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Abstract: - In this paper we propose a new approach for the modelling of the multi-variable systems (MIMO) 
on the Reproducing Kernel Hilbert Space (RKHS). The proposed approach considers the MIMO system as a 
set of MISO processes modelled in RKHS space. We propose also a comparative study of three identification 
kernel methods of nonlinear systems modelled in Reproducing Kernel Hilbert Space (RKHS), where the 
model output results from a linear combination of kernel functions. Theses methods are support vector 
machines (SVM), regularization networks (RN) and kernel Principal Component Analysis (KPCA). The 
performances of the proposed MIMO RKHS model and of each kernel method in terms of generalization 
ability and computing time were evaluated on numerical simulations. 
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1 Introduction 
 
In supervised learning- or learning-from- examples-a 
machine is trained, instead of programmed, to perform a 
given task on a number of input-output pairs. According 
to this paradigm, training means choosing a function 
which best describes the relation between the inputs and 
the outputs. The central question of Statistical learning 
theory SLT [1], [2] is how well the chosen function 
generalizes, or how well it estimates the output for 
previously unseen inputs. The model provide is known a 
RKHS model (Reproducing Kernel Hilbert Space) as a 
linear combination of the kernels function forming the 
RKHS space [6], [7], [12], [13], [14] and [24].  

 
The developed models are an attractive alternative to 
other modeling techniques based on Volterra series, 
neural networks,…. Indeed, the solution of optimization 
problem in space RKHS is a global minimum contrary to 
that provided by neural networks. The solution is 
obtained by solving a quadratic optimization problem by 
using the learning algorithms such as support vector 
machines (SVM) [1], regularization networks (RN) [2] 
and Kernel Analysis Principal Component KPCA [9]. 
These algorithms known as kernel methods construct 
RKHS models on the principle of structural risk 
minimization (SRM). The number of parameters of these 
models depends only on the number of observations and  
 

 
 
not on the structure model as in the conventional 
modeling approaches. 
 
The paper is organized as follows. In section 2 we 
remind the presentation of the RKHS space. Section 3 is 
devoted to the modelling in RKHS. In the section 4 we 
propose the new approach of MIMO RKHS model. The 
SVM, RN and KPCA methods are presented in the 
section 5 and then tested to identify a benchmark in the   
section 6 [11]. 
 
 

2 Reproducing Kernel Hilbert Space 
 
Let dE ⊂ ℝ  an input space and ( )2 EL  the Hilbert 

space of square integrable functions defined on E . Let 
:k E E× → ℝ  be a continuous positive definite kernel. 

It is  
proved [15] that it exists a sequence of an orthonormal 
eigen functions ( )1 2, , ..., lψ ψ ψ  in ( )2 EL (where l  can 

be infinite) and a sequence of corresponding real 

positive eigenvalues ( )1 2, , ..., lσ σ σ so that the kernel k  

is defined as: 
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j

k x t x t x t Eσ ψ ψ
=

= ∈∑              (1) 

Let ( )2
k EF L⊂  be a Hilbert space associated to the 

kernel k  and defined by: 

( )
2

2

1 1

 /   
l l

j
k i i

i j j

w
F f L E f w andϕ

σ= =

  = ∈ = < + ∞ 
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∑ ∑  (2) 

Where ; 1, ...,i i i i lϕ σ ψ= = . The scalar product in 

the space kF is given by: 
 

1 1 1

,  ,   
k k

l l l

F i i j j F i i
i j i

f g w z w zϕ ϕ
= = =

< > = < > =∑ ∑ ∑          (3) 

 
The kernel k  is said to be a reproducing kernel of the 

Hilbert space kF  if and only if the following conditions 
are satisfied. 
 

