
A Parallel Algorithm to Compute Data Synopsis

Carlo DELL’AQUILA, Francesco DI TRIA, Ezio LEFONS, and Filippo TANGORRA
Dipartimento di Informatica

Università degli Studi Bari “Aldo Moro”
via Orabona 4, 70125 Bari

ITALY
{dellaquila, francescoditria, lefons, tangorra}@di.uniba.it

Abstract: - Business Intelligence systems are based on traditional OLAP, data mining, and approximate query
processing. Generally, these activities allow to extract information and knowledge from large volumes of data
and to support decisional makers as concerns strategic choices to be taken in order to improve the business
processes of the Information System. Among these, only approximate query processing deals with the issue of
reducing response time, as it aims to provide fast query answers affected with a tolerable quantity of error.
However, this kind of processing needs to pre-compute a synopsis of the data stored in the Data Warehouse. In
this paper, a parallel algorithm for the computation of data synopses is presented.

Key-Words: - data warehouse, approximate query processing, data synopsis, parallel algorithm, message
passing interface.

1 Introduction
The core of a Business Intelligence system is
represented by a Data Warehouse, which is a
repository built to store large volume of data. Such
data are obtained by the integration of operational
data, coming from heterogeneous data sources (such
as relational databases, XML files, Excel
documents) adopted in transactional systems. Since
a Data Warehouse is used in the decision making
process, it must be designed in order to support
statistical analyses of data [1, 2]. Moreover, it must
allow analyses based on temporal series. For this
reason, a Data Warehouse must not only integrate
data coming from operational databases but also
preserve historical data, accumulating data over
time. In this way, it is clear that the cardinality of
the tables of the Data Warehouse increases very
fast, because records are inserted when the Data
Warehouse is fed and never deleted.

Thus, the data stored in a Data Warehouse are
used in the On-Line Analytical Processing (OLAP),
in order to produce information to be used in the
decision making process. OLAP consists of a set of
analytical queries, essentially based on statistical
functions, and typical OLAP operators, as drill-
down, roll-up, slice-and-dice, and pivoting [3]. In
particular, the statistical functions based on the SQL
aggregation and grouping operators require usually
a long answer time [4, 5].

As the results of statistical computations are used
for business strategic choices, often decisional
makers are not interested in exact values but
approximate values will suffice. In fact, in this
context, it may be more suitable to obtain

approximate values quickly, rather than exact
values, requiring a high answer time.

Nowadays, there are several systems supporting
approximate query answering, based on different
methodologies, such as wavelet [6], sampling [7, 8],
and graph-based modelling [9]. In spite of the
adopted methodology, all these systems share the
following process model: (a) calculating the data
synopsis and (b) using the calculated data to execute
analytical queries [10]. It has been widely verified
that these systems are able to produce answers in
lower time than traditional systems, with an
acceptable percentage of error [11].

In particular, the methodology presented here is
based on the analytical data profile [12]. According
to this methodology, the data synopsis is represented
by a set of computed values, the so-called Canonical
Coefficients (CCs), that contain information about
the multivariate distribution of the data stored in the
Data Warehouse. The computational time to obtain
these coefficients is very high. The number of
coefficients that must be generated depends on both
the approximation function degree (in fact, the CCs
are the coefficients of the approximation
polynomials) and the number of attributes involved
in the computation. Moreover, the computational
process needs to scan the entire relations. For these
reasons, the computational time depends on (a) the
degree of approximation, (b) the number of
attributes, and (c) the cardinality of the relation.

As the generation time of the data synopsis is a
standard criterion to evaluate approximate query
answering methodologies, here we investigate an
extension of our analytic method by designing a

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 691 Issue 5, Volume 7, May 2010

parallel algorithm in order to decrease the
computational time needed to generate the CCs.

Thus, the paper aims to present a parallel
algorithm able to compute the CCs in a distributed
way and to report the evaluation tests. The
experimental setup is devoted to show the effective
decreasing of the computational time in reference to
the used resources.

The paper has the following structure. Section 2
presents the main architecture of the system. Section
3 points out the methodology used to compute the
CCs and introduces the related parallel version of
the algorithm. Section 4 shows the parallel
architecture used for the experimentation. Section 5
discusses the obtained experimental results. Section
6 contains an optimized version of the parallel
algorithm. Finally, Section 7 reports our
conclusions.

