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Abstract: - Kohonen maps are an efficient mechanism in signal processing and data mining applications. However, all 
the existing versions and approaches of this special type of neural networks are still incapable to efficiently handle 
within a simple, fast, and unified framework, the imperfection of the patterns’ information elements on the one hand 
like the uncertainty, the missing data, etc., and the heterogeneity of their measuring scale (qualitative, quantitative, 
ordinal, etc.) on the other hand. Therefore, we propose in this paper a possibilistic Kohonen network essentially based 
on two fuzzy measures: the possibility and the necessity degrees, to deal with all these aspects together in a robust way. 
Concrete examples and medical applications will also be given to clarify and to easily explain the proposed algorithm. 
 
Key-Words: - Self-Organizing Maps (SOMs), Fuzzy Logic (Possibility Theory), Imperfect information, 
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1   Introduction 
Kohonen networks (known as Self-Organizing Maps 
“SOMs”) are an effective mechanism in signal 
processing. They can convert a complex high-
dimensional input signal into a simpler low-dimensional 
discrete map [1] [2]. Ritter [3] has shown that SOMs 
represent a nonlinear generalization of principal 
components analysis (another dimension-reduction 
technique). Thus, they are nicely appropriate for cluster 
analysis, image and sound processing, and many other 
applications [1] [4]. The SOM training algorithm 
resembles also to vector quantization (VQ) algorithms, 
such as K-means. The important distinction is that in 
addition to the best-matching weight vector, its 
topological neighbors on the map are updated too.  
 

Actually, Kohonen networks are a special type 
of the neural networks based on the competitive learning 
which is based on similarity estimation. All the previous 
works and applications of the SOMs suppose generally 
that the value of each input is precise, certain, and given 
in order to calculate the similarity and to estimate the 
new weights of the network, while in reality, a 
remarkable amount of incomplete and imperfect values 
may be presented to the input of the artificial neural 
networks. For this reason, we will propose in this paper 
an approach fundamentally based on possibility theory to 
estimate the similarity and the weights, taking into 
account the imperfection of the data sets. Our paper is 
organized as follow:  section 2 briefly presents the 
SOMs, the algorithm, and the limitations. Section 3 
contains the basic principles of possibility theory and the 
proposed approach to overcome the limitations. Then, a 
concrete example is presented in section 4 and a real 
medical application is illustrated in section 5 to clarify 

and to simply explain our approach. Our remarks and 
perspectives are discussed in section 6. 
 
2   Self-Organizing Maps  
Kohonen networks [1] were introduced in 1982 by the 
Finnish researcher Tuevo Kohonen as a special type of 
neural networks to reduce the dimensionality of the input 
signals. They have been call self-organizing maps thanks 
to their ability to elucidate or reproduce some 
fundamental organizational property of the input data 
without benefit of supervised training procedures. Like 
neural networks, SOMs are feedforward and fully 
connected. Feedforward networks don’t allow looping or 
cycling. “Fully connected” means that every node in a 
given layer is connected to every node in the next layer, 
and unconnected to any node in the same layer. Each 
connection between nodes has a weight associated with 
it, which is assigned randomly to a value between zero 
and one at initialization. Adjusting these weights 
represents the key for the learning mechanism. Input 
variable values need to be normalized or standardized so 
that certain variables don’t overwhelm others in the 
learning algorithm. Unlike most neural networks, SOMs 
have no hidden layer. Data from the input layer is passed 
along directly to the output layer. The output layer is 
represented in the form of a lattice whose shape is 
usually rectangular (see figure 1) or hexagonal.  
 

For a given object (record, instance, stimuli, 
feature vector, etc.), a particular field value (attribute, 
variable, observation, feature, sample, example, etc.) is 
forwarded from a particular input node to every node in 
the output layer. The values of all the fields, together 
with the weights assigned to each connection, determine 
the values of a scoring function (such as Euclidean 
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distance) for each output node. The output node with the 
best outcome from the scoring function would then be 
designed as the winning node, or the Best Matching Unit 
(BMU). This node becomes the center of neighborhood 
of excited neurons whose weights are adjusted so as to 
further improve the score function. In other words, these 
nodes will participate in the adaption (learning) process.   
   

 
Fig. 1  Self-organizing map topology  

 
2.1 Kohonen Algorithm 
For each input vector from the data set  
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where nX  represents an object in the data set like a 
patient record in a medical database for example and nix  
represents an attribute of  nX  (like the hemoglobin or 
the age of the patient), do: 
 
I- Competition: 

 
For each output node j , calculate the similarity (or the 
dissimilarity) between the two vectors jW  and nX  using 
the scoring function (the Euclidean distance given by 
equation 1 for example): 
 

 ∑ −=
i

niijnj xwXwD 2)(),( )                               (1) 

 

and find the wining node J  that maximizes the 
Similarity (or minimizes the dissimilarity) over all the 
output nodes. 
 
