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Abstract: - To estimate the missing values of an attribute in the records of a dataset, all the information provided by the 
other attributes and the knowledge databases must be considered. However, the information elements could be 
imperfect (imprecise, possibilistic, probabilistic, etc.) and could have different measuring scales (quantitative, 
qualitative, ordinal, etc.) at the same time. Furthermore, the relationships and the correlation between the considered 
attribute and the others should also be pondered. Unlike the prior works that have separately processed these issues 
using complex and conditional techniques, our approach, essentially based on the tools provided by the possibility 
theory, can easily handle these aspects within a unified, robust, and simple frameworks. Several numeric examples and 
applications have been given to simply illustrate the main steps of our method, and some promising perspectives have 
been proposed at the end of this paper.    
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1   Introduction 
The thorny issue of missing values is a problem that 
continues to plague data mining and knowledge 
discovery methods and approaches because the majority 
of mining techniques and algorithms cannot be applied 
or implemented due to the attributes that include missing 
data. A common solution of handling missing values is 
simply to omit from the analysis the attributes or fields 
with missing contents. Nonetheless, this may be 
dangerous, since the pattern of missing values may be 
systematic, and simply deleting objects with missing 
values would lead to a biased subset of data [1]. 
Furthermore, it seems like a waste to omit the 
information in all the other fields, just because one field 
value is missing [2]. Therefore, data analysts have turned 
to methods that would replace the missing value with a 
value substituted according to various criteria. So far, 
many methods have been developed to deal with the 
missing data. These approaches have been classified into 
two main groups: pre-processing methods and the 
embedded methods [2]. The first ones replace missing 
values before the data mining process, whereas the 
second ones deal with them while doing data mining 
itself. For instance, in [3] the possibilistic similarity that 
we have proposed can be seen from a certain point of 
view as an embedded method, because it doesn’t require 
estimating the missing values when measuring the 
similarity between objects. Instead, it takes account of 
them during the computation when achieving the other 
tasks like, clustering, recognition, etc. [3][4]. 

Nevertheless, in many other applications, the need to 
estimate the missing values can be indispensible and 
unavoidable. Accordingly, we will propose in the 
following another approach that estimates the missing 
values in the pre-processing phase. Unlike the 
conventional methods usually dedicated to one type of 
data measuring scale (qualitative, quantitative, binary, 
etc.) that neglect the imperfection in the information 
elements (imprecision, uncertainty, ambiguity, etc.), our 
approach takes account of all the aforementioned points 
in a unified framework, by applying a simple, fast, 
flexible technique, fundamentally based on possibility 
theory. The next section briefly sums up some previous 
attempts and works in the domain. Section 3 stresses the 
deficiency of these works, pointing out the need and the 
importance of a more sophisticated approach that gets 
use of the monotone fuzzy measures of possibility 
theory, briefly presented in section 4. At last, we present 
our approach that step in to fulfil this need in section 5, 
followed by two illustrative examples in sections 6 and 
7, and some conclusions and remarks in sections 8.       
 
2   Prior Missing Data Methods 
Many methods to deal with missing values have been 
proposed in the literature. These approaches can be 
classified into two main categories: the pre-processing 
and the embedded methods [1][2]. Pre-processing 
methods replace missing values before the data mining 
process, while embedded approaches deal with missing 
values while doing data mining itself. 
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2.1 Pre-Processing Methods 
There are two kinds of pre-processing approaches: 
statistical and machine-learning-based methods. The first 
kind is simpler and faster and doesn’t require 
complicated processing, while the second type is more 
accurate and precise but it is time-consuming. In the 
following we give some examples of the most three 
applied methods of each type: 
 
2.1.1   Statistical Methods 
We present here three well-known approaches. The first 
one is called linear regression [5]. When any two 
attributes have correlation, we can make an equation of 
their relationship and predict the missing values by using 
the equation if either attribute value is known. The 
second method is called mean and mode [6]. The main 
idea of this approach is to use the mean value for 
numerical attributes and the most frequent value (the 
mode) for nominal (qualitative) attributes in the whole 
dataset to fill up missing values. The last method 
proposed by [5] aims to fill up missing data by a value 
that will not disturb each attribute’s standard deviation. 
 