2 Approximate Query Answering
Systems

The Approximate Query Answering System is an
analytical tool that allows business decision makers
to obtain fast approximate answers to complex
database queries. As a counterpart, such answers
may be affected with small errors. Since the
analytical processing is usually very complex and
commonly consists of aggregate functions on large
relations, the extraction of information from data is
very slow. In these cases, decisional makers could
prefer to obtain and to use approximate but reliable
values.

As an example, a decision maker may be
interested in determining the best employee of
his/her business company in the last year. This
information requires computing the number of
products sold by each employee during the last year.
Thus, if the best employee sold the 51.5% of the
total products, then the decision maker could
tolerate 50% as business answer, since this value
represents an optimal approximation of the real
answer and does not falsify the final information, as
the approximate answer is affected with a very low
error and it can be returned quickly.

Here, we focus on Approximate Query
Answering Systems performing a data reduction.
This always happens when utilizing methodologies
based on polynomial approximation, sampling, and
wavelets. In fact, these systems are able to provide
approximate answers using small and pre-computed
data synopses, obtained by suitably reducing the
data stored in the database. Usually, the database
used as a data source in Decision Support Systems
is a Data Warehouse [13].

The data synopsis is represented by a set of
coefficients, used to calculate aggregate functions.
Of course, the methods to compute aggregate values
are overridden. That is, the aggregate functions
(such as sum, average, and count) are processed
according to ad hoc algorithms. Further features of
these systems include accuracy bounds, without
making a priori assumptions on the data
distribution. At last, these systems can often include
components that allow decision makers to obtain
exact values, in presence of critical factors or when
the total precision is needed.

In Figure 1, there is depicted a high-level
architecture that shows a Decision Support System
based on both a Data Warehouse, which processes
datasets in order to provide exact values, and an
Approximate Query Answering System, which is
able to compute fast and approximate answers,
using a set of coefficients representing a synopsis of
the data stored in the Data Warehouse.

For the sake of simplicity, on the basis of such an
architecture, the decision maker can define simple
and/or complex business indicators and, then, s/he is
allowed to obtain both fast and approximate query
responses or the exact value against a higher
response time.

Fig. 1. Architecture of a Decision Support System.

3 Canonical Coefficients Methodology
The method consists of using a polynomial series to
approximate the multivariate data distribution
function of m attributes X1, X2, …, Xm. The
polynomial is the Legendre orthogonal polynomial
series whose coefficients provide synthetic
information about the multivariate data distribution.

Let R(X1, X2, …, Xm) be a relation of cardinality
n. We assume dom(X j) = [aj, bj], for each
j = 1, 2, …, m. That is, the domain of attribute Xj is
a numeric (real) interval.

So, we define D = [a1, b1] × … × [am, bm].

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 692 Issue 5, Volume 7, May 2010

Finally, let pdf(x) be the probability density
function of R. We denote with g(x) its polynomial
approximation up to degree d.

Since the Legendre orthogonal polynomials are
defined on the interval [-1, 1], each value
y∈dom(X j) is suitably mapped to the corresponding
value y′∈[-1, 1].

Then, ∀x = (x1, x2, …, xm)∈R, it results that:

∑ ∑
=

=++

′++=
d

i
iii

ii
iiiiiim

m

m

mmm
xPcxg

0 ,,
,,,,

1

1

111
)()12()12(

2

1
)(

…

…

……

⋯

,

where:
1. x → x′ = (x′1, x′2, …, x′m) is the opportune

isomorphism from x∈D to x′∈[-1, 1] m,

2. Pij
(x′j) is the Legendre polynomial of degree i j,

3. (i1, …,im) is an m-tuple of natural numbers such
that their sum yields i,

4. Pi1, …, im
(x′) = Pi1

(x′1) × … × Pim
(x′m) is the m-

dimensional Legendre polynomial of degree i
on the interval [-1, 1]m, and

5. ci1, …, im = ∑n

1
Pi1, …, im

(x′) is the mean value of

Pi1, …, im
(x′) on the n tuples x of R.

Therefore, g(x) is the orthogonal polynomial
approximation to pdf(x) up to degree d and the
coefficients {ci1, …, im

 | i1+…+im = i, i = 0, …, d}

carry information in order to represent the m-
dimensional data distribution of the relation R.

These coefficients are the so-called Canonical
Coefficients of R and they can be used in order to
calculate quickly aggregate functions, such as count,
sum, and average, in an approximate way (cf., [12]).

3.1 Generation Algorithm
Let M[n, m] be a matrix of n × m numeric values
and let xij be the value of the i-th row and j-th
column of the matrix M.