II- Cooperation:  

 
Identify all output nodes j   within the neighborhood of 
J  defined by the neighborhood size R . For these 
nodes, do the following for all input record fields: 
 
A. Select the nodes in the neighborhood of the winning 
node that will participate in the learning phase. The 
weights of these nodes are adjusted so as to further 
improve the score function. In other words, these nodes 
will have an increased chance of winning the 
competition once again, for a similar set of field values. 
 
B. Adjust the weights: 
 

)( ,,, currentijnicurrentijnewij wxww −+= η  
 
C. Adjust the learning rate and neighborhood size, as 
needed. 
 
D.   Stop when the termination criteria are met.  
 
2.1.1   Prior Works’ Limitation  
In the beginning, the conventional SOM training as 
proposed by Kohonen (the previous paragraph) were 
only capable to process crisp quantitative (numeric) 
information elements since both determining the BMU 
from the map units and updating BMU’s topological 
neighbors are based on numeric distance function, 
typically the Euclidean. 
 

Later, the necessity to handle both the 
qualitative and the quantitative data under a unified 
framework were imposed due to the huge number of 
heterogeneous data encountered in the large databases. 
To fulfill this need, many techniques and approaches 
have been proposed [5]: 
 

The first approach supposes that the qualitative 
variables must be always presented to Kohonen nets by 
using as many neurons as the number of the values that 
the variable can take. In this case, only one of the 
neurons will be turned on according to the value of the 
variable. All the other neurons will be turned off. This 
technique is called one-of-n encoding. The only 
exception to this rule is if the qualitative variable is 
binary (taking one of only two possible values), then one 
neuron can be used. It is turned on for one value, and off 
for the other. Figure 2 [5] depicts an illustrative example 
of this transformation. In this example it is supposed that 
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the qualitative variable Favorite-Drink can take four 
possible categories {Coke, Pepsi, Mocca, Nescafe}.  
 

 
Fig. 2 Qualitative attribute “Favorite-Drink” is 

transformed to four binary attributes according to its 
domain 

 
For many network models, it is theoretically 

possible to encode qualitative variables by assigning few 
values to the same neuron. For instance, if a qualitative 
attribute takes three possible values, we might code the 
first as fully off, the second as half on, and the last one 
as fully on. Though many nets are capable of reacting to 
inputs coded in this way, the learning is usually slowed 
down considerably when this is done. 
 

This approach has the following five main 
drawbacks: 1) It is unable to determine the similarity 
information among the qualitative values. For example, 
the transformed relation does not show that Coke is more 
similar to Pepsi than Mocca. 2) When the domain of a 
qualitative attribute is large, transforming it to a set of 
binary attributes increases the dimensionality of the 
relation, resulting in wasting storage space and 
increasing training time. 3) It is hard to maintain the new 
schema. When the domain of an attribute changes, the 
transformed relation schema needs to be changed too. 
For instance, if “juice” is added to the domain of 
Favorite-Drink, an additional attribute “juice” needs to 
be included in the transformed relation schema. 4) New 
binary attributes are unable to reflect the semantics of 
the original attribute. For example, after the 
transformation, the four binary attributes cannot express 
the meaning of Favorite-Drink. 5) When the number of 
the categories is large, the data vectors are all similar to 
each other. For example, suppose that we have eight 
categories. The activation vector for a case belonging to 
the third category would be (0, 0, 1, 0, 0, 0, 0, 0), while 
another case’s activation vector might be (0, 0, 0, 0, 0, 0, 
1, 0). The coordinates in six of the eight dimensions are 
exactly the same for both cases. Now suppose that we 
are trying to teach a neural network to respond with such 
vectors as outputs. If it simply responds to each case by 
turning off all its outputs, only one of them will be 
wrong. Accordingly, this will produce a relatively small 
mean square error.       
 

To overcome the aforementioned shortcomings, 
and to consider the heterogeneous data simultaneously, 
the generalized SOMs (denoted as GSOMs) have been 
proposed [5]. These maps adapt a general distance 

representation structure, called distance hierarchy to 
facilitate the distance computation. This hierarchy has 
been proved to be general distance representation 
mechanism for both qualitative and quantitative values. 
It is composed of nodes and links; where higher-level 
nodes represent more general concepts while lower-level 
nodes represent more specific concepts. An example of 
such hierarchy is schematized in figure 3. All the 
attributes of the training dataset and their corresponding 
components of the GSOM units are both associated with 
a distance hierarchy. To compute the distance between a 
training pattern and a GSOM unit, the attribute values of 
the pattern and the corresponding components of the 
GSOM unit should be mapped to their associated 
distance hierarchies, according to the method well-
illustrated in [5]. Then, the distance is computed by 
aggregating the distances between the mapping points in 
their hierarchies. 

 
Fig. 3 An example of a hierarchical structure  

 
In spite of the fact that GSOM are able to easily 

measure the distance between the qualitative as well as 
the quantitative variable in an efficient manner as proved 
in [5], and by overcoming all the drawbacks of one-of-n 
encoding technique, their uses, however, is limited to the 
crisp values assigned in a certain and precise manner. i.e. 
this extended version of Kohonen maps stands incapable 
to deal with the different types of information 
imperfection (missing data, imprecision, probabilistic 
uncertainty, etc.). 
 

