
Simplifying Enterprise Wide Authorization Management Through
Distribution of Concerns and Responsibilities

SHARIL TUMIN
University of Bergen

IT Dept
P.O. Box 7800, 5020 Bergen

NORWAY
edpst@it.uib.no

SYLVIA ENCHEVA
Stord/Haugesund University College

Faculty of Technology, Business and Maritime Sciences
Bjørnsonsg. 45, 5528 Haugesund

NORWAY
sbe@hsh.no

Abstract: Authentication lets a system know who you are, while authorization controls your resources access
rights and what operations you are allow to perform. Resources have owners to whom the resources belong to.
The owner knows best who is allowed to access her resources at any one time. Distribution of concerns and
responsibilities can be effectively used for efficient management of enterprise wide authorization. A collection of
users with similar rights to a resource can be logically grouped. Managing user groups, recourse groups, access
relationships and permissions is tedious due to complex inter-relationships between actors and among actions. A
Web-based application which implements a higher level abstraction of access management that mappes specific
low level operating system access control can be deployed to access local manager to manage their resource access
effectively and economically, which in turn will increase the system’s security level of the entire organization.

Key–Words: Authentication, Authorization, Distributed Management, Delegation, Enterprise IT security, Multi-
tiers Web-based System

1 Introduction
Personal computers have no special need for authen-
tication and authorization. The owner of a PC has the
sole rights on its resources. Multi-users systems are of
a different category. These systems have to serve mul-
tiple users and these users will usually be assigned to
different roles. Permissions assigned to different users
for different resources will vary and much will depend
on what role a particular person has in an organization
[3]. Roles are dynamic properties that people in an or-
ganization have. Some of these roles are transient in
nature and yet others are more permanent. Authoriza-
tion is also used as a mechanism that provides priva-
cies protection for different system’s users.

System administrators or system managers in a
multi-users system environment have to manage dif-
ferent resource-user-permission relationships (access
relations) and guarantee users’ privileges and protect
users’ privacies. Privacy and privilege are two con-
tradicting values which an authorization management
needs to address delicately. The question of who,
what, when and why in relation to authorization can
be at time a daunting task for system managers to per-
form.

Authorization follows authentication in a system
security implementation. While authentication con-
trols system login, authorization controls resources

access and permissions. Resources have definite own-
ership relationships, in terms of users ownerships and
groups ownerships. Managing authorization is tedious
due to complex relationships between ownerships, re-
sources and permissions. A group defined as a collec-
tion of users or resources can be used to reduce the
number of existing relationships and thus ease autho-
rization management tasks.

It is natural that authorization management of re-
sources falls on the hands of resource owners through
delegation. Managing authorization using a Web
based management application will provide a higher
level abstraction which can facilitate implementation
of such distributed management framework. Man-
agers and users a like, will be assisted with an effective
and economical management tools, which, in turn will
increase the system’s security level.

Privacy and privilege are two opposite poles of
access control management where a delicate balanc-
ing acts, as any computer systems managers have to
perform.

The problem lies within the scope of these com-
plex who-what-when-why relationships. Typical ques-
tions would be,

1. why this user needs access to that file;

2. for what purpose;

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 830 Issue 6, Volume 7, June 2010



R1 R2

R3

R4 R5

authentication

authorization

authorization

Domain

 

 

Figure 1: Authentication vs Authorization

3. by which permissions; and

4. for how long period of time.

Usually the system managers are in the dark to what
was the original purpose of that specific resource. The
original owners would best know the initial purpose
of the resource. Given that, the data concerning what-
why can be stored in a database during an initial cre-
ation process of a particular resource, however, the
details of who-what-when can be problematic. Since
a shared resource was created for a specific purpose,
therefore it is most natural to give the responsibility
of access management to the original owners of the
resource. These delegations of responsibilities at the
enterprise level can provide efficiency in the system
management process at lower operative system levels.