Let dom(Xj) be the domain of the j-th column.
Then, Minj and Maxj denote, respectively, the
minimum and the maximum of dom(Xj). Let x′ij be
the normalization of xij in the interval [-1, 1], such
that xij∈[Min j, Maxj] ⇒ x′ij ∈[-1,1].

Finally, let Legendre(x′ij, d) be the Legendre
function, calculated on x′ij according to the degree d.
This function returns a floating point value.

The following pseudo-code describes the
algorithm ALG to generate the CCs.

Input
n = {number of rows}
m = {number of columns}
dg = {approximation degree}
M = {numeric matrix}

Output
CC // vector of the Canonical Coefficients

Pseudo-code of the algorithm ALG
for d = 0 to dg
for each (d0, d1, … , dm−1) such that
 (d0 + d1 + … + dm−1) = d
do
for i = 0 to n−1
pr = Legendre(x′i0, d0) × Legendre(x′i1, d1) × … ×
 Legendre(x′im−1, dm−1)
end for
CCz = average(pr)
increment index z
end do
end for

where z = 1 to 






 +
dg

mdg
.

Example 1. Let R(X1, X2) be the relation shown in
Table 1. For simplicity, let d = 2 the degree of
approximation, m = 2 the number of attributes, and
n = 4 the number of rows.

Here, Min1 = 1, Max1 = 7, Min2 = 3, and
Max2 = 11. Then, each value of the relation R is
suitably normalized in the interval [-1, 1], as shown
in Table 2.

R

X1 X2
1 3
3 11
2 9
7 5

Table 1. Instance of the relation R.

R′′′′
X′′′′1 X′′′′2
-1 -1

-0.33 1
-0.66 0.5

1 -0.5

Table 2. The normalized relation R’ of R.

Now, the algorithm ALG computes the following

quantities.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 693 Issue 5, Volume 7, May 2010

For d = 0.
CC1 = (Legendre(−1, 0) × Legendre(−1, 0) +

Legendre(−0.33, 0) × Legendre(1, 0) +
Legendre(−0.66, 0) × Legendre(0.5, 0) +
Legendre(1, 0) × Legendre(−0.5, 0)) / 4

For d = 1.
CC2= (Legendre(−1, 1) × Legendre(−1, 0) +

Legendre(−0.33, 1) × Legendre(1, 0) +
Legendre(−0.66, 1) × Legendre(0.5, 0) +
Legendre(1, 1) × Legendre(−0.5, 0)) / 4

CC3 = (Legendre(−1, 0) × Legendre(−1, 1) +
Legendre(−0.33, 0) × Legendre(1, 1) +
Legendre(−0.66, 0) × Legendre(0.5, 1) +
Legendre(1, 0) × Legendre(−0.5, 1)) / 4

For d = 2.
CC4 = (Legendre(−1, 2) × Legendre(−1, 0) +

Legendre(−0.33, 2) × Legendre(1, 0) +
Legendre(−0.66, 2) × Legendre(0.5, 0) +
Legendre(1, 2) × Legendre(−0.5, 0)) / 4

CC5 = (Legendre(−1, 1) × Legendre(−1, 1) +
Legendre(−0.33, 1) × Legendre(1, 1) +
Legendre(−0.66, 1) × Legendre(0.5, 1) +
Legendre(1, 1) × Legendre(−0.5, 1)) / 4

CC6 = (Legendre(−1, 0) × Legendre(−1, 2) +
Legendre(−0.33, 0) × Legendre(1, 2) +
Legendre(−0.66, 0) × Legendre(0.5, 2) +
Legendre(1, 0) × Legendre(−0.5, 2)) / 4

... 

3.2 Parallel Algorithm
In this Sub-section, we introduce the parallel version
of the algorithm ALG of Sub-section 3.1.

The parallel algorithm is based on the divide et
impera approach, according to which each node
elaborates a subset of the data stored in the relation.
The final result is computed by the root node, that
executes I/O operations and collects partial results,
calculated in distributed way.

The final result is computed by applying the
“additive property” of the CCs (cf., [12]).

This property states that

∑

∑

=

=

×
=

t

j
j

t

j
ijj

i

N

N

1

1

CC'

CC ,

where CC'ij is the coefficient of a vector, calculated
on a relation of cardinality Nj and t is the number of
vectors, whereas each vector is computed by a node.

In the parallel algorithm, first, each node applies
locally the algorithm for the generation of CCs.

Second, when the computation is ended on each
node, the root node applies the additive property.
Finally, the last step executed by the root node is the
computation of the average value of each coefficient
of the vector.

