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Abstract: Target modeling and model fitting are the two important parts of the problem of object tracking. The
former has to provide a good reference for the latter. Online appearance models (OAM) has been successfully
used for facial features tracking on account of their strong ability to adapt to variations, however, it suffers from
time-consuming model fitting. Inverse Compositional Image Alignment (ICIA) algorithm has been proved to be
an efficient, robust and accurate fitting algorithm. In this work, we introduce an efficient online appearance models
based on ICIA, and apply it to track head pose and facial actions in video. A 3d parameterized model, CANDIDE
model, is used to model the face and facial expression, a weak perspective projection method is used to model the
head pose, an adaptive appearance model is built on shape free texture, and then the efficient fitting algorithm is
taken to track parameters of head pose and facial actions. Experiments demonstrate that the tracking algorithm is
robust and efficient.

Key–Words: Visual tracking, Online appearance models, Inverse Compositional Image Alignment, model learning,
facial feature tracking

1 Introduction
The tracking of head pose and facial actions in video
is one of the significant problems in fields of com-
puter vision and graphics. It plays an important role
in applications such as Human-Computer Interaction,
surveillance, entertainment, and is highly relevant
to the techniques of facial expression analysis, face
recognition, realistic 3D face model generation, etc.
The aims of facial feature tracking include tracking
the rigid movement of head and the nonrigid transfor-
mation caused by expression and actions, which make
it quite challenging.

It is a key problem of visual tracking to adapt the
temporal appearance and background changes. How-
ever, most of the algorithms can only track the object
under a control environment for a short time, and easy
to fail when great variation appears. Simple hypoth-
esis of no significant object variations was made as
a prerequisite, although the problem can be fixed by
trying some more expressive features or adding more
effective predictions. Unlike the fixed template mod-
els and statistical models, Online Appearance Model
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combines the training stage with the searching stage.
It don’t need training samples and can adapt to appear-
ance changes very well with the online learning.

Object tracking is one of the important and chal-
lenging problems in computer vision, and has many
applications, such as actor-driven animation [12] and
video surveillance [13]. The two main portions of
tracking problems are target modeling and model fit-
ting. Target model should have the ability to handle
object changes caused by different reasons, and pro-
vide a proper reference for the fitting. Meanwhile fit-
ting algorithms need to be promoted according to the
four aspects presented in [8]: efficiency, robustness,
accuracy and automation. Various algorithms have
been proposed and improved to meet these require-
ments [14][15][16]. However most of these methods
emphasize particularly only on one aspect. In this
work, an efficient online appearance models (EOAM)
based on ICIA is presented to improve both the object
model and the fitting.

Fixed template models cannot adapt to appear-
ance changes, while statistical texture models are re-
stricted by training sets and will fail if the imaging
conditions are significantly changed. Recently online-
learning methods become very popular. They com-
bine the training stage with the searching part and
have achieved very good results. Adaptive Gaus-
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sian mixture methods have been chosen for real-time
video background substraction and object tracking
[4][3][17][2], because of its good features in both the-
ory and realization. Jepson et al. [1] introduced one
kind of adaptive Guaussian mixture model named on-
line appearance model (OAM) for visual tracking. It
is a generative model which combines both stable and
motion constraints. To our advantage, it earns the abil-
ity to adapt to appearance variations caused by head
pose and face expression.

When it comes to the fitting part, an EM al-
gorithm is used in [1]. A gradient descent method
and particle filters are combined to track the param-
eters in [2][5]. The main disadvantage of these meth-
ods is time-consuming. Inverse Compositional Image
Alignment (ICIA) is an efficient algorithm proposed
by [6]. It has been used to improve the search ef-
ficiency of AAM [7] and extended to 3D morphable
models by Romdhani and Vetter [8]. Both applica-
tions have proved that the algorithm is efficient, robust
and accurate.