Another important issue in authorization manage-
ment is controlling the effective time period of access
relations. Without an automatic cancellation of an ac-
cess relationship, a user might gain unwarranted ac-
cess beyond the justified time period prescribed by her
roles and her organizational duties. If this remains
unchecked it will definitely lead to possibilities for
compromising the operational and privacy policies of
the organization in terms of lost of private data and
unauthorized execution of critical processes, done by
unwanted individuals internal or external of the sys-
tem. An automatic cancellation of access relation-
ships is an important security function. It will surely
help to mitigate the negative effects of overdue autho-
rizations.

To reduce the number of combinatorial who-what
combinations, both users and resources can be ar-
ranged into groups. Instead of relating an individual
user to a particular resource, the system presented in

this paper will define access relationships by relating
groups of users to groups of resources. This technique
will ease the burden of authorization management but
at the same time increases the implementation difficul-
ties. A user-group members can change over time and
similarly will resource-groups. User-groups member-
ship management is practically easy to implement, for
example by using LDAP group scheme. However,
resource-groups management can be difficult to do in
practice as resources are managed at an individual re-
source level by the operation system and not as a col-
lection of differently located resources.

To implement such a system, we assume that the
enterprise has an IdM (Identity Management System)
in which personal data about all users, users’ cre-
dentials and users’ default authorizations are stored.
Together with these authentication and default autho-
rization data, an additional system for implementing
operational authorization data such as user-groups,
resource-groups, groups memberships and access re-
lationships are also needed. These information can be
stored as a part of the IdM’s database or can be im-
plemented as a subsystem to the IdM. In this paper
we propose a Web-based system for distributed au-
thorization management through delegation - DAMD.
The subsystem model of DAMD will provide the most
flexible solution in serving an enterprise authorization
management endeavour.

2 Background
2.1 Authentication versus Authorization
Authorization follows authentication as shown in Fig-
ure 1. Authentication is but a small part of a security
mechanism that implements access control on system
resources.

Authentication is a process by which the system
asks you to identify yourself and to give proof that
you are indeed who you said you are. There are two
critical information concerning authentication that the
system shares with you, namely your user identifica-
tion and your password. You and only you know your
password.

The system stores your password in an encrypted
form, usually in a one-way cryptographic hash format,
for example crypt, MD5, or SHA. During authentica-
tion process, the identity and the password given by
you will be checked against an identity database, for
example /etc/passwd file, LDAP (Lightweight Direc-
tory Access Protocol), AD (Active Directory) or SQL
(Structured Query Language) database user table. If
the hashed password and the identity pair given ear-
lier matches the pair stored in the identity database
then you are authenticated.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 831 Issue 6, Volume 7, June 2010



Figure 2: A Typical Organizational Map of a University

Once a user is authenticated, the system will then
know who the person is. Related to this particular per-
son are her roles, access rights to system resources and
permissions on these resources, technically speaking,
her authorization.

Authorization is a process by which the system
assigns permissions to authenticated users on system
resources. The permissions are usually checked at the
moment a user wants to perform certain action on a
resource, for example read or write. There are many
users and many resources in a system. To relate each
individual user to each individual resource is wasteful
efforts. What is usually being practiced is to assume
no access rights and no permission unless specifically
stated in the system. A resource has a definite owner-
ship, thus the owner and the resource owned are im-
plicitly related. The management of these relation-
ships of ownership, access right and permissions be-
tween users and resources can be very tedious depend-
ing on the number of users, resources and types of
permission.

To reduce number of users and resources rela-
tionships, groups are introduced into the authorization
management. A group of users (usergroup) is defined
as a collection of users having similar access rights
and permissions on a resource or a group of resources.

While, a group of resources (resourcegroup) is defined
as a collection of resources for a unit of a workgroup
for a particular organizational task.

Typically an organization is organized in a hier-
archical structure, and typically is represented as an
inverted tree as shown in Figure 2, showing an or-
ganization structure of a university. Under each fac-
ulty are departments. Under each department are di-
visions. A resourcegroup can either be defined as fac-
ulty wide, department wide or division wide. Thus,
for a faculty wide resourcegroup the usergroup asso-
ciated with it will be all users belonging to the faculty
and similarly for departmental and divisional defined
resourcegroup. One thing to remember is that a re-
sourcegroup does not include hierarchical definition
upward the tree path. A resourcegroup is only defined
on the level at which it was defined.