Without loss of generality, we assume that the
number of rows n is a multiple of the number of
nodes t. If it is not so, we can easily calculate the
modulus of the division of n by t, and assign the
remaining rows to one of the nodes, usually the root
one.

The number of generated CCs (i.e., the
cardinality of the vector of the CCs) depends on
both the degree of approximation and the number of
fields of the chosen relation, but not on the number
of rows. The following pseudo-code describes the
parallel algorithm.

The functions used for the inter-process
communication are:
� send(CC, nodei), which means that the current

node sends the vector storing the CCs to the
nodei, and

� receive(CC, nodei), which means that the current
node reads the data sent from nodei and store
them in the vector CC.

Input
t = {number of nodes}
n′= {number of rows} / {number of nodes} = n / t
m = {number of columns}
dg = {approximation degree}
M = {sub-matrix of data}
w = {cardinality of each vector}

Output
CC // vector of Canonical Coefficients, with partial
results

Pseudo-code of the parallel algorithm PALG
// generation of the coefficients
for d = 0 to dg
for each (d0, d1, …, dm−1) such that
 (d0 + d1 + … + dm−1) = d
do
for i = 0 to n′−1
pr = Legendre(x′i0, d0) × Legendre(x′i1, d1) × … ×
 Legendre(x′im−1, dm−1)
end for
CCz = pr
increment index z
end do
end for
// starting inter-process communication
if node identifier <> 0 then

// it is not the root node
send(CC, node0)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 694 Issue 5, Volume 7, May 2010

else
 // it is the root node
 for q = 1 to t−1
 receive(CC′, nodeq)
 for i = 1 to w
 CCi = CCi + CC′i
 end for
 end for
for i = 1 to w
 CCi = CCi / n
end for
end if.

The limit of algorithm PALG is that the nodes
need to be synchronized among themselves. This
happens when each node has finished its own
computation and the root node needs to gather
partial results, before applying the additive property.

Example 2. This example recalls the previous
Example 1. For simplicity, let us suppose to execute
the parallel algorithm by involving only two
processes. Moreover, in this example, Min1, Max1,
Min2, and Max2 are global values, shared among all
the nodes. The first two rows of the relation R are
assigned to the root node, identified by the number
0, and the last two rows are assigned to the second
node, a process identified by the number 1. Each
node calculates its own vector of the CCs.

On the root node, the algorithm works in the
following manner.

For d = 0.
CC1 = Legendre(−1, 0) × Legendre(−1, 0) +

Legendre(−0.33, 0) × Legendre(1, 0)

For d = 1.
CC2 = Legendre(−1, 1) × Legendre(−1, 0) +

Legendre(−0.33, 1) × Legendre(1, 0)
CC3 = Legendre(−1, 0) × Legendre(−1, 1) +

Legendre(−0.33, 0) × Legendre(1, 1)

For d = 2.
CC4 = Legendre(−1, 2) × Legendre(−1, 0) +

Legendre(−0.33, 2) × Legendre(1, 0)
CC5 = Legendre(−1, 1) × Legendre(−1, 1) +

Legendre(−0.33, 1) × Legendre(1, 1)
CC6 = Legendre(−1, 0) × Legendre(−1, 2) +

Legendre(−0.33, 0) × Legendre(1, 2)
...

In this case, note that the average is not
calculated during the computation of the CCs.

After the computation has finished, node 0 and
node 1 need to synchronize themselves, such that

node 1 must execute a send inter-process
communication primitive, while node 0 must
execute a receive operation. In this way, root 0
elaborates two vectors of CCs, each one containing
partial results.

At this point, the root node can apply the additive
property and calculate the average value on each
value of the vector of the CCs.

The final vector is obtained so:

CC1 = (CC1 + CC′1) / 4
CC2 = (CC2 + CC′2) / 4
CC3 = (CC3 + CC′3) / 4
CC4 = (CC4 + CC′4) / 4
CC5 = (CC5 + CC′5) / 4
CC6 = (CC6 + CC′6) / 4
... 

4 Parallel Architecture
Each node of the parallel architecture is a 2-
processor computer, with 2 GHz and 512 MB RAM.
The network topology is a star-network (see, Figure
2).

Fig. 2. Layers of the parallel architecture.