In this study, we develop an efficient tracking
framework based on OAM and ICIA, and apply it to
track head pose and facial features. The highlights of
this paper are described as follows:

1. The target model is an adaptive mixture ap-
pearance model established from the observation
model, which is a modified OAM. The mixture
Gaussian appearance model is built the same as
[2], while the model learning is improved.

2. According to the mixture Gaussian model, the
observation expectation is evaluated as an refer-
ence for the fitting, and the cost function is de-
fined based on the log-likelihood of observation
appearance.

3. A 3D wire-frame model is used to model the fa-
cial actions, and a weak perspective projection
model is built to model head pose. The parame-
ters of head pose are redefined for an unified use
of ICIA.

4. Given coefficients, a piece-wise affine transform
is taken to warp the image and get an observa-
tion. Jacobian is evaluated on condition that the
warping operation is divided into three steps.

The paper is structured as follows: in the next sec-
tion, we will establish an efficient tracking framework
for combining a modified online appearance model
with Inverse Compositional Image Alignment algo-
rithm. Section 3 presents the details of how to build
an observation and apply the combined algorithm to
track head pose and facial features. Section 4 presents

experimental results from an implementation of the al-
gorithm. Finally we draw a conclusion of this work
and have a discussion of the future work.

2 An efficient online appearance
models (EOAM)

In this part, we describe a tracking framework of com-
bining online appearance model with Inverse Compo-
sitional Image Alignment algorithm. A modified ver-
sion of OAM is used to model the appearance and then
ICIA is adopted to fit the model.

2.1 Online Appearance Models

Three Gaussian models are used in the original online
appearance models presented in [1]. The first compo-
nent S depicts the stable image observation, the sec-
ond part L represents data outliers, and the third part
W accounts for the two-frame variation. Occlusion
can be modeled in other easy ways, using robust statis-
tics for example. Therefore according to the WSF
model proposed in [2], a fixed template F takes the
place of the original ’lost’ component L. It can be
a shape-free facial texture without expression from a
frontal view in facial expression tracking.

2.1.1 WSF Mixture Appearance Model

By assuming that the pixels of object observa-
tion are independent of each other, the WSF
appearance model at time t, is defined as a mix-
ture of three Gaussians At = {Wt, St, Ft}, with
mixture centers {µi,t, i = w, s, f}, and corre-
sponding variances{σ2

i,t, i = w, s, f}, and the
mixing probabilities {ωi,t, i = w, s, f}. Note that
{µi,t, σ

2
i,t, ωi,t, i = w, s, f} are all d-vectors, where

d is the length of the observation. Suppose that the
observation is Yt, its likelihood is written as:

p(Yt|θt) =
∏d

j=1{
∑

i∈{w,s,f} p(Gi)p(Yt|Gi)}

=
d∏

j=1

{
∑

i∈{w,s,f}
ωi,t(j)N(Yt(j);µi,t(j), σ2

i,t(j))}

(1)
where Gi represents the three Gaussian components,
N(x;µ, σ2) denotes a normal density:

N(x;µ, σ2) = (2πσ2)−1/2exp{−ϕ(
x− µ

σ
)} (2)

ϕ(x) =
1
2
x2 (3)
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2.1.2 Model learning

Initially, after an observation Y0 is obtained by a de-
tection algorithm, we set A1 with Y0. To keep the
generative mixture model adaptive, its parameters,
namely the means, variances and mixing probabilities,
need to be updated when a new observation Yt is avail-
able. The learning process of WSF mixture model is
described as follows:

1. Compute the probabilities of new observation Yt

under each gaussian model:

pi,t =





ωi,t ·N(Yt;µi,t, σ
2
i,t), if |Yt−µi,t

σi,t
| < Tσ

0
(4)

where i ∈ {s, f, w}, and Tσ is a control variable.

2. If
∑

j pj > 0, compute the expected posterior of
each gaussian model:

qi,t = pi,t/
∑

j∈{s,f,w}
pj,t; i ∈ {s, f, w} (5)

Then update the mixing probabilities as:

ωi,t+1 = (1− α) · ωi,t + α · qi,t (6)

where α is the learning rate.

