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Abstract:- In this paper we propose a new approaeithe modelling of the multi-variable systems (MIMO)

on the Reproducing Kernel Hilbert Space (RKHS). The proposed approach considers the MIMO system as a
set of MISO processes modelled in RKHS space. We propose also a comparative study of three identification
kernel methods of nonlinear systems modelled in Reproducing Kernel Hilbert Space (RKHS), where the
model output results from a linear combination of kernel functions. Theses methods are support vector
machines (SVM), regularization networks (RN) and kernel Principal Component Analysis (KPCA). The
performances of the proposed MIMO RKHS model and of each kernel method in terms of generalization
ability and computing time were evaluated on numerical simulations.
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1 Introduction

In supervised learming- or learnina-from- examples anot on the structure model as in the conventional
P 9 9 P modeling approaches.

machine is trained, instead of programmed, to perform a

given task on a number of input-output pairs. According.l.he paper is organized as follows. In section 2 we

f/(\;hiTt:Sbggtr ?Jloggcn:i’bérs,a[trtzlg%egﬁggsbectt\:\?eoesr:nt%eainfunglgzr mind the presentation of the RKHS space. Section 3 is
pu evoted to the modelling in RKHS. In the section 4 we

the outputs. The central question of Statistical learnin
. . ropose the new approach of MIMO RKHS model. The
theory SLT [1], [2] is how well the chosen function ggVIP/I RN and KP%)A methods are presented in the

gene_rallzes, or hO.W well it estimates the output 1Eorsection 5 and then tested to identify a benchmark in the
previously unseen inputs. The model provide is known & action 6 [11]

RKHS model (Reproducing Kernel Hilbert Space) as a
linear combination of the kernels function forming the
RKHS space [6], [7], [12], [13]. [14] and [24]. 2 Reproducing Kernel Hilbert Space
The developed models are an attractive alternative to

other modeling techniques based on Volterra seriesj et EJRY an input space and®*(E) the Hilbert
neural networks,.... Indeed, the solution of optimization
problem in space RKHS is a global minimum contrary to
that provided by neural networks. The solution is
obtained by solving a quadratic optimization problem by Itis o

using the learning algorithms such as support vectofProved [15] that it exists a sequence of an orthonormal
machines (SVM) [1], regularization networks (RN) [2] €igen functions(¢,, &, ....¢s,) in L*(E) (wherel can
and Kernel Analysis Principal Component KPCA [9]. be infinite) and a sequence of corresponding real
These algorithms known as kernel methods constructyygitive eigenvalueéa,, 0, ....0; ) so that the kernef
RKHS models on the principle of structural risk . . ]
minimization (SRM). The number of parameters of these'® defined as:
models depends only on the number of observations and
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k(x t)=20j w.(x) g, (t) ; xtOE 1) k(x x)= <o(X,®(x) > x xTE (7

Let F, OL?(E) be a Hilbert space associated to the 3 Modeling in RKHS
kernel K and defined by:

| | 2
P ={fD L*(E)/ f=2 w¢, and ZW—' < +oo} (2)  The use of RKHS models in identifying systems giving
= =1 0 only the observations of their behaviour is of a great

Where ¢, =\/Ez//i ; 1=1,...,1 . The scalar product in interest. Consider a set of observatidms{x(i),y(i)}N ,

the space is given by: known as learning set, with!/OR", yYOR are
| | | respectively the system input and output. According to
<f, 9>Fk=<ZW 4, Z% g > = D Wz (3) _the _gtati_stical Iearning theory (SLT) [1], the
i=1 j=1 i=1 identification problem in the RKHSF,_ can be
] ] ) formulated as a minimization of the regularized
The kernel k is said to be a reproducing kernel of the - empirical risk which consists in finding the function
Hilbert spaceF, if and only if the following conditions f* O F, such that:

are satisfied. oL
=W
j=1

{DXD E, k(x)OF @ L & , (8

= i i) (i) 2
OxOEandD fOF, ,<f( ) k(x) = f(3 —argfrgIFTN;V(y( (O AL
Where k(x, ) meansk(x, x') OxO E Where A is a regularization parameter chosen in order

to ensure a generalization ability to the solutiorand
F. is called reproducing kernel Hilbert space (RKHS) V() is a cost function. According to the representer

with kernelk and dimensionl . Moreover, for any  theorem [5], the solution of the problem (8) is a
RKHS, there exists only one positive definite kernel combination ofM kernel functions applied on thil

and vice versa [3]. observations.
Among the possible reproducing kernels, we mention oy i)
the Radial Basis function (RBF) defined as: f (X)_Z_lla k()é ' X) ©)

The number of parameters is equal to the observation
k(x t) =exp(— | x- t||2 /2/12) Ox tOE (5) number used in the learning phase and contained in the
learning set.

with 4 a fixed parameter.