2.1.2   Machine-Learning-Based  
The most three well-known approaches are: the nearest 
neighbor estimator, the auto-associative neural 
networks, and the decision tree imputation [2] [5]. In the 
first one, we fill up the missing values of an instance by 
the corresponding values of the nearest neighbor 
instance. In the second method, an artificial neural 
network is trained to duplicate all of the inputs as 
outputs by using back-propagation. When missing values 
are detected (coded by zeros for example), the network 
can be used in back-propagation mode. At the input, an 
appropriate weight can be derived for the missing values 
so that it doesn’t disturb so much the internal structure of 
the network (or the nonlinear relationship captured by 
the auto-associative neural network. The last method 
consists of dividing the main database into two subsets; 
the first one has no missing data, while the second does. 
Based on the decision tree extracted from the first 
subset, we can fill up the attributes with missing data in 
the second one. 
 
2.2 Embedded Methods 
We present here the case-wise deletion method [7], the 
lazy decision tree approach [8], and C4.5 [9]. The first 
one ignores the instances that contain unknown attribute 
values. Lazy decision tree conceptually constructs the 
best decision tree for each test instance, so if a test 
instance has a missing value, it makes a decision tree 
with all attributes in the training dataset except the 
attribute on which the test instance has missing values. 
C4.5 systems induce rule sets in addition to the decision 
trees. On the training phase, if missing values are 

occurred at an attribute that is used for branching, C4.5 
creates a new branch called unknown. On the testing 
phase, if a testing instance has missing values; it 
explores all available branches below the current node 
and decides the class label by the most probabilistic 
value. This method assumes that unknown test results 
are distributed probabilistically in proportion to relative 
frequent of known result. Figure 1 sums up these 
methods and techniques: 
 

 
Fig. 1 some prior missing data methods 

 
3   Theoretical Evaluation of the Prior 
Missing Data Methods  
Advances in data acquisition and storage have led to a 
remarkable growth in datasets and consequently to a 
high difficulty of the human to analyze or to discover the 
underlying knowledge or patterns when handling such 
significant amount of data which can have different 
measuring scales imperfectly described. For example, 
the information element “age” in an object like a patient 
record can take the following values: 25 (precise and 
quantitative), between 23 and 28 (imprecise and 
quantitative), young (precise and qualitative), about 25 
(imprecise and quantitative), unassigned (missing data), 
or even given as a probability distribution (probabilistic 
quantitative or qualitative), etc [3].  
 

Unfortunately, the majority of the till now 
proposed algorithms deals with crisp values and ignores 
the existence of imperfect information elements which 
are frequently confronted in databases. Furthermore, the 
same dataset could contain different types of attributes 
(binary, quantitative, qualitative, etc.) at the same time. 
Nonetheless, these types have been treated separately in 
the most of cases in the literature [1] [2]. For instance, 
linear regression, standard deviation, and Nearest 
neighbor methods can work on quantitative attributes, 
while decision trees approaches can only deal with the 
qualitative attributes, and to use this method, quantitative 
attribute discretization is needed. Along with the 
aforementioned challenges, there are some technical 
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design problems in some methods that could complicate 
the estimation. For example, even though the auto-
associative neural networks demand a fairly low run 
time to fill up the missing attributes, the high-
dimensionality of the datasets, the choice of the training 
sets, and the construction of the internal architecture of a 
network that must be capable to capture the nonlinear 
relationship is hard and complicated [2]. For these 
reasons, we will propose in the following a general 
simple possibility-based missing data estimation 
approach that can deal with both the crisp and the 
imperfect values in a heterogeneous database that might 
contain both numeric and symbolic values under the 
same framework.  
 
4   Possibility Theory  
Possibility theory provides a method to formalize 
subjective uncertainties of events, that is to say a means 
of assessing to what extent the occurrence (the 
realization) of an event is possible and to what extent we 
are certain of its occurrence, without having however the 
possibility to measure the exact probability of this 
realization because we don’t know an analogous event to 
be referred to, or because the uncertainty is the 
consequence of observation instrument reliability 
absence [4][10]. 
 