Certain users-resources relationships can be auto-
matically managed using the organizational structure,
for standard resources for example department com-
mon shared storage areas. Whereres, resourcegroup
defined for a specific task on a specific level need to
be managed individually using associated usergroup.

It is very natural that authorization management
of a resourcegroup falls on the hands of the owners.
This can be achieved through delegation. The own-

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 832 Issue 6, Volume 7, June 2010



ers are best to know what the resources are used for
and who are illegible to access them in order to per-
forme a specific task. Managing authorization using a
Web based application will provide a higher level of
abstraction which can facilitate the implementation of
such distributed management framework.

2.2 Concepts as Basic Structures
Concepts as basic structures of logic are most impor-
tant for turning information into knowledge because
humans first grasp realities by concepts wherefore
concepts are the basic units of thought and knowledge,
[19].

Definition 1 [2] Let P be a non-empty ordered set. If
sup{x, y} and in f {x, y} exist for all x, y ∈ P, then P is
called a lattice.

In a lattice illustrating partial ordering of knowl-
edge values, the logical conjunction is identified with
the meet operation and the logical disjunction with the
join operation.

Definition 2 [18] A context is a triple (G,M, I) where
G and M are sets and I ⊂ G × M. The elements of G
and M are called objects and attributes respectively.

For A ⊆ G and B ⊆ M, define

A′ = {m ∈ M | (∀g ∈ A) gIm},

B′ = {g ∈ G | (∀m ∈ B) gIm}
where A′ is the set of attributes common to all the ob-
jects in A and B′ is the set of objects possessing the
attributes in B.

Definition 3 [18] A concept of the context (G,M, I)
is defined to be a pair (A, B) where

A ⊆ G, B ⊆ M, A′ = B and B′ = A.

The extent of the concept (A, B) is A while its in-
tent is B. A subset A of G is the extent of some con-
cept if and only if A′′ = A in which case the unique
concept of the which A is an extent is (A, A′). The cor-
responding statement applies to those subsets B ∈ M
which is the intent of some concepts.

The set of all concepts of the context (G,M, I) is
denoted by B(G,M, I).

Definition 4 [18] 〈B(G,M, I);≤〉 is a complete lat-
tice and it is known as the concept lattice of the con-
text (G,M, I).

There is no need for authorization if all users to
have every and equal rights to system resources. Au-
thentication is enough to control system access and
disallow others to access from outside of the system.
However, resources and permissions to resources are
given differently to different users. Organizational,
roles, and jobs structures of an organization are also
reflected on how access relations are defined in the
organizational ICT (Information and Communication
Technology) system.

An enterprise ICT system is comprised of many
subsystems, with different authorization strategies re-
lated to operative systems in used. Some are more
complicated and involved than the others. In this pa-
per we focus on clasical authorization strategies as im-
plemented in Linux/Unix multi-users and multi-hosts
ICT system [5], [6]. By multi-users, we mean that the
IdM needs many user credentials for authentication
and the DAMD subsystem needs to manage dynam-
ically many users’ groups and memberships tightly
coupled with access relationships for authorization at
a higher level than the one provided by the individual
operating system.

Authorization processes and information access
permissions are discussed in [13], [17], [16], and [15].

A user-accounts database containing all user cre-
dentials, normally username and password pairs, to-
gether with authorization and permissions database
are necessary parts of a multi-user system. Authen-
tication data is important to system protection from
outside intrusions. System protection can be im-
proved by pro-actively checking for weak passwords
[10]. Authorization data is important for system
integrity, users’ privacies and system security from
within. Good authorization management policies and
practices can contribute to the betterment of an ICT
system as a whole, a fact that not many system man-
agers consider as a priority task within security man-
agement work.