( )
( ) ( ) ( )

,    , .

 and  , < . , , .  >
k

k

k F

x E k x F

x E f F f k x f x

∀ ∈ ∈
∀ ∈ ∀ ∈ =

 (4) 

  

Where ( ), .k x  means ( )' ',     k x x x E∀ ∈  

 

kF  is called reproducing kernel Hilbert space (RKHS) 
with kernelk  and dimension l . Moreover, for any 
RKHS, there exists only one positive definite kernel 
and vice versa [3]. 
 
Among the possible reproducing kernels, we mention 
the Radial Basis function (RBF) defined as: 
 

    ( ) ( )2 2, exp / 2   ;   ,    k x t x t x t Eµ= − − ∀ ∈         (5) 

 
with µ  a fixed parameter. 
 
Let’s define the application Φ  :   
                        

           
( )

( )

( )

1

:

.

        .

.

l

l

E

x

x x

x

ϕ

ϕ

Φ →

 
 
 
 Φ =
 
 
 
 

ℝ

֏

                 (6) 

 
Where iϕ  are given in (2). The kernel trick [8] is so 
that: 

           ( ) ( ) ( )' ' ',    ,     ,  k x x x x x x E= < Φ Φ > ∈        (7) 

 

3 Modeling in RKHS 
 

The use of RKHS models in identifying systems giving 
only the observations of their behaviour is of a great 

interest. Consider a set of observations ( ) ( ){ }
1

,
N

i

i i
x yD

=
= , 

known as learning set, with ( )i nx ∈ℝ , ( )iy ∈ℝ  are 
respectively the system input and output. According to 
the statistical learning theory (SLT) [1], the 
identification problem in the RKHS kF  can be 
formulated as a minimization of the regularized 
empirical risk which consists in finding the function 

*
kf F∈  such that: 

    
( ) ( )( )( )

* *

1

2 2

1

1
arg min ,

kk

l

j j
j

N
i i

F
i

f F

f w

V y f x f
N

ϕ

λ

=

=∈

=

= +

∑

∑
    (8) 

 
Where λ  is a regularization parameter chosen in order 
to ensure a generalization ability to the solution*f  and 

( ).V  is a cost function. According to the representer 

theorem [5], the solution of the problem (8) is a 
combination of M kernel functions applied on the M  
observations.   
 

              ( ) ( )( )*

1

,
N

i
i

i

f x a k x x
=

=∑                                (9) 

The number of parameters is equal to the observation 
number used in the learning phase and contained in the 
learning set. 
 

4 MIMO RKHS model 
 
   In the MIMO case the process output is a p -
dimensional vector, we consider the network of kernel 
functions illustrated by Figure 1 
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Fig1. Network of kernels functions for the 
MIMO modelling  

 
The MIMO process is considered as a set of MISO 
processes modelled in RKHS space as above. To 
decrease the model complexity, all the MISO output are 
linear combinations of the same kernel components and 
with different parameters. 
 
The output of the thq MISO model is: 

     ( )( )
1

,  for  1, ...,
N

iq
q i

i

y a K x x q p
=

= =∑                        (10) 

      ( )   1, ...,T
q qy A H x q p= =                                        (11) 

 

Where: 

( ) ( ) ( )1 ,..., N
NH x H x H x=  ∈  ℝ                                 (12) 

With 
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T
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, , 1,...,
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i
i

q q
q N

H x K x x i N
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A a a q p
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                                  (13) 

 
The output vector pY is then given by: 
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  Or from (12) and (13) 
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5 Kernel methods 
5.1 Support Vector machine (SVM) 

 We now discuss Support Vector Machines (SVM) [1], 
[2] in its regression form [25] that corresponds to the 
minimization of problem (8) and where the cost 
function V is: 
 

                              
( )i iV y f x ξ= −

                            (16) 
 
Where ξ   width of tube  
 
The coefficients { }ia  in the relation (9) can be 

determined by solving a Quadratic Programming (QP) 
problem with linear constraints. 
 