Let’s attribute to each event defined on the 
universe of discourse Ω  (in other words to each element 
belonging to the power set ( )Ωρ ) a coefficient ranging 
between 0 and 1 assessing to which degree the 
occurrence of an event is possible, where the value “1” 
means that the event is completely possible, while the 
value “0” means that the event is impossible. To define 
this coefficient, we introduce the possibility measure Π  
which is a function defined over )(Ωρ , taking values 
in [ ]1,0 , such that: 
 
Axiom 1: ( ) 0=Π φ              (1) 
Axiom 2: ( ) 1=ΩΠ                                                       (2) 
Axiom3: )(,..., 21 Ω∈∀ ρAA  

)(sup)( ,...2,1,..2,1 iiii AA Π=∪Π ==                                  (3) 
where sup indicates the supremum of the concerned 
values. 
 

We can say that the possibility measure is totally 
defined, if we can attribute a possibility coefficient to all 
the singletons of Ω . Consequently, the possibility 
distribution function π  defined on Ω , whose values are 
included in [ ]1,0 , such that 1)(sup =∈ xx πχ  must be 

defined. As a result the function Π  can be defined form 
the function π  by: 
 

( )Ω∈∀ ρA  )(sup)( xA Ax π∈=Π                       (4) 
 
Reciprocally, π  can be defined form Π  by: 
 

Ω∈∀x  { })()( xx Π=π                          (5) 
 

We should also mention here that the 
characteristic function of a subset from Ω  can be 
considered as a possibility distribution π  defined on Ω .  
To calculate the possibility degree of the couple ),( yx  
given that 1Ω∈x  and 2Ω∈y  where ,1Ω 2Ω  are two 
non-interactive universes of discourse, the conjoint 
possibility distribution defined on the Cartesian product 

21 Ω×Ω should be calculated from:  
 

1Ω∈∀x 2Ω∈∀y  ))(),(min(),( yxyx γχ πππ =       (6) 
 

In fact, the possibility measure is not sufficient 
to describe the incertitude of the realization of an event, 
because sometimes the realization of both the event A 
and its complement CA  could be completely possible 
simultaneously ( 1)( =Π A  and 1)( =Π CA  at the same 
time). This means that in this particular case it is 
impossible to take a decision concerning the realization 
of A depending on the estimated possibility measure. For 
this reason, another function, defined on )(Ωρ , whose 
values are included in [ ]1,0  and which is called the 
necessity measure (denoted N) is defined as follows: 
 
Axiom 1: 0)( =φN              (7) 
Axiom 2: 1)( =ΩN              (8) 
Axiom 3: )()( 21 Ω∈∀Ω∈∀ ρρ AA  

)(inf)( ,...2,1,....2,1 iiii ANAN == =∩            (9) 
where inf stands for infimum. 
 

There are some interesting relations between the 
possibility measure Π  and the necessity measure N  
presented in the following equations: 
 

)(Ω∈∀ ρA   )(1)( CAAN Π−=                              (10) 
)(Ω∈∀ ρA   ))(1(inf)( xAN Ax π−= ∉

                   (11) 
)()( ANA ≥Π                                                            (12) 

1))(1),(( =−Π ANaMax                                          (13) 
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If 0)( ≠AN  then 1)( =Π A                                       (14) 
If 1)( ≠Π A  then 0)( =AN                                       (15) 

)()Pr()( AAAN Π≤≤                                              (16) 
 
where )Pr(A  stands for the probability of any event 

)(Ω∈∀ ρA .  
Possibility theory has lots of very interesting 
applications in the literature [3-4] [12-13]. 
 
4.1 Possibility and Probability Distributions 
In some applications, it is sometimes useful to pass from 
a theoretical platform to another concerning the 
mathematical models and tools chosen to represent the 
imperfection in the processed information. To fulfil this 
need, several useful transformations have been proposed 
in the literature [11]. In this section, we introduce 
probability-possibility distribution transformation 
proposed by Prade and Dubois used in our method [11]. 
Any probability-possibility transformation must fit the 
consistency principle informally set by Zadeh as “what 
is probable is possible”, and mathematically interpreted 
by Dubois and Prade by the inequality: )()Pr( AA Π≤ , 

Ω⊆∀A , where { },,...,, 21 Nωωω=Ω for any possibility 
or probability measure defined on Ω  (in this case we 
say that Π  dominates Pr). Thus, transforming a 
probability measure into a possibility measure can be 
materialized by choosing a possibility distribution in 