The listing below shows a typical files listing on
a Linux/Unix work station. Each line of the listing
is preceded by a ‘d’ for a directory or a ‘-’ for a file
and permission flags patterns of rwxrwxrwx where a
‘-’ means the permission is set to off. The first ‘rwx’
block from the left signifies the owner (u) permission
to that particular file or directory. The second block
signifies the group (g) permission and the last block is
for the others (o) (all the rest). The ‘rwx’ stands for
read, write and execute respectively.

drwxrwxrwx 5 sharil sharil 4096 2009-04-06 13:51 tmp

-rw-r--r-- 1 sharil sharil 44459788 2009-12-01 12:38 D80.ps

drwx------ 3 sharil sharil 4096 2009-03-31 13:52 .dbus

drwxr-xr-x 2 sharil sharil 4096 2009-11-18 14:17 Documents

-rw------- 1 sharil sharil 16 2009-03-31 13:52 .esd_auth

drwx------ 2 sharil sharil 4096 2009-03-31 15:49 .tsclient

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 833 Issue 6, Volume 7, June 2010



Each line of the listing is preceded by a permis-
sion flags patterns of rwxrwxrwx where a ‘-’ means
the permission is set to off. The first ‘rwx’ block from
the left signifies the owner (u) permission to that par-
ticular file or directory. The second block signifies the
group (g) permission and the last block is for the oth-
ers (o) (all the rest). The ‘rwx’ stands for read, write
and execute respectively.

The most relevant for us here is the group permis-
sion block. Setting control permissions to the middle
block and group ownership of the resource will pro-
vide a simple yet effective authorization management
at the file system level. Without a management system
at a higher level, owners and system managers tend to
employ the (o) permission block. Using the (o) will
give people access on a particular resource regard-
lessly, but a more selective access is usually needed
when security and privacy issues are taken into con-
sideration.

Collecting users with similar roles and rights into
groups, and similarly done to resources, makes a lot of
sense. In what follows, we show examples for seven
user and nine resources, and by capitalizing on visu-
alization produced using concept lattices [8] we can
easily see that the complexity of access relations can
be reduced significantly by grouping.

Table 1: Users to Resources
u/r r1 r2 r3 r4 r5 r6 r7 r8 r9

u1 * * * *

u2 * *

u3 * * *

u4 * * * *

u5 * * *

u6 * * *

u7 * * *

Table 1 shows a simple example of access rela-
tions between these users and resources, and Figure 3
shows its concept lattice. A limited amount of users
and resources is chosen in the example for the sake
of clarity. A concept lattice [4] can be used to ana-
lyze any number of access relationships. However, in-
creasing the number of access relationships can make
the corresponding concept lattices difficult to read.

From Figure 3, we can see that resources
{r1, r3, r5, r9} are shared by two users {u1, u4}, re-
sources {r4, r7, r8} shared by users {u3, u6}, and users
{u5, u7} are sharing {r2, r6, r7}. Therefore the possi-
bilities for potential grouping are clearly shown by the
lattice.

Figure 3: Users-Resources Relationships

We can group the users and resources in a num-
ber of ways. The most natural grouping scheme (α-
scheme) would be to group all users using a particular
resource, one group for each resource: g1 = {u1, u4},
g2 = {u2, u5, u7}, g3 = {u1, u4}, g4 = {u2, u3, u6},
g5 = {u1, u4}, g6 = {u5, u7}, g7 = {u3, u5, u6, u7},
g8 = {u3, u6}, g9 = {u1, u4}.

Grouping users in this way will produced a trivial
access relations as shown in Table 2.

Table 2: Groups to Resources
g/r r1 r2 r3 r4 r5 r6 r7 r8 r9

g1 *

g2 *

g3 *

g4 *

g5 *

g6 *

g7 *

g8 *

g9 *

From the access relations shown in Table 2 a sim-
ple concept lattice is produced, Figure 4. When com-
paring the lattices shown in Figure 3 and Figure 4, the

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 834 Issue 6, Volume 7, June 2010



Figure 4: Groups-Resources Relationships

later lattice has a much simpler structure. Therefore
grouping evidently reduces the complexity of access
relations.