5.2 Regularization networks (RN)  

 

In this case the cost function is: 
                     

( ) ( )( )( ) ( ) ( )( )( )  2

,i i i iV y f x y f x= −       (17) 

and the solution  provides the parameters { }ia  which 

verify: 

        ( ) ( )1

,
1

N
j

i N i j
j

Na K I yλ −

=
= +∑                                  (18) 

In a matrix form, the relation (18) is:  
  
                  ( )  ANK N I Yλ+ =                             (19) 

where: K   is the Gram matrix that satisfy: 
  

( ) ( )( )
( ) ( ) ( ) ( )( )1 2

1 2

 , 
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i j
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5.3 Kernel Principal Component Analysis 
(KPCA) 

 

As the dimension l  of the RKHS spaces is high 
(possibly infinite), the determination of the coefficients 

jw  of the relation (2) is problematic. Using the Principal 

Component Analysis (PCA) [10] method to identify the 
RKHS model is very interesting. The KPCA method 
doesn't target the input space such as in the linear case 
but it treats the transformed of these data by the 
application Φ  defined in (6) and satisfying (7). 
 
The RKHS model of this system is given by the relation 
(9). The Gram matrixK  associated to the kernel k is an 
N - dimensional square matrix, so that:     

               ( ) ( )( ), ,    for  ,  1,  ...,  i j
i jK k x x i j N= =      (21) 

We assume that the transformed data 
( )( ){ }

1, ..., 

i l

i N
x

=
Φ ∈ℝ  are centred [8], [9]. The 

approximation covariance matrix Cφ  of the transformed 

data is symmetrical, l - dimensional and it is written as 
following: 

       ( )( ) ( )( )
1

1
,    

N T
i i l l
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C x x C
Nφ φ

×

=

= Φ Φ ∈∑ ℝ           (22) 

Let l '  the number of the eigenvectors { }
'

1

l

j j
θ

=
of Cφ  

corresponding to the non zeros positive eigenvalues 

{ }
'

1

l

j j
λ

=
. It is proved in [9] that the number l '  is less or 

equal to N . Due to the large size l  of Cφ ,   the calculus 

of { }
'

1

l

j j
θ

=
can be difficult. The KPCA method shows 

that these { }
'

1

l

j j
θ

=
 are related to the eigenvectors 

{ }
'

1

l

j j
β

=
of the gram matrix K  according to [9]:  
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  ,   1,  ...,  
N

i
j j i

i

x j lθ β
=

= Φ =∑                   (23) 

Where  ( ), 1, ... , j i j p
β

=
are the components of { }

'

1

l

j j
β

=
 

associated to their nonzero eigenvalues 1 ...
l

µ µ> > '  of 

the Gram matrix K   
The principle of the KPCA method consists in 

organizing the eigenvectors { }
'

1

l

j j
β

=
 in the decreasing 

order of their corresponding eigenvalues { }  

1

l

j j
µ

=

'

. The 

principal components are the p  first vectors 

{ }
1

p

j j
θ

=
associated to the highest eigenvalues and are 

often sufficient to describe the structure of the data [8], 
[4]. The numberp  satisfies the Inertia Percentage 
criterion IPC given by: 

 ( )* arg 99p IPC= ≥                                    (24) 

Where   

           1

1

*100

p

i
i
N

i
i

IPC
µ

µ

=

=

=
∑

∑
                    (25) 

The principal components 1,...,j j pθ =  are unit 

vectors if the corresponding vectors jβ  satisfy:  

       ,
1

1, ...,j j
j

j lβ β
µ

= = '                    (26) 

Let kpcaF  the space spanned by the p  principal 

components { }
1

p

j j
θ

=
. The projection ( ) pxΦ ∈ɶ ℝ of 

( ) lxΦ ∈ℝ  on kpcaF  is given by:     

      ( ) ( ),    1, ...,jj
x x j pθΦ = 〈 Φ 〉 =ɶ                     (27)        

and from (23), we have: 
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∑
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and according to (7), we have 