The root node is represented by a Database

Server, which manages the Data Warehouse. Each
node can access the Data Warehouse by querying
the Database Server. The Database Server is
MySQL 5.1, and the communication between a
client and the Database Server is based on the Open
Database Connectivity (ODBC) protocol. The client
executes a query like the following, in order to load
its own sub-matrix of data: “select … from … limit
h, k;”, where h and k are integer values, representing

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 695 Issue 5, Volume 7, May 2010

the index of the starting row and the number of rows
to be retrieved, respectively. For example, the query
“select * from sales limit 0, 10” returns a recordset
of ten records, starting from the first row of the
sales table. On each node, a software tool for
parallel computing has been installed. The chosen
library for parallel computing is MPICH [14], an
open source implementation of MPI [15, 16].

MPI is a software library commonly used to
build Boewulf architecture [17], which is a class of
computer clusters originally developed by Thomas
Sterling and Donald Becker at NASA. Nowadays,
Beowulf architectures are widely used all over the
world, mainly in academic environments, because
they are high-performance parallel computing
architectures based on inexpensive personal
computer hardware. In fact, a Beowulf architecture
is a group of usually identical PC computers running
a minimal version of an open source operating
systems.

Therefore, each node of our architecture is
characterized by the same hardware/software
configuration, except for the Database server, where
it is installed also the Database Management
System. At the bottom level of this configuration,
there is the network interface, constituted by an
Ethernet interface and the TCP/IP network protocol.
The second level is constituted by Windows XP Pro
operating system. The third level is constituted by
the MPD server process, that is, the program
installed by MPICH. This server must be started on
each node and its aim is to manage the inter-process
communication among the nodes involved in the
computation. On the top, there is the parallel
program PALG. In this case, the parallel program is
a C-program that implements the algorithm
explained in Sub-section 3.2.

The MPICH library is able to realize MIMD
(Multiple Instructions Multiple Data) architecture,
where each node executes different code, using
different set of data. Usually, the discrimination is
based on a natural number identifying each node.
The root node is always identified by the number 0,
the others in cascade.

Example 3. This example recalls Example 2 of the
previous Section. First, each node establishes an
ODBC connection with the Database server.
Second, each node executes an SQL query to get
data. In order to load its own sub-matrix of data, the
node 0 executes the query “select X1, X2 from R
limit 0, 2”, while the node 1 executes the query
“select X1, X2 from R limit 2, 2”. 

4.1 Mapping function
In this Sub-section, we show the mapping function
used to assign a sub-matrix of data to each node of
the parallel architecture.

Let n be the number of rows of a relation R and
let t the number of nodes. First, we need to compute
the mean value a of rows to assign to each node:

 tna /= .
Then, we compute the modulus b of the division

of n by t:
b = n | t,

that is, b represents the further rows to be assigned
to the root node. We assume that both the a and b
values are shared among the nodes.

Let ni be the number of rows to be assigned to
the node i.

We have that
n0 = a + b, and
nj = a,

for j = 1, ..., t − 1.
Therefore, the root node has to load the first n0

rows of the relation R. The SQL query generated at
the root is ”select X1, X2 from R limit 0, n0” .

The other nodes have to load only a rows.
However, we must indicate the starting row from
which a node must load the data. Let si be the
starting row to be assigned to the node i.

We define
s0 = 0, and
sj = j × a + b,

for j = 1, ..., t − 1.
The SQL query generated at the node j is ”select

X1, X2 from R limit sj, nj” , for j = 0, 1, …, t − 1.

Example 4. Let n = 100 and t = 3. Then, a = 33 and
b = 1.
So, we have
n0 = 33 + 1 = 34, and
nj = 33, for j = 1, 2.

The starting row assigned to the root node is
always s0. On the other hand, we have
s1 = 1 × 33 + 1 = 34, and
s2 = 2 × 33 + 1 = 67.

At this point, the root node executes the query
”select X1, X2 from R limit 0, 34” , that allows to
load 34 rows starting from the first row (that is,
from 0 to 33).

The node 1 executes the query ”select X1, X2
from R limit 34, 33” , that allows to load 33 rows
starting from the 34th (that is, from 34 to 66).

The node 2 executes the query ”select X1, X2
from R limit 67, 33” , that allows to load 33 rows
starting from the 67th (that is, from 67 to 99).

The mapping function is depicted in Figure 3.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 696 Issue 5, Volume 7, May 2010

row id X1 X2

0 3 55
1 6 8
2 77 93

… …
33 6 34
34 11 67

… …
66 77 45
67 4 11

… …
99 67 88

R

100
rows

34 rows
assigned to
node 0

33 rows assigned
to node 1

33 rows assigned
to node 2

Fig. 3. Mapping function.