A different grouping scheme (β-scheme) is also
considered to be useful. In this case the groupings
are done on collections of resources defined as fol-
lows: s1 = {r1, r3, r5, r9}, s2 = {r4, r7, r8}, s3 =

{r2, r6, r7}, s4 = {r2, r4}.
The difference between α-scheme and β-scheme

is that, while referring to Table 1, the α-scheme group-
ing are done vertically while the β-scheme are done
horizontally across the access relations table.

Table 3: Users to Resources Groups
u/s s1 s2 s3 s4

u1 *

u2 *

u3 *

u4 *

u5 *

u6 *

u7 *

For this particular example, the β-scheme pro-
duces a simpler structure with four groups compare to
nine groups for α-scheme. Depending on how the ac-
cess relationships are to be deployed either α-scheme
or β-scheme can be used. However, due to how the op-
erating system implements access control, α-scheme

Figure 5: Users-Resources Groups Relationships

is easier to implement for a single resource. The β-
scheme is used to implement access control on a group
of distributed resources.

There is a severe limitation in the way traditional
Linux/Unix access control is implemented. A g con-
trol block is bound to only a single group owner. So,
this fact will make it difficult to share the same re-
source to different resource groups �i and � j since the
relation �i ∩ � j = Ø, i , j must be true at all time.
One solution is to make copies of resources whenever
they are shared to different groups. If

�i ∩ � j = {rk}, i , j

then

�i = �i ∩ (�i 	 � j) ∪ {rki}
and

� j = � j ∩ (�i 	 � j) ∪ {rk j}.
This workaround will work well if the resources

are read only and static. For dynamically changing
resources an elaborate tracking and revision control
sub-system needs to be supported as a part of the sys-
tem.

A better way is of course to use the more mod-
ern acl (Access Control Lists) whenever the operating
system has the support for it. By using the setfacl and
getfacl commands, any groups other then the group
owner can be given access permission to a particular
resource.

Let � and � be collections of authentication and
authorization data respectively. � contains all user

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 835 Issue 6, Volume 7, June 2010



credentials and� contains all definitions for resources
access control. � = {(ui, pi)}, i = [1, n], where
(ui, pi) is the username and password pair for user
i. ui ∈ � where � contains all enterprise users.
� = {(r j, g j, P j,C j)}, j = [1,m], where (r j, gi, P j,C j)
is a resource, group, permissions and constrains tuple
for enterprise resource j.

r j ∈ � j where � j is a resource group,
� j ⊆ � where � contains all resources,
g j ∈ � where � contains all defined groups,
P j ∈ � where � contains all defined permissions,
C j ∈ � where � contains all defined constrains,

then, ui ∈ g j,
⋃m

j=1 g j ⊆ � and, ri ∈ � j,
⋃m

j=1 � j ⊆
�.

If � is compromised then � will loose much of
its security functions. Suppose u1 ∈ g1 and g1 × r1. If
u1’s credential was stolen then access control defined
by access relations of g1 × r1 will be compromised.

If the compromised user u1 is known and it is not
the root user, excluding u1 from all groups will reduce
the effect of an internal security violation or a security
breach performed by external agents. The ability to
quickly act in group membership exclusion procedure
is an important security function.

The proposed solution should be able to handle
a short term notice for massive removal risky access
relations in respond to a security incident. In normal
day-to-day authorization management, the proposed
system must be able to provide administration frame-
work that is able to support a medium scale concur-
rently management activities done by normal users
acting as administrators due to delegation responsibil-
ities. The main considerations in decreasing order of
importance will be, 1) security; 2) usability; 3) scala-
bility; 4) reliability; and 5) efficiency.

3 System
As explained in Section 2, Linux/Unix based systems
make use of the u, g, and o permissions blocks to con-
trol access and permissions for the owner, group and
other respectively, on a particular resources. The most
interesting control block for us here is the g.

Any of the three control block can be manipulated
by using chmod operative system command. By using
an octal mode number the permissions flags can be
switched on and off. As an example, we will vary the
g and keep all permissions for u and o blocks constant
as shown in Table 4.