If ps,t > 0, update the mean and variance of the
stable model as follows:

ct+1 = ct + qs,t (7)

µs,t+1 = (1− η) · µs,t + η · Yt, (8)

σ2
s,t+1 = (1− η) · σ2

s,t + η · (Yt − µs,t)2 (9)

where η = qs,t · (1−α
ct+1

+ α)

3. The parameters of W-component and F-
component are set as:

µw,t+1 = Yt, σ
2
w,t+1 = σ2

s,1 (10)

µf,t+1 = µf,1, σ
2
f,t+1 = σ2

f,1 (11)

The basic learning procedure of the weights and
component S follows the formulation in [3]. Note that
the variable ct counts the number of effective obser-
vations for the S-component, and is used to compute
an appropriate learning rate.

2.2 Fitting the model to an image

The adaptive appearance model is demonstrated in the
context of object tracking. Given an input image, a fit-
ting algorithm is required to optimize the coefficients
we are going to track. Inverse Compositional Im-
age Alignment (ICIA) is an efficient one proposed by
Baker and Matthews [6]. It has been applied to Active
Appearance Model to improve its search performance
and has achieved good results [7]. When it comes to
the object tracking, we encounter the same problem as
AAM search. Generally speaking, gradient descent is
a good approach to register the appearance model to a
new input image. However it is very time consuming
if the gradient matrix is recomputed in each iteration,
like in [5]. ICIA algorithm gives a key advantage of
pre-calculating the derivatives. Consequently it is a
good choice for us.

2.2.1 Observation expectation

Now we would like to determine which portion of
the mixture model At are most likely to describe
Yt. In [2], the observation of last frame is simply
used as the template for tracking. However Gaussian
distributions with the most supporting evidence and
the least variance are chosen as the background model
in [4]. In respect that the variances of two Gaussian
components are not updated and higher mixing
probability implies more feasibility of happening,
the Gaussian with the maximum mixing probability
can work equally well [3]. To be more precise, the
expected value of observation is adopted here as
both the representation of the mixture model and the
template T in ICIA algorithm:

T = E(Yt) =
∑

i∈{s,f,w}E(Yt|Gi)p(Gi)

=
∑

i∈{s,f,w}
ωi · µi (12)

2.2.2 Cost function

Our goal is to estimate the optimal parameters of
observation model from input image. Assuming
that the observation model at time t is denoted by
Yt = W (X, ρ), where X is the input data, and ρ
is the coefficient of some warping operation W to
project the data to an observation. The log-likelihood
of Yt can be expressed as
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L(Yt|At) =

d∑

j=1

log


 ∑

i=w,s,f

ωi,t(j)N(Yt(j);µi,t(j), σ2
i,t(j))




(13)
Thus the cost function can be defined as:

et(ρ) =
2
d

d∑

j=1

∑

i=w,s,f

{
ωi,t(j) · ϕ

[
Yt(j)− µi,t(j)

σi,t(j)

]}

(14)

2.2.3 Optimization procedure

In this section, a framework of combing ICIA with
OAM is built. As we mentioned before, ICIA is used
to optimize the parameters of observation and the ex-
pectation of observation is its template. By reason that
the template is time-varying, only the Jacobians can
be calculated at the beginning. The whole process can
be described as follows:

1. Pre-compute the Jacobian ∂W
∂ρ when ρ = 0;

2. Initialization:

µi,1 = Y0, c1 = 0; i ∈ {s, f, w} (15)

3. At time t, set the texture model T for ICIA, in
accordance with equation (12).

4. Evaluate the gradient 5T of the template T;

5. Evaluate the steepest descent images SD and the
Hessian matrix H:

SD = 5T · ∂W

∂ρ
(16)

H =
∑
x

[
5T · ∂W

∂ρ

]T [
5T · ∂W

∂ρ

]
(17)

6. Iterate until converged:

(a) Normalize the input data using some warp
operation with the current parameters ρ,
and get a new observation denoted as Yc.