)( rΡℑ  (the set of all the possible measures that 
dominate Pr). Dubois et al have proposed to add the 
following constraints in order to ensure the preservation 
of the distribution 
form: { }Njipp jiji ,...,2,1, ∈∀<⇔< ππ , where 

{ })Pr( iip ω= , and { })( ii ωπ Π= , for all 
{ }Ni ,...,2,1∈ . To reduce the imperfection of an 

information element, the distribution the most specific 
must be chosen (in the fuzzy set theory we say that the 
possibility distribution π  is more specific than π ′  if 

ii ππ ′≤ , i∀ ). Dubois and Prade show [11] that the 
solution to this problem exists and it is unique defined as 
the following: 
 

Supposing that ,ji pp ≠  i∀ , it is possible to 
define a strictly ordered relation Ξ  on Ω  such that: 

jiji pp <⇔Ξ∈),( ωω . Let σ  be a permutation of 

the indices { }N,...,2,1  associated with the strict order: 
)()2()1( ... Nppp σσσ <<< , or in another way: 

Ξ∈⇔< ),()()( )()( jiji σσ ωωσσ . The permutation σ  

is a bijection and the inversed transformation 1−σ  gives 

the rank of each ip  in the list of the probabilities 
reordered as an increasing sequence. Accordingly, 
Dubois-Prade transformation can be given as:  
 

{ }
∑

−− ≤

=
)()(/ 11 ijj

ji p
σσ

π  i∀                                                (17) 

 
If at least two values of the probability measure 

are equal, the last equation (proposed for strictly 
reordered set cannot be applied, because the partially 
order set P on Ω  has to be taken into account. For this 
purpose, this partial order is represented by a set of its 
linear extensions Λ(P)={ Lll ,...,2,1, =Ξ }. At each 
possible linear extension lΞ  from Λ(P), there is a 
permutation lσ  from the set { }N,...,2,1  that 
corresponds to lΞ  in such a way that :  
 

lll jiji
ll

Ξ∈⇔< ))(),(()()( σσ ωωσσ . 
 

In this case, the distribution the most specific 
and compatible with { }Nppp ,...,, 21  can be obtained by 
taking the maximum of all the possible permutations as:  
 

{ }
∑

−− ≤
=

=
)()(/

,1 11

max
ijj

jLli p
σσ

π , .i∀                                        (18) 

 
        For instance, let 

10.0,20.0,50.0,20.0 4321 ==== pandppp
, there are two possible permutations in this case: 

4)1(1 =σ ,  1)2(1 =σ ,  3)3(1 =σ , and  2)4(1 =σ ; and 
4)1(2 =σ ,  3)2(2 =σ ,  1)3(2 =σ , and  2)4(2 =σ .  

 
By applying the transformation, we find the following: 
 

,5.0)5.0,3.0max(),max( 134141 ==+++= pppppπ
123142 =+++= ppppπ , 

5.0)3.0,5.0max(),max( 343143 ==+++= pppppπ
1.044 == pπ . 

 
Notice that 31 pp =  implies that 31 ππ =  (this condition 
is imposed by the preservation of the strict order). 
 
5   Possibilistic Estimation of Missing 
Values 
Suppose that DB is a database that contains DBN  objects 
defined as: { }

DBNDDDDB ,...,, 21= . The value of the 
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attribute ma  in a certain object mD  is unknown and has 
to be estimated based on the given values of this 
attribute in the other objects that can be heterogeneous, 
imprecise, probabilistic, etc. 
 

First of all, we gather all the objects which are 
similar to mD  and in which the value of the attribute ma  
is assigned in one set denoted as  

{ }
BDNDDDBD
′

′′′=′ ,...,, 21  where BDN ′  is the number of 
these similar objects (this can be carried out using the 
possibilistic similarity measure that we proposed in [3-4] 
which take in its turn account of information 
heterogeneity and imperfection (figure 2). ma  can take 
precise, imprecise, ambiguous, or possibilistic values 
modeled by a possibility distribution 

maΠ  in the objects 

of D′ . { }
VNvvvV ,...,, 21=  is the set of all the possible 

values of ma  in all the records of D′  and VN  is its 
cardinality. { }

VNf fffV ,...,, 21=  is an ordered set in 
which each element represents the frequency of the 
corresponding element of V which can be obtained as 
follows: 
 