       ( ) ( )( )
1

, ,
N

i

i
j ij

x k x xβ
=

Φ =∑ɶ                              (29)            

Similarly to the linear PCA [10], the model proposed by 
the Kernel PCA [4] is given by: 

          ( )
1

p

kpca j j
j

y w x
=

= Φ∑ ɶɶ                    (30) 

Where kpcayɶ  and ( ) j
xΦɶ are respectively the model 

output and the thj  component of ( )xΦɶ . It is interesting 

to mention that the number of the parameters { }
1, ...,j j p

w
=

 

of the model (30) is less than l  given by the relation 
(8). To identify the model parameter jw  we solve the 

following problem: 
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2p

M Ti iT
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y w x w w w
∈ =

− Φ =∑
ℝ
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For any new input data ( )newx E∈ , the corresponding 
KPCA model output is: 

( ) ( )( )
1

p
new new

kpca j
j

j

y w x
=

= Φ∑ ɶɶ                          (32) 

According to (29), the relation (32) is given by: 

( ) ( ) ( )( )
1

,
1

,
N

i

i

p
new new

kpca j j i
j

x xy w kβ
==

= ∑∑ɶ                  (33) 

Thus:     

      ( ) ( ) ( )( ),
1 1

,
pN

new i new
kpca j j i

i j

y w k x xβ
= =

=∑∑ɶ                  (34)  

Let ,
1

p

i j j i
j

a w β
=

=∑ , relation (34) yields the model (9). 

      ( ) ( ) ( )( )
1

,
N

new i new
kpca i

i

y a k x x
=

=∑ɶ                                    (35)                          

 
 

6  Application 
 
 
To illustrate the efficiency of the proposed model we 
proceed to its validation on Chemical process: The 
Tennessee Eastman process. 

6.1 Process description  

The Tennessee Eastman (TE) process [19] is a highly 
non linear, non-minimum phase, and open-loop 
unstable chemical process consisting of a 
reactor/separator/recycle arrangement. This process 
produces two products G and H from four reactants A, 
C, D and E. Also a byproduct F is present in the 
process. The simultaneous, irreversible and exothermic 
gas-liquid reactions are: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

A g lig ,Product 1

A g lig ,Product 2

           A g lig ,byroduct 

                   3 2 lig ,byroduct 

C g D g G

C g E g G

E g F

D g F

+ + →

+ + →

+ →

→

              

 
The process has 12 valves available for manipulation 
and 41 measurements available for monitoring or 
control. The detailed description of these variables, 
process disturbances and base case operating 
conditions, is given in [17]. The process flowsheet is 

presented in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
Fig.2 Tennessee Process 

 

The modelling and the identification of the Tennessee 
Eastman process represent a challenge for the control 
community. It has been the subject of several studies 
[16], [18], [20] and [21], but most of them have tackled 
the process control without giving importance to 
modeling step. R. Sriniwas and Y. Arkun [22] have 
used input/ output process data to identify an 
autoregressive (AR) model parameters. 

 

In our paper we intend to identify the parameters of the 
corresponding MIMO RKHS model of this process 
using the same technique of [23] for generating the 
data. 
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6.2 Data Extraction 

The input/output data used to built the model were 
generated from the model of Tennessee implemented 
for the program Matlab © in the toolbox Simulink [19]. 
The process has 12 inputs and 41 outputs. According to 
the work of [22] the process was divided into two 
fields. 
 
The first with a PID controller to maintain the process 
stability. The second field is devoted to the 
identification where only four inputs (reactor pressure, 
reactor level, D feed flow and E feed flow) are tuned 
and the others are maintained as suggested by mode 3 
of Simulink model. Assuming the reactor outputs, we 
select the separator temperature and reactor liquid level. 
 