(b) The new observation has to register with
the current mixture model At, and the er-
ror is evaluated according to equation (14).
Supposing that et records the error of last
ρc, and if ec(ρc) < et, update the error and
the parameter:

et = ec(ρc), ρt = ρc, Yt = Yc (18)

If ec(ρc) ≥ et, the error can no longer be
reduced, thus convergence is declared, then
parameters ρt and observation Yt are re-
turned.

(c) Compute the shift of parameters:

∆ρc = H−1
∑
x

SDT · [Yc − T ] (19)

(d) Compose the incremental warp with the
current warp W (x, ρt) ◦W (x,∆ρc)−1 and
get a new parameter ρc

′. Small steps are
performed to the update: ρc ← ρc+λ(ρc

′−
ρc) with a factor λ ¿ 1.

7. Update the mixture appearance model At+1 us-
ing Yt, according to the steps in section 2.1.2, and
set t = t + 1, then return to step 3.

3 Head pose and facial expression
tracking

So far, the efficient online appearance models based
on ICIA has been detailed. Now we are interested in
applying it to head pose and facial actions tracking.

3.1 Building image observation

We explore the application of automatic facial action
tracking. To this end, both facial expression and head-
pose have to be recovered. In this section, models of
facial action and head-pose are built, and then an ob-
servation is obtained from them.

3.1.1 Modeling the facial actions

Our study is based on a 3D wire-frame face model
Candide built by Ahlberg [10], which is designed to
depict the diversity between different human beings
as well as different face expressions. The model is
given as:

g = g +
ns∑

i=1

si · Si +
na∑

i=1

ai ·Ai (20)

where g is the 3D standard shape, Si denote the shape
modes, Ai denote the animation modes, ns and na

are the numbers of shape and animation modes used
respectively, si and ai are the respective parameters.

Note that the shape modes represent inter-person
variety, and are ascertained by some detection proce-
dure at the beginning. Therefore, only the tracking of
animation parameters are considered:

a = (a1, a2, . . . , ana)
T (21)

This procedure is regarded as a 3D to 3D projection:

M((x, y, z); a) → (x, y, z) (22)
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Figure 1: Coordinate system and pose parameters
used in our approach

3.1.2 Modeling the head-pose

After the face model is built, it is necessary to project
the 3D wire-frame to 2D image coordinate system. A
weak perspective projection model is used:

g′ = f ·R · (g +
ns∑

i=1

si · Si +
na∑

i=1

ai ·Ai) + t (23)

where f is the camera focal length, t = (tx, ty) is de-
noted as the translation vector. Figure 1 shows the
coordinate system used in our approach. Supposing
that R′ is the 3× 3 matrix based on the three rotation
angles around the respective axes, and is denoted as
following:

R′ = Rα ·Rβ ·Rγ =




a1 a2 a3

a4 a5 a6

a7 a8 a9


 (24)

where the three rotations around each axis are defined
as:

Rα =




1 0 0
0 cos α sinα
0 − sin α cos α


 (25)

Rβ =




cos β 0 − sinβ
0 1 0

sinβ 0 cos β


 (26)

Rγ =




cos γ sin γ 0
− sin γ cos γ 0

0 0 1


 (27)

The projection matrix R is denoted by:

R =

[
a1 a2 a3

a4 a5 a6

]
(28)

After the translation, a 2D mesh g′ is obtained. To
try to unify the operations for easy computation, we
define some new parameters as following:

qi =





f · ai − 1, (i = 1, 5)

ai, (i = 2, 3, 4, 6)
(29)

q7 = tx, q8 = ty (30)