Suppose that ( )iv
maΠμ  represents the 

possibility membership degree of the value iv  to the 
possibility distribution of ma  denoted as 

maΠ : 
 
For each possible value of the missing attribute iv  (for i 
= 1 to VN ) 

0=if , 0=
ivπ

μ  

For each object of BD ′  (for j = 1 to BDN ′ ) 
If 

maiv Π∈  with a certain membership degree ( )iv
maΠμ  

then ( )iii vff
maΠ+= μ .                                          (19) 

 
Now that we built the set fV , we create the 

ordered probability density set { }
VNPPPP ,...,, 21=  

where ∑
=

=
VN

i
iii ffP

1
 (20). Using the probability-

possibility transformation of Prade-Dubois (section 4-1), 
we can obtain the possibility distribution Π  of fV  

( { }
VNΠΠΠ=Π ,...,, 21 ).  

 
The definition domain of ma  denoted as 

maI (all 

the possible values of ma ) is divided into C fuzzy 

regions whose widths depend on the nature of this 
attribute and on the precision required to estimate its 
value. The membership functions of these fuzzy regions 
are chosen by an expert who has some a priori 
knowledge of the attribute ma . 
 

 
 

Fig. 2 extracting the similar objects of the dataset 
 

Supposing that jam
R~  is the j-th fuzzy region of 

the attribute ma  and that 
kmaR~μ  is its membership 

function ( [ ]1,0:~ →
mkma aR Iμ ), we calculate the 

membership degrees of each element (value) iv  
{ }VNi ,...,2,1∈∀  of the set V to each fuzzy region 

jam
R~ , { }Cj ,....,2,1∈∀ , denoted as )(~ iR v

jma
μ . For each 

fuzzy region we calculate the possibility or the necessity 
membership (the possibility that the value of  ma  is 
belonging to the considered region following the next 
algorithms: 
 

1) Necessity membership degree ( Nμ ): 
            For all the fuzzy regions (for j=1 to C) 
 

            
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Π−=
= V

jmaJ

toNi
iiiRN vvINF

1

~ ))(1),(max(μμ   (21) 

 
2) Possibility membership degree( Πμ ): 

            For all the fuzzy regions (for j=1 to C) 

            
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Π=
=

Π

V

jmaJ

toNi
iiiR vvSUP

1

~ ))(),(min(μμ . 

 
We consider that ma  belongs to the fuzzy 

region whose necessity membership degree is the 
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maximum. If the necessity membership degrees are 
equal, then we take account of the possibility 
membership degree. 
 
6   Concrete Example  
Suppose that we have an attribute ( ma ) with a missing 
value in a record of a given database taking its value in 
the interval [0, 10] (the definition domain of ma ), and 
we want to estimate its value depending on the values of 
this attribute in the 102 most similar records. Suppose 
also that in 40 records of these similar records the value 
is equal to 5 (figure 3-a), in 40 records the value is 
defined via a possibility distribution depicted in figure 3-
b, in other 20 records this value is assigned to be 
between 7 and 9 (figure 3-c), in a record this value is 
equal to 7, in the last record this value is equal to 9 
(figure 3-d and 3-e). We suppose that the partition of the 
definition domain of this attribute is designed as 
depicted in figure 3-f (we have eleven fuzzy regions: 
around 0, around 1, …, around 10 denoted as R0, R1, …, 
R10), and we must guess to which of these regions the 
value of the attribute probably belongs.  
 

 
Fig 3. an illustrative example for missing data estimation 
 
 

According to the steps presented in the last 
section we can find that: 
 

{ }9,8,7,6,5=V  is the set of all the possible 
values of this attribute; 
 

{ }21,20,41,40,60=fV , 
 
where: 

60101020040.050.04011 =×+×+×+×+×=v  
4010102004014002 =×+×+×+×+×=v  

4110112014050.04003 =×+×+×+×+×=v  
2010102014004004 =×+×+×+×+×=v  
2111102014004005 =×+×+×+×+×=v  

 
Accordingly: 
 

{ }182/21,182/20,182/41,182/40,182/60=P
{ }12.0,11.0,23.0,22.0,33.0=P ,  

 
By applying Prade-Dubois transformation, we find: 
 

{ }23.0,11.0,68.0,45.0,1=Π    
 
According to possibility degrees, we have: 
 

1
5
=Π R

μ , 45.0
6
=Π R

μ , 68.0
7
=Π R

μ , 11.0
8
=Π R

μ , 

23.0
9
=Π R

μ , 0=ΠRi
μ , { }10,4,3,2,1,0∈∀i  

 
According to necessity degrees, we have: 
 

32.0
5
=

RNμ , 0=
RiNμ , { }5/Ii∈∀ . 