6.3 Knowledge model of Tennessee process 

In this section, we consider for the knowledge model of 
the Tennessee process that suggested by A. Mauricio 
Sales Cruz [19] as shown by Figure 3. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 3: Scheme input /output of Tennessee process 

 
 

* Output equations: 
 
The first output, separator temperature is given by: 
 

( ), , , ,S CW S out CW S inT T T= −                                             (36) 

 
Where: 

, ,CW S outT  Cooling water outlet temperature in the 

separator 

, ,inCW ST Cooling water inlet temperature in the separator 

 
The temperature ST is linked to the energy SQ removed 
for the separator by the differential equation: 
 

( )
.

, , , , , ,CW S p CW CW S out CW S inSQ m c T T= −                             (37) 

 
Where: 
 

,p CWC  Specific heat capacity cooling water, kJ kg-1 K-1 

,CW Sm Cooling water flow rate separator, kg h-1 

                    
For the second output, the reactor liquid level is given 
by: 
  

,=  ; , , , ,i r
Lr

i

N
V i D E F G H

ρ
=∑                                   (38) 

Where: 

iρ  Molar density of component i, mol m-3  

,i rN  is the total molar holdup of the component i  in the 

reactor 

6.4 Modelling in RKHS 

To generate the data from simulink, the simulation step 
size was 0.0005 s and the data were collected every 
0.02 s. 
To build the RKHS model we use the Kernel ERBF 
(Exponentiel Radial Basis Function) 

 

( ) 2

'
, ' exp

x x
K x x

σ
−

= −
 
 
 

                                 (39) 

Where  
15σ = , and  is the euclidean norm. The term of 

regularisation 181,002 10  −λ = ×  
In the identification phase we use a training set of 1000 
inputs/outputs and in the validation phase 800 new 
inputs/outputs are used to evaluate the performance of 
the resulting RKHS model. 

6.5 Result 

Figure 4 concerns the separator temperature. We plot 
the evolution of the model output and that given by the 
simulink during the learning phase. However, in Figure 
5 the same outputs are plotted using validation data. 

We notice a concordance between the RKHS model 
output and the process output in the learning phase and 
this concordance remains excellent in the validation 
phase. Indeed the normalised mean square error in 
validation is equal to 0.0012. 

              
Reactor  
pression 
            

E feed 
flow 

        
Reactor  
level 
           

 
 
Tennesse 
Process 

Separator 
temperature 

Reactor                
liquid level                

D feed 
flow 
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Figure 6 concerns the reactor liquid level where we 
plot the evolution of the output of the model and that 
given by the simulink during the learning phase and 
figure 7 the same outputs are plotted using validation 
data. 
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Fig .4. Identification Phase 
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Fig .5. Validation Phase 
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Fig 6. Identification Phase 
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Fig .7. Validation Phase 
 
 
On the test set, the validation phase confirm the good 
performances of the RKHS model: Indeed the similarity 
between the RKHS model output and the real output 
process is very important and proves that there is not an 
overfitting 
 
 

7  Comparative study 
 

To illustrate the efficiency of all methods, we proceed 
to their validation on nonlinear dynamic system used as 
a benchmark [11] and given by: 
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( ) ( )( )( )( ) ( )

( )( )( )( ) ( )

( )( ) ( )

2

2

0.8 0.5 exp 1 1

     0.3 0.9 exp 1 2

    0.1sin . 1

y i y i y i

y i y i

y i e iπ

= − − − −

− + − − −

+ − +

            (40) 

 
 
Where: 
  

( )e i : is a Gaussian noise with variance 0.4 and unit 

mean so that the Signal to Noise Ration (SNR) is equal 
to5 . The input vector dx∈ℝ  of RKHS model is: 
 

          ( ) ( ) ( )1 2
T

x k y k y k=  − −                              (41)            

  

To build the RKHS model we use the RBF kernel 
(Radial Basis Function) defined as:  
 

                     ( )'
2

'
, exp

100

x x
k x x

−
−

 
 =
 
 

                (42) 

 
We have used 80 observations in the identification 
phase and 150 other observations in the validation one. 
 
