig.26 After 1000 steps 

 

 
Fig.27 After 10 000 steps 

 
 

 

 

 

 

 

 

 

 

3.2.2  Circle cities position 

 
Fig.28 Circle cities position 

 

 
Fig.29 After 1 000 steps 

 

 
Fig.30 After 6 000 steps 

 

4  Influence of the quantity of individuals 

upon the best achieved fitness function  
 

At the same time with function minimization the 
influence of the individuals’ quantity upon the best 
reached fitness function was tested. Every test had to 
fulfil the same rule: 100 000 fitness function calling. It is 
100 000 steps (fitness function calling) for population of 
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one individual and 2000 steps per individual for 
population of the size 50. The variables α, β, λ were the 
same as in examples 3.1.1-3.1.8. The colour lines on the 
examples 4.1.1-4.1.8 are average values from the ten 
experiments of evolution of the fitness function for every 
population (1, 10, 30, and 50). Red (dash-dot) line 
represents evolution of the fitness function for 
population of the 1 individual. Green (dashed) line 
represents evolution of the fitness function for 
population of the 10 individuals. Blue (dotted) line 
represents evolution of the fitness function for 
population of the 30 individuals and magenta (solid) line 
represents evolution of the fitness function for 
population of the 50 individuals.  
 
4.1.1  Rastrigin’s function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 

 
Fig.31 Rastrigin’s function 

 

4.1.2  Schwefel’s function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 

 
Fig.32 Schwefel function 

 
4.1.3  Griewangk’s function 

Tested with parameters α = 0.3, β= 0.4, λ= 1. 

 
Fig.33 Griewangk’s function 

 

4.1.4  Ackley function 

Tested with parameters α = 0.1, β= 0.9, λ= 1. 

 
Fig.34 Ackley function 

 
4.1.5  Sine envelope wave function 

Tested with parameters α = 0.3, β= 0.4, λ= 1. 

 
Fig.35 Sine envelope wave function 
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4.1.6  Test function Ackley 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 
 

 
Fig.36 Test function Ackley 

 

4.1.7  Michalewicz function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.01. 
 

 
Fig.37 Michalewicz function 

 

4.1.8  Master’s cosine wave function 

Tested with parameters α = 0.3, β= 0.4, λ= 0.1. 

 
Fig.38 Master’s cosine wave function 

 

5  Conclusion 
The newly developed algorithm PSV was introduced in 
this paper. The aim was to show its possible usage in 
two different fields of optimization (finding extreme and 
permutation problem).  
Algorithm testing is still at the beginning phase. The 
main advantages of the PSV algorithm are its 
implementation simplicity and adaptability to different 
types of optimization problems. PSV can treat both the 
integers and the real numbers. The examples of solving 
function minimization problem (real number coding) and 
permutation problem (positive integer coding) were 
shown in chapters 3.1 and 3.2. 
In chapter 3.1, 2D functions were chosen because it is 
possible to display them and it is possible to display the 
movement of individuals during optimization in 2D state 
space. The dot (green) represents the best fitness 
function reached by single individual during whole 
optimization process and the red dot represents the best 
fitness function reached in population. 
In chapter 4 the influence of the population quantity 
upon the best reached fitness function was tested. As we 
expect in most of the examples the population with 
several individuals is more successful. 
Future work will be focused on the extension of the 
current algorithm with distribution of the information 
among individuals in the population and on a 
modification of the algorithm with adaptive moving and 
adaptive momentum coefficients λ, α, β. 
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