 
We can sum up that the missing value is about 5, which 
is intuitive, logic, and expected. 
 
As one might see in this example, the estimation of the 
missing value is straightforward, simple, and flexible. 
Thanks to the basic mathematical operations of the 
processors (minimum, maximum, addition, etc.) on 
which our approach is based on, the process can be 
carried out in a fast time. This issue is significantly 
interesting when handling very large databases as is the 
case in data mining.  
 
Notice that regardless of the measuring scale of the 
attributes, all the steps of this technique deal with their 
possibility degrees. In other words, instead of the 
numeric value of the attribute supposed in this example 
(presented on the horizontal axis in the figure), one can 
take any other type of data, without modifying the 
calculation.   
 
Remark also that even if the value of the attribute is 
given via a probabilistic distribution assigned by an 
automatic system based on other attributes, this 
distribution can easily be transformed to possibility one 
using any appropriate transformation in the literature. 
This can be one of the most complex and challenging 
points in data missing estimation that cannot be simply 
handled in the all the previous works and attempts 
without any constraints, conditions, or prior knowledge. 
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7   Possibilistic Estimation of Correlated 
Attributes Missing Values   
We will show in the following that possibility theory has 
the potentiality to easily solve complex situations along 
with numeric more-developed example. Even if the 
example deals with simple limited number of attributes 
and categories, the generality and the robustness of the 
proposed method are ensured and can easily be proved. 
 
7.1 Problem Description   
Let us suppose that among all the features of the records 
of our dataset, the attributes 1a , 2a , and ma  are 
connected with some relations between them, and the 
missing value of a given attribute like ma  (m stands for 
missing) must be estimated by considering the 
knowledge provided by the attributes 1a  and 2a , given 
that the attribute definition domains are 

1aD , 
2aD  , and 

maD  respectively (the sets of all the possible value of the 
indexed attributes). For simplicity, it is also assumed that 

ma  only takes three categorical values 1C , 2C , and 3C , 
i.e. { }321 ,, CCCD

ma = .  
 

This case is very frequent in the everyday real 
applications. In the medical domain for instance [14], the 
parathyroid glands situation ( ma ) can takes three 
categorical values ( ""1 normalC = , ""3 tumorC = , 

""3 AmbiguousC = ). Parathyroid tumor can be detected 
by measuring the hormone PTH ( 1a ) that the parathyroid 
glands make and compare this level to the amount of 
calcium in the blood ( 2a ). All endocrine glands make 
hormones, and all hormones have a normal level in our 
blood. If an endocrine gland develops into a tumor, it 
will over-produce its hormone. The hormone has effects 
on other parts of the body. In the case of a parathyroid 
gland tumor, it overproduces PTH which in turns takes 
calcium out of the bones and puts it into the blood. It is 
the high calcium in the blood that makes us sick. i.e. if 
the blood calcium level is high, it should be associated 
with a low parathyroid hormone level if the parathyroids 
are normal. If the blood calcium level is too high, and is 
associated with a high parathyroid hormone level must 
be due to a tumor in the parathyroid gland. That is, the 
high blood calcium is a result of the excess parathyroid 
hormone (PTH). Table 1 shows examples of patient's 
calcium levels, PTH levels, and whether or not they have 
hyperparathyroidism and whether or not they need 
surgery to remove a parathyroid tumor. 
 

 
Table 1. Examples of patient's records having parathyroid 

tumor [14] 
 

In reality, the influence of the attributes 1a  and 

2a  on ma  can be more complicated to describe and 
estimate. For instance, the influence of the calcium level 
on the situation of the parathyroid is schematized in 
figure 4. 