The corresponding mesh vectors are defined as:

g∗0 = (x1, y1, x2, y2, · · · , xv, yv)T (31)

g∗1 = (x1, 0, x2, 0, · · · , xv, 0)T (32)

g∗2 = (y1, 0, y2, 0, · · · , yv, 0)T (33)

g∗3 = (z1, 0, z2, 0, · · · , zv, 0)T (34)

g∗4 = (0, x1, 0, x2, · · · , 0, xv)T (35)

g∗5 = (0, y1, 0, y2, · · · , 0, yv)T (36)

g∗6 = (0, z1, 0, z2, · · · , 0, zv)T (37)

g∗7 = (1, 0, 1, 0, · · · , 1, 0)T (38)

g∗6 = (0, 1, 0, 1, · · · , 0, 1)T (39)

Then the form of weak perspective projection model
is changed to:

N((x, y, z); q) → g∗(x, y) = g∗0 +
6∑

i=1

qi · g∗i (40)

At the same time the number of pose parameters to be
tracked increases to eight from the original six. This
is not considered to be a problem, as the computation
of the projection has become more direct. In conclu-
sion, the tracking problem now consists of updating
the animation parameters ai and the eight projecting
parameters qi. The total parameters of both pose and
expression are denoted as:

ρ = [q, a]T = [q1, q2, . . . , q8, a1, a2, . . . , ana ]
T (41)

3.1.3 Image warping

To obtain an normalized texture observation, we make
the standard shape g as the reference mesh by project-
ing it onto the image system using a centered frontal
pose. Afterward each input image I is warped so that
the vertices of new mesh with parameter ρ match the
corresponding ones of the reference mesh.

The reference frames of the new mesh and the
base mesh are considered to be different, and denoted
as (x, y) and (u, v) respectively. A mesh is set of tri-
angles. Suppose that the three vertices of each pixel
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Figure 2: Example of observation corresponding to a
wrong model parameter and a correct model parame-
ter

(u, v)T in reference mesh are (ui, vi)T , (uj , vj)T and
(uk, vk)T . The corresponding vertices in new mesh
are (xi, yi)T , (xj , yj)T and (xk, yk)T . Then the pixel
(u, v)T can be expressed as:

(u, v)T = λ1(ui, vi)T + λ2(uj , vj)T + λ3(uk, vk)T

(42)
where λ1, λ2 and λ3 are the barycentric coordinates
and satisfy:

0 ≤ λ1, λ2, λ3 < 1;λ1 + λ2 + λ3 = 1 (43)

A piece-wise affine transform is used, and the point
simply maps to:

(x, y)T = λ1(xi, yi)T + λ2(xj , yj)T + λ3(xk, yk)T

(44)
Finally, a shape-free image patch as the observation is
obtained:

W ((x, y); ρ) → (u, v) (45)

Y (u, v) = I(W ((x, y); ρ)) = I(x, y) (46)

According to [11], all the barycentric coordinates can
be pre-calculated to reduce the CPU time of warping
process. Figure 2 shows a example of observation cor-
responding to a wrong model parameter and a correct
model parameter.

What is left to do now is to compute the Jacobian
and incremental warp inversion and then get new pa-
rameters, when using ICIA. These steps are detailed
in next two sections.

3.2 Computing the Jacobian

The warping operation here consists of three steps and
can be expressed as:

W ◦N ◦M((x, y); ρ) = W (N(M((x, y, z); a); q); ρ)
(47)

Therefore, to compute the Jacobian at a point (x, y)
when ρ = 0, we can get the following equations:

∂W ◦N ◦M((x, y); 0)
∂a

=
∂W ◦M((x, y, z); 0)

∂a
(48)

∂W ◦N ◦M((x, y); 0)
∂q

=
∂W ◦N((x, y); 0)

∂q
(49)

Supposing that there are ν vertices composing the 3D
wireframe and the 2D mesh, which are denoted as:

g = (x1, y1, z1, x2, y2, z2, . . . , xν , yν , zν) (50)

g∗ = (x1, y1, x2, y2, . . . , xν , yν) (51)