5 Experimental results
The table of the Data Warehouse chosen for the
generation of the CCs is a relation on the schema
sales(product, order, amount), whose cardinality is
of the order of 400,000 records. Then, the number of
attributes involved in the data reduction is 3.
Moreover, the approximation degree chosen for this
experiment is 27. Therefore, the number of CCs
generated by the algorithm is

,4060
27

327
=







 +

that represents the number of values that must be
transferred among the nodes.

The computational time of the serial program
takes 4,556,500 milliseconds. Figure 4 shows the
experimental values obtained in the computation of
the CCs, in comparison with the expected ones. For
the computation of the CCs, the expected time is
given by

t

500,556,4
,

for t = 2, …, 8, where t is the number of nodes.
For example, if the serial program takes

4,556,500 milliseconds, then the expected time for
the parallel program, executed on two processors, is

250,278,2
2

500,556,4 = ms.

The experimental results show an evident
decrease of the computational time, for t = 2, 3, 4.
However, these values are slightly higher than the
expected ones. In fact, for t = 2, the experimental
value is 2,696,437 milliseconds instead of
2,278,250. When the number of the nodes is greater
than four, then the computational time grows higher
and higher. This trend is due to the inter-process
communication that requires more time than the
computation itself. The worst case is with eight
nodes, reporting a value very far from the expected
one and very close to the serial time.

Computational Time

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

2 3 4 5 6 7 8

Number of nodes

M
ill

is
ec

o
nd

s

experimental value expected value

Fig. 4. Comparison of the answer times.

However, in parallel computing, better metrics

are the speedup and the efficiency [18, 19].
The speedup St is given by

t
t T

T
S = ,

where T is the answer time of the serial program,
and Tt is the answer time of the parallel program
using t processors. The speedup is represented by a
function that shows the gain that is obtained in
terms of speed.

A good value of the speedup is:

t
T

T

t

= ,

represented by a strictly increasing linear function
of t.

Figure 5 shows that the speedup increases when
t ≤ 4, while there is a slowdown for t > 4,
determining a falling of the performance of the
system.

Speedup

0

0,5

1

1,5

2

2,5

3

3,5

4

2 3 4 5 6 7 8

Number of nodes

S
co

re

Fig. 5. The Speedup of the parallel algorithm.

On the other hand, the efficiency estimates how

good is the computational time, with reference to
the number of involved nodes.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 697 Issue 5, Volume 7, May 2010

The efficiency Et is given

t

S
E t

t = .

Figure 6 shows that the efficiency function is
always < 1, that is, the parallel algorithm is not able
to properly exploit the available nodes. As a
consequence, an optimization of the current
algorithm PALG is needed in order to obtain a
higher level of parallelism. Indeed, experimental
results highlight that (a) the computational time is
not satisfactory with reference to the number of
involved nodes, and (b) the best ratio between the
computational time and the number of nodes is
obtained for t = 4.

Efficiency

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2 3 4 5 6 7 8

Number of nodes

S
co

re

Fig. 6. The Efficiency of the parallel algorithm.

6 Parallel Algorithm Optimization
On the basis of the experimental results, it is
possible to state that the best performance is
obtained by using four nodes. However, the highest
level of parallelism has not yet been reached. In
fact, the bottleneck of this algorithm consists of the
inter-process communication, whereas there is a
high number of data to be transferred and the root
node must execute the following loop to get the
partial data from the other nodes:

for q = 1 to t−1
 receive(CC′, nodeq)

 …
end for

where t is the number of nodes involved in the
parallel computation.

According to this algorithm, the root node is able
to gather all the partial results in three steps (see,
Figure 7):
1. Node 1 sends computed data to root Node 0,
2. Node 2 sends computed data to root Node 0,
3. Node 3 sends computed data to root Node 0.

At the end of these three steps, the root node
applies the additive property and obtains the final
vector of the CCs.

Notice that in step 1, nodes 2 and 3 are idle,
while in step 2 nodes 1 and 3 are idle; at last, in step
3 nodes 1 and 2 are idle. This does not suffice to
reach the maximum level of parallelism and led us
to optimize the parallel algorithm when executed
with four nodes.

The strategy of the optimized version of the
parallel algorithm is shown in Figure 8 and allows
the root node to gather the partial results in two
steps:
1. Node 2 sends computed data to root Node 0 and,

at the same time, Node 3 sends computed data
to Node 1,

2. Node 1 applies the additive property and sends
computed data to root Node 0.

At the end of these two steps, the root node
applies the additive property and obtains the final
vector of the CCs.