 

Fig. 4 the relation between calcium level and    
parathyroid situation [14] 

 
7.2 Problem Solution   
The solution of such problem consists of three 
straightforward main phases: 
 

• Knowledge Extraction: in this step we 
accumulate all the knowledge provided by the 
assigned values of the influencing attributes 1a  
and 2a , supposing that each of them is a source 
of information. 
 

• Possibility Degrees Calculation: these degrees 
are computed according to the actual values of 

1a  and 2a , via the extracted knowledge in each 
source. 
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• The fusion of the possibility degrees of the two 
sources evaluated in the last step. 
 
In the following, these phases are explained in 
detail: 
 

7.2.1   Step 1: Knowledge Extraction   
As both 1a  and 2a  influence the value of ma  that takes 
three categorical values 1C , 2C , and 3C , we try to know 
the nature of this influence by depicting the probability 
distributions of each class according to all the possible 
values of the attributes 1a  and 2a . This can be known 
via a knowledge database or it can be computed via the 
following the algorithm: 
 
From all the records of the dataset in which the values of 

1a , 2a , and ma  are given do: 
  For each influencing attribute ( 1a  than 2a ) do: 
    For each category of ma  ( 1C , 2C , and then 3C ) do: 
      For each value of the influencing attribute domain 
(

1aD , and then 
2aD ) do: 

Compute "" / jia CVq  the number of simultaneous 

occurrences of this value (
1aV or 

2aV ) and the considered 

category ( 1C , 2C , or 3C ). 
 

The probability that the attribute’s value 
iaV  

( { }2,1∈i  in this example) belongs to the category jC  

(where { }3,2,1∈j  in this example), given that each 
influencing attribute ia  represents a source of 
information iS , can be estimated as: 
 

QqCVp
jiaii CVjaS /)/( =                                            (23) 

 
where Q  is the total number of the occurrences of all the 
possible values of 

iaD . 
 
Let’s explain the precedent algorithm by a simple 
numeric example: 
 
Assume that the value of the attribute ma  that takes three 
categorical values 1C , 2C , and 3C  is correlated with the 
value of an attribute a  whose definition domain is 
defined as : { }4,3,2,1=aD . The frequency of 
occurrence of each value of aD  with the first category 

1C  is assumed to be given as { }2,5,8,10
1/ =CVa

q  , 

with 2C  and 3C  it is given as { }2,5,10,8
2/ =CVa

q  

and { }10,8,5,2
3/ =CVa

q  respectively. The 
probability distributions resulted from the information 
source a  can be evaluated using the precedent equation 
and can be depicted as in figure 5: 
 

 
Fig. 5 the probability distributions of the three categories 

extracted from the influencing attribute 
 
7.2.2   Step 2: Possibility Measures Evaluation   
The possibility measures of a given value of the attribute 

ia  denoted as 
iaV  to a certain class jC  can be computed 

from the possibility measures )/( jaS CVp
ii

 calculated in 
the precedent step as: 
 

)/(max
)/(

)/(
kaSkCategory

jaS
ajS CVP

CVP
VC

ii

ii

ii
=Π                             (24) 

 
For instance, in the simple example given above, 

assume that we want to calculate attribute ma  possibility 
measure to all its possible categories, given that that 

1=aV : 
 

)]/1(),/1(),/1([max
)/1(

)1/(
321

1
1 CVPCVPCVP

CVP
VC

aSaSaS

aS
aS

aaa

a

a ===

=
==Π

1
)08.0,32.0,40.0max(

40.0)1/( 1 ===Π aS VC
a

 

 

)]/1(),/1(),/1([max
)/1(

)1/(
321

2
2 CVPCVPCVP

CVP
VC

aSaSaS

aS
aS

aaa

a

a ===

=
==Π

80.0
40.0
32.0)1/( 2 ===Π aS VC

a
 

 

)]/1(),/1(),/1([max
)/1(

)1/(
321

3
3 CVPCVPCVP

CVP
VC

aSaSaS

aS
aS

aaa

a

a ===

=
==Π
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20.0
40.0
08.0)1/( 3 ===Π aS VC

a
 

 
Accordingly, we assign the missing value of ma  to the 
categorical value 1C , because we only have one 
information source a . 
 