By using mode number 0000 the access of a
particular resource to all ordinary users regardless
of ownership or group membership will be disabled.
While chmod and mode numbers are useful to imple-
ment permissions control, the group associated with

Table 4: chmod permissions mode
Mode (octal) Permissions

0770 -rwxrwx---

0760 -rwxrw----

0750 -rwxr-x---

0740 -rwxr-----

0730 -rwx-wx---

0720 -rwx-w----

0710 -rwx--x---

0700 -rwx------

the resource is important to us as mechanism for im-
plementing an α-scheme and a β-scheme mentioned
in Section 2.

In the α-scheme, one group identifier is associ-
ated with one resource. This is useful for the case of
one executable program to be shared among a group
of users and to none others. However, sharing clus-
ters or groups of resources is more common. In the
β-scheme, a group identifier is associated to a group
of resources. Thus in α-scheme, ui ∈ g j :: rk, while in
the β-scheme, ui ∈ g j :: � j = {rk}, k = [1,m].

In the proposed system, a resource is a directory
own by a particular user with a particular group iden-
tifier associated with it. The owner is given a full per-
mission on that directory so that she can create new
sub-directories or files. If these new sub-directories
and files will be shared by group members then these
resources must be associated with the group of the
parent directory. It is recommended that all o permis-
sions are disabled.

The responsibility of creating and setting up
group associations and permissions is delegated to the
current owner of the parent resource in an operating
system level. Moreover, this user will also be respon-
sible in the users membership management of the as-
sociated group by using Web-based management ap-
plication. Through this Web-based application the
“delegated manager” can give and take away other
users membership to the associated group.

3.1 System Data Model

As the system implements its authorization manage-
ment of owner, root directory resource and group as-
sociation, it is natural that these data should be col-
lected into a central database. Here we have proposed
four basic database tables; 1) delegated managers,
2) groups, 3) resources and 4) members. The detail
entity-relationship diagram is shown in Figure 6.

The delegated managers table contains owners of
the root directory resources. These delegated man-

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 836 Issue 6, Volume 7, June 2010



Figure 6: Entity-relationship Model for Delegation

agers are responsible in maintaining the proper per-
missions and group associations to all files and sub-
directories under a particular root directory resource.
The groups table defines all groups in the system to
be used to create resource-group associations stored
in the resources table. Groups memberships are de-
fined in the members table.

3.2 System Components

Building on top of these data models, the proposed
system will support these operational functionalities.
These functions are of three types; 1) Web-based ap-
plications (W*), 2) RPC-based, a remote procedure
call applications installed on each servers (R*), and
(S*) scheduled application invoke from system for au-
tomatic clean-up jobs.

This applications conceptual process flow dia-
gram is shown in Figure 7 and it is summarized as
follows:

W1 - System managers’ Web interface for initial-
izing the data tables for a new access relation. The
important initial data are the owner if the resource, a
unique group identifier, the path of the resource, the
server name, and the time period of this particular
access relation. This in fact will introduce a new
delegated managers, groups, resources, and mem-
bers. The first member of the group is the resource
owner. This application will trigger the execution of
R2 on the resource’s server side using RPC (remote
procedure call).

Figure 7: Process Flow Diagram

R2 - This RPC server application on a re-
source server will create (mkdir) for the resource
at a particular location, give the resource its proper
ownership (chown) and set the initialize (chmod)
permissions of 0770, i.e. full access to user owner
and group owner.

W3 - A Web interface for delegated man-
agers for managing; 1) other delegated managers
for a particular access relation, and 2) group mem-
bership to this particular resource associated group.
A delegated manager can share the management
responsibility with other delegated managers. The
effective period will be automatically controlled by
the time period if given. A user is given right to
access a particular resource when she is a member
of the resource associated group. The membership
is recorded in the members as well as in the group
scheme at the LDAP server. The operational access
control is done on the level of operation systems
using data found in that LDAP server. The effective

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 837 Issue 6, Volume 7, June 2010



membership period will be automatically controlled
by the time period if given.