However, this optimization requires the
definition of a virtual network topology.

Fig. 7. Parallel algorithm.

6.1 Network topology
Network topology is additional information that can
be associated to a parallel architecture and it is just a

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 698 Issue 5, Volume 7, May 2010

mechanism to define different addressing schemes
with the processes belonging to a communication
group based on MPI [20]. In a few words, a virtual
topology describes the ordering of processes
according to a geometric shape.

The topology is virtual, that is, it has no impact
on the physical layer. The benefit of using a virtual
topology consists of naming the processes in the
architecture in a way that best fits the
communication pattern. As a consequence, writing
code results simpler because the processor ranks
(i.e., the node identifiers) are based on the topology
naming scheme. Moreover, it may also provide hints
to the run-time system which allows it to optimize
the communication among the nodes.

The most important topology that can be created
is the Cartesian topology. Process coordinates in a
Cartesian topology begin their numbering at 0,
where the numbering strategy is the row-major
numbering.

According to this strategy, in an architecture with
four nodes, we have that the rank is assigned to each
node as follows:
rank 0 → coord(0, 0),
rank 1 → coord(0, 1),
rank 2 → coord(1, 0), and
rank 3 → coord(1, 1).

In this case, processes can be identified by
Cartesian coordinates and each process is connected
to its neighbours in a virtual grid.

6.2 Optimized parallel algorithm
The following pseudo-code describes the optimized
parallel algorithm, in order to be used with four
nodes, according to the network topology depicted
in Figure 8.

Fig. 8. Optimized parallel algorithm.

Input
n′= {number of rows} / {number of nodes} = n / t
m = {number of columns}
dg = {approximation degree}
X = {sub-matrix of data}

Output
CC // vector of the Canonical Coefficients, with
partial results

Pseudo-code of the parallel algorithm
// generation of the coefficients
for d = 0 to dg
for each (d0, d1, …, dm−1) such that
 (d0 + d1 + … + dm−1) = d
do
for i = 0 to n′−1
pr = Legendre(x′i0, d0) × Legendre(x′i1, d1) × … ×
 Legendre(x′im−1, dm−1)
end for
CCz=P
increment index z
end do
end for
// starting inter-process communication

//**************STEP 1
if node identifier = 3 then

send(CC, node1)
end if
if node identifier = 2 then

send(CC, node0)
end if
if node identifier = 1 then
 receive(CC′, node3)

for i = 1 to w
 CCi = CCi + CC′i

end for
end if
if node identifier = 0 then
 receive(CC′, node2)

for i = 1 to w
 CCi = CCi + CC′i

end for
end if
//**************END STEP 1

//**************STEP 2
if node identifier = 1 then

send(CC, node0)
end if
if node identifier = 0 then
 receive(CC′, node1)

for i = 1 to w
 CCi = CCi + CC′i

end for

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 699 Issue 5, Volume 7, May 2010

// computation of the mean value
for i = 1 to w
 CCi = CCi / n
end for
end if
//**************END STEP 2

7 Conclusions
In this paper, we have introduced a novel algorithm
for the computation of Canonical Coefficients, that
represent the synopsis of the data stored in the Data
Warehouse.

These coefficients can be used in order to
perform multidimensional analyses of data,
obtaining answers affected with a small percentage
of error in a lower amount of time.

The C-program has been developed according to
a parallel algorithm and it has been tested on a
parallel architecture, based on the MPICH library.

The experimental results show that the
computational time obtained by the parallel program
is much lower than the serial one, when a small
number of nodes is involved. In fact, there is no
benefit in using many nodes, because of the inter-
process communication costs due to the high
number of data to be transferred.

However, a deeper analysis of the efficiency of
the parallel program highlights that the
computational time is always below expectations
and that the best performance has been reported
with four processors. Therefore, experimental
results have suggested the design of an optimized
version of the parallel algorithm in order to reach a
higher degree of parallelism. This optimized parallel
algorithm, expressly designed to be executed with
four nodes, has shown a significative improvement
of the computational time, by further reducing it of
the 5%.

In conclusion, we deem that parallel computing
is a good choice for all the batch-applications that
do not require an interaction with users and need to
perform heavy mathematical computations in
background, as always happens in approximation
polynomial.

References:
[1] C. dell’Aquila, E. Lefons, and F. Tangorra,

Decision portal using approximate query
processing, WSEAS Transactions on
Computers, Vol. 2, No. 2, 2003, pp. 486-492.