7.2.3   Step 3: The Fusion of the Information Sources    
Sometimes, unlike the previous example, we could have 
several influencing attributes (several information 
sources). For instance if the missing attribute is the 
“parathyroid situation” in the medical example 
previously presented, then we have two influencing 
attributes in the patient record “the calcium rate” and 
“the Harmon’s rate”. In such cases, the possibility 
measures are calculated form each information source, 
and then are combined using a suitable fusion operator 
like the conjunctive fusion which takes the normalized 
intersection of the possibility distributions resulting from 
the different sources, assuming that all these sources are 
consonant (they don’t disagree or they disagree slightly) 
[15] [16]. In this case: 
 

 
  

Let us suppose for instance that the missing 
value of the attribute ma  in the aforementioned simple 
example is correlated with two attributes (the attribute a  
as in the example, and the attribute b  whose definition 
domain is { }4,3,2,1=bD , and which take takes the 
value 2=bV ). In this case, we also suppose that the 
probability distributions extracted from this source are 
defined as in the figure 6: 
 

 
Fig. 6 the probability distributions of the three categories 

extracted from the second information source 
 
Similarly, the possibility measures resulting from the 
second information source (attribute b ) are computed 
as: 
 

)]/2(),/2(),/2([max
)/2(

)2/(
321

1
1 CVPCVPCVP

CVP
VC

bSbSbS

bS
bS

bbb

b

b ===

=
==Π

1
)20.0,20.0,40.0max(

40.0)2/( 1 ===Π bS VC
b

 
 

)]/2(),/2(),/2([max
)/2(

)2/(
321

2
2 CVPCVPCVP

CVP
VC

bSbSbS

bS
bS

bbb

b

b ===
=

==Π

50.0
40.0
20.0)2/( 2 ===Π bS VC

b
 

 

)]/2(),/2(),/2([max
)/2(

)2/(
321

3
3 CVPCVPCVP

CVP
VC

bSbSbS

bS
bS

bbb

b

b ===
=

==Π

50.0
40.0
20.0)2/( 3 ===Π bS VC

b
 

 
  The Fusion of these measures and the measures 
computed according to the first information source are 
combined using the disjunctive fusion as depicted in 
figure 7: 

 
 

Fig. 7 the fusion of the possibility measures 
 
  It can be deduced from the obtained results that 
according to the given values of the attributes a and b 
( ,1=aV  and 2=bV ), and according to the knowledge 
extracted from them concerning the relations between 
them and the attribute ma  whose value is missing 
(modeled by probability distributions), the most possible 
value of the missing data is "" 1C . Figure 8 resumes and 
schematizes the main steps to estimate the missing value 
of an attribute ma  whose definition domain is 
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{ }321 ,, CCCDm = , and which is related to the two 
attributes 1a  and 2a . 
 

 
 
 
8   Conclusion and Perspectives 
In this paper, we proposed a possibilistic approach to 
deal with the heterogeneity and the imperfection of 
information elements in a unified framework when 
estimating the missing data. This aspect was neglected, 
or superficially treated in the literature in spite of its 
importance in real datasets, and though the estimation of 
the missing data is essential to accomplish a 
considerable number of data mining tasks. The proposed 
approach is simple, straightforward, and can be 
accomplished in a short time since it is fundamentally 
based on basic operations (like the maximum, the 
minimum, the addition, etc.). An illustrative example has 
been given to simply explain the basic steps of the 
proposed technique. In spite of its simplicity, this 
example can be applied to a large spectrum of 
applications and problems without significant 
modifications. 

 
 
 

 
 
 
  Another example that handles the correlation of 
the attributes in addition to the imperfection and the 
heterogeneity has been given to show the flexibility of 
the possibilistic tools in adapting complex conditions 
and constraints in data mining. More complex situations 
can be solved in the same way in any other applications. 
 

The potentiality of the proposed approaches to 
easily deal with all the states of information elements 
within a unified framework can play a pivotal role in 
analyzing and mining large real databases, in which the 
objects consist of a notable number of attributes with 
considerable variety, and can noticeably reduce the 
processing time which is an important issue in data 
mining. In addition, the proposed strategy can be very 
useful when extracting knowledge databases from 
imperfectly-described complex objects. Furthermore, it 
overcomes the obstacles and the challenges encountered 

Fig. 8 the main phases of estimating a missing value 
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in case-based reasoning systems when the cases and 
their associated solutions are provided via imperfect 
heterogeneous information elements.    
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