Consequently the chain rule is applied to warp and
gives ∂W◦M

∂a as:

ν∑

i=1

[
∂W ◦M

∂xi

∂xi

∂a
+

∂W ◦M

∂yi

∂yi

∂a
+

∂W ◦M

∂zi

∂zi

∂a

]

(52)
where ∂W◦M((x,y,z);0)

∂xi
, ∂W◦M((x,y,z);0)

∂yi
and

∂W◦M((x,y,z);0)
∂zi

are determined by if (xi, yi, zi)
is one vertex of the triangle (x, y, z) belonged to. ∂xi

∂a ,
∂yi
∂a and ∂zi

∂a are the corresponding values in animation
modes A.

The same way is taken to calculate ∂W◦N
∂q :

∂W ◦N

∂q
=

ν∑

i=1

[
∂W ◦N

∂xi

∂xi

∂q
+

∂W ◦N

∂yi

∂yi

∂q

]

(53)

3.3 Computing new coefficients

A first order approximation of the inverse incremental
warp is derived [6]:

W ◦N◦M((x, y);4ρ)−1 = W ◦N◦M((x, y);−4ρ)
(54)

We compute the warp composition and acquire new
parameters in a way proposed in [7]. At first, the des-
tination of standard shape g under the composition of
W ◦N ◦M((x, y), ρ) and W ◦N ◦M((x, y),4ρ)−1

is obtained, which is denoted as:

ξ = (W◦N◦M)((x, y); ρ)◦(W◦N◦M)((x, y);−4ρ)
(55)

Therefore new parameters ρnew should satisfy the fol-
lowing condition:

(W ◦N ◦M)((x, y); ρnew) = ξ (56)

Finally the update parameters is computed as follows:

qi = g∗i · (ξ − g) (57)

ai = Ai · (N(ξ; q)−1 − g) (58)

However the first order approximation has been
proved to be not very accurate in [8], and a novel se-
lective approach is taken instead [9]. For the reason of
time limit, we leave it for further study.
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Figure 3: Head pose and facial expression tracking
results obtained with a 860-frame-long sequence

4 Experiments

The tracking approach proposed in this paper is tested
on a series of videos. The size of video frames is
320 × 240, and the resolution of observation is set to
be 40 × 46. The platform is a PC with an Intel C2D
3.0GHz CPU. In experiments, fourteen shape modes
and six animation modes of the Candide model are
used. The six animation units contain: (1) upper lip
raiser A1; (2) jaw drop A2; (3) lip stretcher A3; (4)
eyebrow lowerer A4; (5) lip corner depressor A5; and
(6) outer brow raiser A6. Most common facial expres-
sion can be represented by these actions.

Model initialization is needed to detect the face
and facial feature points, then determine the shape pa-
rameter, and give the pose parameter an initial value.
The model initialization is carried out using the first
frame of the sequence, under the assumption that the
target is facing the camera (out-plane rotations α = 0
and β = 0) and has a neutral expression (all action pa-
rameters are 0) at this time. In our work, an Adaboost
classifier is used to detect the face, and a weighted
AAM algorithm [18] is adopted to detect facial feature
points. Both of them are very fast. Robust statistics is
used to deal with occlusions.

Figure 3 displays the tracking results associ-
ated with several frames of a 860-frame-long test se-
quence. The right part of each picture shows five
observations, which are the means of Component S,
Component F and Component W of the mixture
model, observation expectation and outlier respec-

Method Tracking Speed Fitting Speed
GDM + SOAM 50.7 ms 34.8 ms
GDM + MOAM 64.4 ms 42.9 ms
ICIA + SOAM 40.9 ms 22.1 ms
ICIA + MOAM 51.2 ms 30.5 ms

Table 1: Speed comparison on a Pentium IV 3.0 GHz
PC. These results show the average time of tracking
and fitting process for each image on a 1388-frame-
long test sequence.