In Table 1 we present the performances of the three 
kernel method carried out in the same condition. The 
first performance is the generalization ability evaluated 
by the Normalized Means Square Error (NMSE) in the 
identification phase and the validation one and the 
second concerns the compute time. For the simulation 
the clock frequency is set to 3 GHz    

    
From Table 1 we see that the compute time of both 
methods KPCA and RN are significantly less than the 
time needed by the SVM method (7.53 seconds). This is 
due to the fact that the SVM method solves an 
optimization problem with constraints. 
 
 However that the SVM method generalizes better than 
the other two methods RN and KPCA as the 
corresponding NMSE in learning and validation phase 
is significantly smaller than other techniques. 
 
We also note that three principal components is enough 
to build an RKHS model from the system which leads 
to a less complex model. 
 
 
 
 
 
 

Table I  
Performances of kernel methods SVM, RN and KPCA 
 
 

 
 
In figure 8 we draw the RKHS model outputs using 
SVM, RN and KPCA methods and the output process 
in the identification phase. We notice the concordance 
between the three model outputs and that of the process 
output. 
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Fig.8. Identification Phase using SVM, RN and KPCA 

 
  

In figure 9 we plot the RKHS model outputs using 
SVM, RN and KPCA methods and the output process 
in the validation phase. As previously we notice the 
concordance between all the outputs. 
 

 

 SVM RN KPCA 

Compute 
time 

(seconds) 

 
7.53 s 

 
0.9204 s 

 
0.5460s 

NMSE 
identification  

% 

8,88 10-11 9,5810-5 3 10-3 

NMSE  
validation  % 

2,32 10-9 1,38 10-4 8.710-3 
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Fig. 9 Validation Phase using SVM, RN and KPCA 
 
 

8  Conclusion 
In this paper we have presented a new MIMO RKHS 
model for modeling a multivariate nonlinear system on 
RKHS space, also we have presented three kernel 
methods SVM, RN and KPCA to identify the nonlinear 
system in the RKHS space. A comparative study 
between the three methods has been achieved and shows 
the effectiveness of the SVM method in terms of 
generalization ability. 
 
 
References: 
 
 [1] V. N Vapnik. The Nature of Statistical Learning 

Theory.  Springer, New York, 1995 
[2] Vapnik. V. N. Statistical Learning Theory, Wiley, 

New York, 1998 
[3] Aronszajn N, Theory of reproducing Kernels. 

Transactions of the American Mathematical 
Society, Vol.68, pp. 337-404, 1950 

[4]  Ilyes. A. Modélisation, Identification et Commande 
Prédictive des systèmes non linéaires par  
utilisations des espaces RKHS, thèse de doctorat  de 
l’université de Tunis, ENIT, 4-4-2009, Tunisie 

[5]   Wahba. G. An introduction to model   building with 
Reproducing Kernel Hilbert Spaces, Technical 
report No 1020, Department of Statistics, 
University of Wisconsin-Madison, 2000 

[6]   Taouli. O, Saidi .N and Messaoud. H. Identification 
of Non linear MISO Process using RKHS and 
Volterra models. WSEAS TRANSACTIONS on 
SYSTEM. Vol 8, 2009, pp.723-732. 

[7]  Taouli. O, Aissi. I, Villa. N and Messaoud. H. 
Identification of Non Linear Multivariable 
Processes Modelled on Reproducing Kernel Hilbert 
Space: Application to Tennessee Process.   ICONS, 
2nd IFAC International Conference on Intelligent 
Control  Systems and Signal Processing, Istanbul, 
Turquie 21-23 September 2009, pp.1-6. 

 [8] Scholkopf. B, Smola. A. Learning with Kernel: 
Support Vector Machine Regularization, 
Optimization and Beyond, MIT Press, 2001 

[9]   Scholkopf. B, Smola. A et Muller. K-R. Nonlinear 
component analysis as Kernel eigenvalue problem, 
Neural computation. v10, 1998, pp. 1299-1319. 