4 MIMO RKHS model

Let's define the applicatio : In the MIMO case the process output is @&

. | dimensional vector, we consider the network of kernel
®:E-R . . )
functions illustrated by Figure 1
#,(x)

X ®(x) = ©)

(%)

Where ¢, are given in (2). The kernel trick [8] is so
that:
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d
(#3 :

Or from (12) and (13)

v

DN N
/ Y,=|. |H(X (15)
A
—%’
5 Kernel methods

5.1 Support Vector machine (SVM)

We now discuss Support Vector Machines (SVM) [1],
[2] in its regression form [25] that corresponds to the
minimization of problem (8) and where the cost

Figl. Network of kernels functions for the functionVis:
MIMO modelling

v =ly = f(x), (16)

The MIMO process is considered as a set of MISO
processes modelled in RKHS space as above. ToWhere & width of tube
decrease the model complexity, all the MISO output are
linear combinations of the same kernel components and

with different parameters, The coefficients {a} in the relation (9) can be

determined by solving a Quadratic Programming (QP)

The output of theg" MISO model is: problem with linear constraints.

N .
Ya :Z_;‘aiq K(’& X) for g=1,..,p (10) 5.2 Regularization networks (RN)
Y. =A H(¥) g=1...p (11)

In this case the cost function is:

Where: | | | W
H () = Hy (%) H (9 ]OR azn VO )=(- () (17)

With and the solution provides the parametfag which
verify:
i L N _ .
Hi(X): K()é(),x),l—l,...,N ai:Z(K-F/]NIN)ij y(J) (18)
and (13) =

T In a matrix form, the relation (18) is:
A, =[af,...,a,‘j] ,0=1,...,p

(K+AN1,) A=Y (19)
The output vecto, is then given by: where: K is the Gram matrix that satisfy:
\ 1.1 Kij =k()<(i) ’)éj))
ag ..o (K% ) _(0)
Y = _jaa g ] (14) A=(a a..3) and Y=( Y, ,---,W)
=l
abal ... &) (K(x.x%)
Yo
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5.3 Kernel Principal Component Analysis

(KPCA) order of their corresponding elgenvalu{ssj}

I_ . The
j=1
principal components are thep first vectors

p . . .
As the dimensionl of the RKHS spaces is high {Hj}jzlassouated to the highest eigenvalues and are

(possibly infinite), the determination of the coefficients often sufficient to describe the structure of the data [8],
w; of the relation (2) is problematic. Using the Principal [4]. The numbep satisfies the Inertia Percentage

Component Analysis (PCA) [10] method to identify the criterion IPC given by:
RKHS model is very interesting. The KPCA method . _

doesn't target the input space such as in the linear case P —arg(IPC2 99 (24)
but it treats the transformed of these data by the Where

application® defined in (6) and satisfying (7).

P
The RKHS model of this system is given by the relation IPC = iZ:l:,Ui 100 (25)
(9). The Gram matriK associated to the kernklis an Y
N - dimensional square matrix, so that: Z:;,,Ui
Ki ; =k(>éi), %j)) fori,j=1, ...N (21) The principal componentsg, j=1,...p are unit

vectors if the corresponding vectgss satisfy:
We assume that the transformed data

1 :
{QJ(X(‘))}_ NDR' are centred [8], [9]. The <f31*r31>:7 =1 (26)

i=1, ..., i
approximation covariance matri, of the transformed  Let F

wea the space spanned by the principal
data is symmetricall, - dimensional and it is written as

components{ej}jp:l. The projection ®(x) 0 RPof

following:
®(x)OR' on F_, is given by:
1Y 0 NOM I 29 '
Cw-ﬁ;q’(x Jo(x) ., c, Or (22) ®(x), =(6, ®(X) =L ..p (27)
Let I the number of the eigenvecto{ﬁj}ljlzlof C, and from (23), we have:
. -y . . ~ N |
correlz‘spondlng to the non zeros posmvle eigenvalues q;(x)j :<;’Bj'i¢(x() , (X))
{AJ}_ . It is proved in [9] that the numbér is less or M _ (28)
ji=1 - (i)
_ => B, o(x").o(x)
equal toN . Due to the large sizeof C,, the calculus =
of {Hj}lj;lcan be difficult. The KPCA method shows &nd according to (7), we have
that these{HJ}l_; are related to the eigenvectors d)(x)j =Z:1::3j,i k()éi)v X) (29)
{Igj}'_; of the gram matrixK according to [9]: Similarly to the linear PCA [10], the model proposed by
= the Kernel PCA [4] is given by:
N ) . ~ p -
6,=>68, ("), j=1 .. (23) Thoca = 2, WP (X), (30)
i=1 =1

z Where ¥, and ®(x) are respectively the model

Where (,Bji)_ are the components oﬁﬁj}_ : . o )