[2] K. Naiman, H. Kopackova, S. Simonova, and
R. Bilkova, Approaches of Quality Outputs
from the Business Systems, Proceedings of the
5th WSEAS Int. Conf. on Computational
Intelligence, Man-Machine Systems and

Cybernetics, Venice, Italy, November 20-22,
2006, pp. 282-285.

[3] A. Datta and H. Thomas, A Conceptual Model
and Algebra for On-Line Analytical Processing
in Decision Support Databases, Information
Systems Research, Vol. 12, No. 1, 2001, pp. 83-
102.

[4] C. dell’Aquila, E. Lefons, and F. Tangorra,
Approximate Query Processing in Decision
Support System Environment, WSEAS
Transactions on Computers, Vol. 3, No. 3,
2004, pp. 581-586.

[5] A. Gupta, V. Harinarayan, and D. Quaas,
Aggregate-Query Processing in Data
Warehousing Environments, Proceedings of the
21st VLDB Conference, Zurich, Switzerland,
1995, pp.358-369.

[6] K. Chakrabarti, M. Garofalakis, R. Rastogi, and
K. Shim, Approximate Query-Processing Using
Wavelets, Proceedings of the 26th VLDB
Conference, Cairo, Egypt, 2000, pp. 111-122.

[7] P. G. Gibbons and Y. Matias, New Sampling-
Based Summary Statistics for Improving
Approximate Query Answers, Proceedings of
the 1998 ACM SIGMOD International
Conference on Management of data, Seattle,
Washington, United States, 1998, pp. 331-342.

[8] S. Acharya, P. B. Gibbons, V. Poosala, and S.
Ramaswamy, Join Synopses for Approximate
Query Answering, ACM SIGMOD Record,
Vol. 28, No. 2, 1999, pp. 275-286.

[9] J. Spiegel and N. Polyzotis, TuG synopses for
approximate query answering, ACM
Transactions on Database Systems (TODS),
Vol. 34, No. 1, Art. 3, 2009.

[10] C. dell’Aquila, F. Di Tria, E. Lefons, and F.
Tangorra, Data Reduction for Data Analysis.
In: C. Cepisca, G. A. Kouzaev, N. E.
Mastorakis, New Aspects on Computing
Research, 2008, pp. 204-210, Athens, WSEAS
Press, ISBN/ISSN: 978-960-474-002-2.

[11] P. B. Gibbons, V. Poosala, S. Acharya, Y.
Bartal, Y. Matias, S. Muthukrishnan, S.
Ramaswamy, and T. Suel, AQUA: System and
Techniques for Approximate Query Answering,
tech. rep., Bell Laboratories, Murray Hill, New
Jersey, U.S.A., 1998.

[12] E. Lefons, A. Merico, and F. Tangorra,
Analytical profile estimation in database
systems, Information Systems, Vol. 20, No. 1,
1995, pp. 1-20.

[13] S. Chaudhuri and U. Dayal, An Overview of
Data Warehousing and OLAP Technology,
ACM SIGMOD Record, Vol. 26, No. 1, 1997,
pp. 65-74.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 700 Issue 5, Volume 7, May 2010

[14] MPICH-A Portable Implementation of MPI,
www.mcs.anl.gov/research/projects/mpi/mpich1.

[15] The Message Passing Interface standard,
www.mcs.anl.gov/research/projects/mpi.

[16] W. Gropp, E. Lusk, and A. Skjellum, Using
MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT Press, 1999.

[17] C. Reschke, T. Sterling, D. Ridge, D. Savarese,
D. Becker, and P. Merkey, A design study of
alternative network topologies for the Beowulf
parallel workstation, Proceedings of 5th IEEE
International Symposium on High Performance
Distributed Computing, 1996, pp. 626-635.

[18] J. M. Ortega, Introduction to Parallel and
Vector Solution of Linear Systems, Springer,
1998.

[19] D. L. Eager, J. Zahorjan, and E. D. Lozowska,
Speedup Versus Efficiency in Parallel Systems,
IEEE Transactions on Computers, Vol. 38,
No. 3, 1989, pp. 408-423.

[20] J. Larsson Träff, Implementing the MPI
process topology mechanism, Proceedings of
the 2002 ACM/IEEE Conference on
Supercomputing, Baltimore, Maryland, 2002,
pp. 1-14.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Carlo Dell'aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1790-0832 701 Issue 5, Volume 7, May 2010