W4 - A Web interface for system managers
for the administration of a group resources associated
with a particular group. A new resource can be
added to the group by populating the resources table
and invoking R2. A resource can be deleted from
the group by removing its entry from resources and
invoking R5 on the resource server. System managers
can also; 1) disable, 2) enable, and 3) delete access
relation as a whole. The process of disabling an
access relation does not remove users from a group
membership but setting all resources permissions to
0000. Deleting an access relation means deleting all
related data in the database and LDAP, and deleting
all related resources from the servers.

R5 - This collection of RPC will; 1) disable,
2) enable, and 3) delete access to resources on the
level of operating system. The disable and enable
procedures will use chmod or setfacl commands. The
delete procedure will permanently remove resources
and will use the remove to delete file resources
and removedirs to recursively delete directory and
sub-directories.

S6 - These collection of scheduled applica-
tions will; 1) remove users’ membership from groups,
2) remove users from delegated managers rights and
responsibility, and 3) remove access relations from
system database and servers clean-up jobs. All these
activities are triggered at the end of specified time
periods. Since remove access relations can effect
working environment of many users, the process
of removing a particular access relation will be
proceeded by sending email warnings to delegated
managers first. The resources in a particular access
relation will be disabled first prior to the actual
deletion at a later prescribed date. These scheduled
programs will invoke procedures defined in R5.

Suppose a successful attack on an enterprise is
discovered. Depending on the security risk evalua-
tions of the current threat, system administrators can
choose to disable suspected users’ authorization by
1) removing resources permissions; and 2) removing
group memberships.

Disabling users’ authorizations can be done in
two different ways; 1) by changing permissions on
a particular resource using chmod 0000, and 2) by
revoking users’ membership of the group associated
with the resource.

Since in practice we can not disable users’ en-
terprise passwords, alternatives 2) and 3) provide us
with a nice compromise. We will then be able to warn

and communicate with users with enterprise email ad-
dresses. For a time being their access to shared re-
sources will be blocked. Users will be asked to change
their passwords. The accounts that do not conform
to this will be disabled. After all the suspected re-
sources are tested and investigated and found to be
free from malicious programs, the authentications will
be restored to their original status.

3.3 System Implementation

The proposed system will be implemented as a multi-
tiers Web-based application, built using free and open
source software. The users using their Web browsers
will interact with an Apache [11] Web server using
HTTPS (Hypertext Transfer Protocol Secure) com-
munication protocol. The programmable environment
and the middlewares are written in Phython [14]. The
back-end database is implemented using PostgreSQL
[12]. The Python programming environment is used
as integrating middleware between the Web server
front-end and the database back-end.

Some of the important Python packages used to
implement the system are:

1. mod python - programmable module to Apache,

2. xmlrpclib - XML (Extensible Markup Language)
RPC (Remote Procedure Call),

3. tlslite - SSL v3 (Secure Sockets Layer) and TLS
v1 (Transport Layer Security) libraries,

4. pyPgSQL - API (application programming inter-
face) to PostgreSQL and 5) standard Python li-
braries for example - os.

4 Conclusion
Newer distribution of Linux/Unix support acl, can
be used to define a more fine-grained discretionary
access rights for files and directories are available.
Using acl, a resource can be associated with multi-
ple groups on the operating system level. The pro-
posed system can accommodate both mechanisms for
access control. With acl, resources can be shared
by many groups at group level and by many users
at user level. However, managing authorization on
user-resource relations is not recommended since such
practice will complicate management tasks.

By splitting the management data in the database
and operational data in LDAP, we managed to imple-
ment authorization management by delegation. This
will greatly reduce the burden of system managers
since the authorization management tasks on shared
resources are done by the original resource owners.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 838 Issue 6, Volume 7, June 2010



Having a centralized database for authorization
adds values to the whole management tasks, namely;
1) some automatic mechanism can be employed to re-
move overdue membership and even delete a whole
access relation with its related resources and asso-
ciated group in a timely manner; 2) another impor-
tant possibility is to be able to lock down a group
of resources temporarily in the events of a security
breach; and 3) The what-why for each shared resource
or resource-group can be documented.