P P = output and thej™ component of®(x) . It is interesting

associated to their nonzero eigenvalygs ...> . of ,
! to mention that the number of the parameferg

the Gram matrixK , _ J=h P

The principle of the KPCA method consists in ©Of the model (30) is less than given by the relation

(8). To identify the model parameter, we solve the
following problem:
ISSN: 1790-0832 948 Issue 7, Volume 7, July 2010
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(y(i)—V\Fd)(%‘))) ow=(w, ... ) (3D)

1 M
min=
WORP 2 =

For any new input dat xX™" OE, the corresponding
KPCA model output is:

e =Zw (%) (32)
According to (29), the relation (32) is given by:
)= > w 38, K{x, ) (33)

m =
Thus:
i =S wa, Kb, ) (34)

i=1j=1

P
Let a ZZWJ- B,; , relation (34) yields the model (9).
j=1

y&;i’av) - Z’j“a k( )éi)’ )énew)) (35)

6 Application

To illustrate the efficiency of the proposed model we
proceed to its validation on Chemical process: The
Tennessee Eastman process.

6.1 Process description

The Tennessee Eastman (TE) process [19] is a highh
non linear, non-minimum phase, and open-loop
unstable chemical process consisting of a
reactor/separator/recycle arrangement.
produces two products G and H from four reactants A,
C, D and E. Also a byproduct F is present in the
process. The simultaneous, irreversible and exothermic
gas-liquid reactions are:

A(g) ( ) 9) - G(Iig),Productj
A(g)+C(9) g) - Glig),Product 2

A 9+E(g) -~ F(lig), byroduct
B(g) -~ E( liy ,byroduct

+C(g)+ D(
+C(g)+ E(

The process has 12 valves available for manipulation
and 41 measurements available for monitoring or
control. The detailed description of these variables
process disturbances and base case
conditions, is given in [17]. The process flowsheet is

ISSN: 1790-0832
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presented in Figure 2.
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Fig.2 Tennessee Process
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This process

The modelling and the identification of the Tennessee
Eastman process represent a challenge for the control
community. It has been the subject of several studies
[16], [18], [20] and [21], but most of them have tackled
the process control without giving importance to
modeling step. R. Sriniwas and Y. Arkun [22] have
used input/ output process data to identify an
autoregressive (AR) model parameters.

In our paper we intend to identify the parameters of the
corresponding MIMO RKHS model of this process

operatingsing the same technique of [23] for generating the

data.
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6.2 Data Extraction Qs = Mo €, CW( Tew s o TCW’S)r 37)
The input/output data used to built the model were

generated from the model of Tennessee implementedWhere:

for the program Matlab © in the toolbox Simulink [19].

The process has 12 inputs and 41 outputs. According toC
the work of [22] the process was divided into two Pe
fields.

., Specific heat capacity cooling water, kJ'kg*
mCWYSCooIing water flow rate separator, kg h

The first with a PID controller to maintain the process For the second output, the reactor liquid level is given

stability. The second field is devoted to the bY:

identification where only four inputs (reactor pressure,

reactor level, D feed flow and E feed flow) are tuned

and the others are maintained as suggested by mode é/“ Z

of Simulink model. Assuming the reactor outputs, we

select the separator temperature and reactor liquid IeveI.
0. Molar density of component i, mol'in

:i=D,E,F,G,H (38)

here.

6.3 Knowledge model of Tennessee process N, . is the total molar holdup of the componérin the

ir
In this section, we consider for the knowledge model of réactor

the Tennessee process that suggested by A. Mauricio

Sales Cruz [19] as shown by Figure 3. 6.4 Modelling in RKHS

To generate the data from simulink, the simulation step
size was 0.0005 s and the data were collected every

Reactpr — > Separator 0.02 s.
pression temperature  To build the RKHS model we use the Kernel ERBF
(Exponentiel Radial Basis Function)
Reactor — Tennesse
level Process I~ x| (39)
K (x, x' =exp[—j 39
€ feed Reactor R
flow ~ —> \quid leve Where
o =15, anc| | is the euclidean norm. The term of
D feed o
flow — regularisatiorA =1,002x 10"

In the identification phase we use a training set of 1000
inputs/outputs and in the validation phase 800 new
inputs/outputs are used to evaluate the performance of
the resulting RKHS model.