[10] Jolliffe. I.T. Principal components analysis, 
Springer-Verlag , New York , 1986 

[11]   Chan . W. C,  Chan. C. W, K. C. Cheung, and C. 
J. Harris. Modelling of nonlinear dynamical 
systems using support vector neural networks. 
Engineering Applications of Artificial Intelligence, 
14, 2001, pp. 105-113. 

[12] Ghate. V.N, Dudul. S.V. Induction Machine Fault 
Detection Using Support Vector Machine Based 
Classifier, WSEAS TRANSACTIONS on SYSTEMS, 
Volume 8, May 2009, pp. 591-603. 

[13]Yang. M.H. Kernel Eigenfaces vs.kernel 
Firstfaces:Face recognition using kernel method. In 
IEEE FGR, Washington, DC, USA, 2002, pp. 215-
220. 

[14] Veropoulos. K, N. Cristianini, and Campbell C. The 
Application of Support Vector Machines to 
Medical Decision Support: A Case Study, ACAI 
conference, Chania, Greek Islands, 1999, pp 17-21. 

[15] J. Mercer. Functions of positive and negative type 
and their connection with the theory of integral 
equations. Philosophical Transactions of the Royal 
Society, London, A 209, 1909, pp.415- 446. 

[16] Banerjee, A and Arkun, Y. Control configuration 
design applied to the Tennessee Eastman plant-
wide control problem. Computers Chemical 
Engineering, 19, 1995, pp.453-480. 

[17] Downs, J.J and Vogel, E. A plant-wide industrial 
process control problem. Computers and 
Chemical Engineering, 17, 1993, pp.245-255. 

[18] Mc Avoy, T.J and Ye, N. Base control for the 
Tennessee Eastman problem. Computers and 
Chemical Engineering. 18,1994, pp.383-413. 

[19] Mauricio Sales Cruz, A. Tennessee Eastman Plant 
–wide Industrial Process. Technical report, 
CAPEC, Technical University of Denmark, 2004. 

[20] Ricker, N.L and Lee, J.H. Nonlinear model 
predictive control of the Tennessee Eastman 
challenge process. Computers and Chemical 
Engineering, 19, 1995a, pp. 961-981. 

 
 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Taouali Okba, Elaissi Ilyes, Garna Tarek, Messaoud Hassani

ISSN: 1790-0832 953 Issue 7, Volume 7, July 2010



 

[21] Ricker, N.L and Lee, J.H. Nonlinear modeling and 
state estimation for the Tennessee Eastman 
challenge process. Computers and Chemical 
Engineering, 19, 1995b, pp. 983-1005. 

[22] Sriniwas, R and Arkun, Y. Control of the 
Tennessee Eastman process using input–output 
models. Journal of Process Control, 7, 1997, pp. 
387-400. 

[23] Ylöstalo, T and Hyötyniemi, H. Maps of Process 
Dynamics. In Proceedings of EUROSIM'98 
Simulation Congress, K. Juslin (ed.), Espoo, 
Finland: Federation of European Simulation 
Societies, 2, 1998, pp. 225-229.  

[24] G. Pajares, Support vector machines for shade 
identification in urban areas, WSEAS Transactions 
on Information Science and Applications, Vol. 2, 
No. 1, 2005, pp. 38-41 

[25] Milena R. Petkovic, Milan R. Rapaic, Boris B. 
Jakovljevic, Electrical Energy Consumption 
Forecasting in Oil Refining Industry Using Support 
Vector Machines and Particle Swarm optimization, 
WSEAS Transactions on Information Science and 
Applications, Vol. 6, 2009, pp. 1761-1770. 

 
 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Taouali Okba, Elaissi Ilyes, Garna Tarek, Messaoud Hassani

ISSN: 1790-0832 954 Issue 7, Volume 7, July 2010