Authorization management by delegation im-
proves security since it provides a mechanism by
which users themselves can manage resource shar-
ing without the need to resort to the use of o permis-
sions block. The system is a Web-based application,
therefore is scalable and usable. Modular designed
and loosely coupled sub-systems provide reliability.
In operational mode, the system provide efficient ac-
cess control since only LDAP data is effected during
a group membership modification.

References:

[1] Alghathbar K., Mahmoud H. A., Block-Based
Motion Estimation Analysis for Lip Reading
User Authentication Systems, WSEAS Transac-
tions on Information Sciece and Application, Vol
5 (6), 2009, pp. 829-838.

[2] Davey, B. A., and Priestley, H.A.: Introduc-
tion to lattices and order. Cambridge University
Press, Cambridge, (2005)

[3] Ferraiolo, D., Kuhn., D. R., and Chandramouli
R., Role-Based Access Control Artech House,
Computer Security Series, 2003.

[4] Ganter, B., Wille, R., Formal Concept Analysis -
Mathematical Foundations Springer, Heidel-
berg, 1999.

[5] Evi Nemeth, Garth Snyder, and Trent R. Hein,
Linux Administration Handbook (2nd Edition)
Prentice Hall, Pearson Education, 2006.

[6] Evi Nemeth, Garth Snyder, Scott Seebass, and
Trent Hein, UNIX System Administration Hand-
book (3rd Edition) Prentice Hall, 2000.

[7] Dictionary, Encyclopedia and The-
saurus & The Free Dictionary,
http://www.thefreedictionary.com/, 2009 (last
accessed).

[8] Maarten Janssen, Online Java Lattice Building
Application for Concept Lattices,
http://maarten.janssenweb.net/jalaba/JaLaBA.pl/,
2009 (last accessed).

[9] Herve’ Morizat, The 2008 International Infor-
mation System Security Survey.

http://www.devoteam.com/images/File/SecuritySurvey-
BD.pdf, 2009 (last accessed).

[10] Matt Bishop, Daniel V. Klien, Improving system
security via proactive password checking Com-
puter & Security, Elsevier Science Ltd., 14
(1995) 233-249 1995.

[11] Apache, The Apache Software Foundation,
HTTP server, http://www.apache.org/, 2009 (last
accessed).

[12] PostgreSQL, The world’s most advanced open
source database, http://www.postgresql.org/,
2009 (last accessed).

[13] Pranata I., Skinner G., Digital Ecosystem Ac-
cess Control Management, WSEAS Transac-
tions on Information Science and Application,
Vol. 6 (6), 2009, pp. 926-935.

[14] Python Programming Language,
http://www.python.org/, 2009 (last accessed).

[15] Skinner, G., Making A CASE for PACE: Com-
ponents of the Combined Authentication Scheme
Encapsulation for a Privacy Augmented Collab-
orative Environment, WSEAS Transactions on
Computers, Issue 1, Volume 7, January 2008.

[16] Skinner, G., A Privacy Augmented Collabora-
tive Environment (PACE), Proceedings of the
7th WSEAS International Conference on Ap-
plied Computer Science (ACS07), Venice, Italy,
November 21-23, 2007.

[17] Skinner, G., Shield Privacy: A conceptual
framework for Information Privacy and Data
Access Controls, WSEAS Transactions on Com-
puters, Issue 6, Volume 5, June 2006, pp. 1375-
1384.

[18] R. Wille, Concept lattices and conceptual knowl-
edge systems, Computers Math. Applications,
23(6-9), 1992, 493–515

[19] R. Wille, Why can concept lattices support
knowledge discovery in databases?, Journal of
Experimental and Theoretical Artificial Intelli-
gence, 14 2 & 3 (2002), 81-92

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Sharil Tumin, Sylvia Encheva

ISSN: 1790-0832 839 Issue 6, Volume 7, June 2010