tively from top down. Figure 4 shows the six esti-
mated values of pose of the sequence frames. Note
that it was eight parameters when tracking. Figure 5
shows the six estimated values of animations of the
sequence frames. It can be seen that the sequence con-
tains large head movements and facial actions and the
algorithm responds well to them. We find that most
of the mixing weights of component S ascend as time
goes on in this sequence, which make sense because
this component is designed to represent the stable fea-
tures of all the past observations, and its credibility is
promoted by learning if the object keeps moving as
the frames going. It can be seen that our algorithm is
robust and corresponds well to the actual head and fa-
cial actions. Both the mouth and eyebrow act well in
response to the actual expression.

For validation purpose, we use the talking face
video with ground truth data from the Face and Ges-
ture Recognition Working group for tracking. The
video consists of 5000 frames taken from a video of
a person engaged in conversation. This corresponds
to about 200 seconds of recording. The sequence was
taken as part of an experiment designed to model the
behavior of the face in natural conversation [19]. Fig-
ure 6 displays the tracking results associated with sev-
eral frames of the test sequence. The right part of each
picture shows five observations, which are the means
of Component S, Component F and Component W
of the mixture model, and observation expectation re-
spectively from top down. It can be seen that our al-
gorithm responds well to them.

The talking face video data set has been tracked
with an AAM using a 68 point model. To be pre-
cise, we select 49 labeled points that are close to the
corresponding Candide model points from 68 anno-
tated points per frame. Figure 7 shows the Candide
model with points used for evaluation and the average
error over the whole video sequence for each point us-
ing a single Gaussian component(SOAM) and a mix-
ture Gaussian model (MOAM). The results shows that
MOAM is more robust.
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Figure 4: Tracking results of the six pose parameters obtained with a 860-frame-long sequence using EOAM
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Figure 5: Tracking results of the six facial expression obtained with a 860-frame-long sequence using EOAM
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Figure 6: Head pose and facial expression tracking results

Figure 7: Selected points on model and the average error
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Finally the speed of our algorithm is tested and
compared with the method using a single Gaussian
component with gradient descent method presented in
[2][5]. Four combinations of algorithms are compared
performing on a 1388-frame-long test sequence. Gra-
dient descent method (GDM) or ICIA is used for fit-
ting, and a single Gaussian component S (SOAM) or
the three mixture Gaussian model (MOAM) is taken
to model the appearance. The average speed of each
method is shown in Table 1. Note that eight pose pa-
rameters have to be tracked using ICIA while there
are six using GDM. ICIA is still more efficient than
GDM, despite more parameters to track. It is slowed
down as the template are time-varying and only the
Jacobian can be pre-computed before tracking. The
learning of mixture Gaussian model is a little time-
consuming but it is more robust especially when the
head moves quickly or the expression changes fast.

5 Conclusion and future work

A robust and fast tracking algorithm named EOAM is
proposed and applied to track head pose and facial ac-
tions in this paper. The mixture Gaussian model earns
more flexibility than a single one and the ICIA pro-
vides an efficient fitting to the model. In our approach,
the observation expectation of the mixture Gaussian
model is evaluated as the template for ICIA fitting. Fa-
cial expression and head pose are modeled, and then a
piece-wise affine transform is used to obtain an obser-
vation. Experimental results performed on live video
sequences demonstrate that our method is robust and
efficient.

The actions of mouth and eyebrows can be
tracked well with our method, whereas the technique
still need to be improved so that more expressions can
be expressed and tracked. Initialization is very impor-
tant in visual tracking, and most algorithms are very
sensitive to the veracity of starting position. It is al-
ways very difficult to acquire a good initialization au-
tomatically. Therefore how to promote the robustness
of tracking approaches to the initial position is one
of our future work. We don’t pay much attention on
occlusion in this paper, although robust statistics has
been used to deal with it in the experiments. It will
be another important direction we are going to study
in the future. Future work also contains addressing
the robustness of the tracker to important illumination
changes and quick movements.
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