Fig. 3: Scheme input /output of Tennessee process

* Qutput equations:

_ o 6.5 Result
Thefirst output, separator temperature is given by:

T =(Tcw _T ) (36) Figure 4 concerns the separator temperature. We plot
PSout T CW St the evolution of the model output and that given by the
simulink during the learning phase. However, in Figure
Where: 5 the same outputs are plotted using validation data.
Tew, s ot COOlINg water outlet temperature in the
separator We notice a concordance between the RKHS model

Tew, sin Co0ling water inlet temperature in the separator output and the process output in the learning phase and
this concordance remains excellent in the validation
phase.Indeed the normalised mean square error in

The temperaturé,is linked to the energ®, removed aot. T
validation is equal to 0.0012.

for the separator by the differential equation:
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Figure 6 concerns the reactor liquid level where we 72
plot the evolution of the output of the model and that

process output

given by the simulink during the learning phase and | | RKHS model output
figure 7 the same outputs are plotted using validation ~ “°| i
data.
o1 ‘ ‘ 68 | R
process output
ot 4 RKHS model output 66| i
89 . ‘
64 g
88 .
62 R
87+ .
60 | L L L
86 1 0 200 400 600 800 1000
Fig 6. Identification Phase
85"
84+ . 0r process output
----------- RKHS model output
83 I I I I 691 B
0 200 400 600 800 1000
: . 68
Fig .4. Identification Phase
‘ 67
871 RKHS model output
----------- RKHS model output 66
86.5 :
65
86 I
64
85.5
63 ‘ ‘ ‘
0 200 400 600 800
85 [ . - .
Fig .7. Validation Phase
845}
gal On the test set, the validation phase confirm the good
performances of the RKHS model: Indeed the similarity
between the RKHS model output and the real output
835, 200 200 600 800 process is very important and proves that there is not an

overfitting
Fig .5. Validation Phase

7 Comparative study
To illustrate the efficiency of all methods, we proceed

to their validation on nonlinear dynamic system used as
a benchmark [11] and given by:
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a _ (ufi_ 2 - Table |
y(|) - (0'8 0.5ex;( (y(| )) ))y(l ) Performances of kernel methods SVM, RN and KPCA
—(0.3+ O.9ex;€—(y(i— )1)2))y(i— ? (40)
+0.1sin(my(i- }) +e(i) SVM RN KPCA
Compute
time 7.53s 0.9204 s | 0.5460s
Where: (seconds)
NMSE 8,88 10" 9,5810° 310°

e(i): is a Gaussian noise with variance 0.4 and unit| identification

. . . . %
mean so that the Signal to Noise Ration (SNR) is equa -
to5. The input vectorx OR® of RKHS model is: NMSE 23210 13810° | 8.710

validation %
x(K)=[y(k-1) k-2)T (41)

To build the RKHS model we use the RBF kernel
(Radial Basis Function) defined as:

In figure 8 we draw the RKHS model outputs using

SVM, RN and KPCA methods and the output process
in the identification phase. We notice the concordance
between the three model outputs and that of the process
J output.

100 (42)

2

k(x, x') = exp{—”x - x|
2.5 ‘

output process

We have used 80 observations in the identification |
phase and 150 other observations in the validation one. = svm output
O RN output

+  kpca output

In Table 1 we present the performances of the three
kernel method carried out in the same condition. The
first performance is the generalization ability evaluated
by the Normalized Means Square Error (NMSE) in the 05!
identification phase and the validation one and the
second concerns the compute time. For the simulation 04 \i
the clock frequency is set to 3 GHz i

From Table 1 we see that the compute time of both 05 ¢
methods KPCA and RN are significantly less than the
time needed by the SVM method (7.53 seconds). This is
due to the fact that the SVM method solves an
optimization problem with constraints. 15

0 10 2 30

However that the SVM method generalizes better than obsenations
the other two methods RN and KPCA as the Fig.8. Identification Phase using SVM, RN and KPCA
corresponding NMSE in learning and validation phase

is significantly smaller than other techniques. . _
In figure 9 we plot the RKHS model outputs using

We also note that three principal components is enough SVM, RN and KPCA methods and the output process

to build an RKHS model from the system which leads N the validation phase. As previously we notice the
to a lessomplex model. concordance between all the outputs
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4 [7]
output process
3l svm output
O RN output
+ kpca output

,,,,,,,,,

[9]

150

observations

Fig. 9 Validation Phase using SVM, RN and KPCA

8 Conclusion

In this paper we have presented a new MIMO RKHS
model for modeling a multivariate nonlinear system on
RKHS space, also we have presented three kernel
methods SVM, RN and KPCA to identify the nonlinear
system in the RKHS space. A comparative study
between the three methods has been achieved and shows
the effectiveness of the SVM method in terms of
generalization ability.
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