Actually, the imperfection of the information 
elements in database objects has almost been neglected 
and ignored, and the majority of the proposed algorithms 
and methods assume that in the worst case the variables 
can be cleaned and prepared in order to get a perfect 
training set. This optimistic point of view cannot be 
applied to a great deal of the everyday databases for two 
main reasons. On the one hand, there are always some 
attributes that cannot be estimated exactly (precisely) 
because of the measuring instrument tolerance, or the 
expert uncertainty and doubt, so they can be given as a 
vague or as imprecise values modeled by possibility 
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distributions. On the other hand, it is common to find 
missing values of the attributes in a data set. Deleting the 
fields or the attributes that contain such values might 
decrease the size of the learning base to a great deal 
plaguing the learning process. Estimating the values of 
the missing data before the learning process might be 
complicated, long, and uncertain.  
 

In reality, only few attempts and efforts have 
carried out to seriously consider the ill-defined variables, 
like the fuzzy-neuro approach proposed in [6]. This 
approach supposes that the input feature values can be 
described in terms of some combination of membership 
values for the linguistic properties that characterize each 
of them. For instance, instead of presenting the vector 

]...[ 21 Siii xxxX =  as the input to the SOM, the 
membership degrees of all its components to the 
characteristic properties of each of them are calculated. 
For instance, if we suppose that each variable is 
described via the same three properties “low”, “medium” 
and “high” as shown in the example depicted in figure 4, 
then the input of the SOM will be  

 
As we might notice from this simple example, 

the number of the input neurons required will notably be 
increased. Instead of one input neuron for each variable, 
n input units is needed, where n is the number of the 
describing properties of the considered variable. As the 
training time and the storage space are strongly impacted 
by the number of the neurons, this technique could be 
considerably be slowed in some applications in data 
mining, and we must look for another strategy to better 
prepare the data at the inputs of the SOM. 

 

 
Fig. 4 A Kohonen map used to handle the  
      ambiguity of information elements 

 
In fact, data preparation can make the difference 

between a SOM that trains in few days and performs 
quite well, versus another that works in few minutes and 

performs excellently, since the training time can often be 
expensive, especially when the SOM cannot achieve a 
good learning. Consequently, there is an imposed need 
to find an approach that considers the heterogeneous and 
the imperfection of information elements, providing 
robust, simple, low-cost, and fast solutions. This issue is 
extremely fundamental in all soft-computation methods.  

 
2.2 SOM Information Elements Visualization 
To visualize the cluster shape and structure of a data 
cloud, and to achieve an efficient exploratory data 
analyses, several techniques have been proposed in the 
literature. These techniques are usually based on vector 
projection, using physical coordinates, color coding, etc.  
However, the most commonly used strategy to visualize 
the clusters on the SOM is distance matrices. In this 
technique, the distances between each unit i and the units 
in its neighborhood R are calculated: 

 
{ }ijRjWWD jii ≠∈−= ,\  

 
The distances, or for example the median of 

these distances [7], for each map unit are typically 
visualized using color, although other techniques are 
also possible [8]. The unified distance matrix (U-
distance-matrix) [9] visualizes all distances between 
each map unit and its neighbors. This is possible due to 
the regular structure of the map grid. The cluster borders 
can be identified as “mountains” of high distances 
separating the “valleys” of low distances that represent 
the clusters themselves. It is also possible to use a 
unified similarity matrix. In this case, the significations 
are inversed. Figure 5 presents examples of both spatial 
and color projections as well as the U-matrix. We can 
see that it is hard to see local details in the dense areas 
using the PCA, except in the interactive visualization 
environments where the user can zoom in on the 
interesting details. Contrary to PCA-projection, the map 
grid has equal amount of space for each map unit, and 
hence, map units even in the dense areas can be seen 
clearly. 

 

Fig. 5 SOM cluster visualization models using the PCA-
projection, the coloring, and the U-distance-matrix 
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3   Possibility theory  
Possibility theory [10-15] provides a method to 
formalize subjective uncertainties of events, that is to say 
a means of assessing to what extent the occurrence (the 
realization) of an event is possible and to what extent we 
are certain of its occurrence, without having however the 
possibility to measure the exact probability of this 
realization because we don’t know an analogous event to 
be referred to, or because the uncertainty is the 
consequence of observation instrument reliability 
absence. Let’s attribute to each event defined on the 
universe of discourse Ω  (in other words to each element 
belonging to ( )Ωρ ) a coefficient ranging between 0 and 
1 assessing to which degree the occurrence of an event is 
possible, where the value “1” means that the event is 
completely possible, while the value “0” means that the 
event is impossible. To define this coefficient, we 
introduce the possibility measure Π  which is a function 
defined over )(Ωρ , taking values in [ ]1,0 , such that: 
 
Axiom 1: ( ) 0=Π φ              (3) 
Axiom 2: ( ) 1=ΩΠ                                                       (4) 
Axiom3: )(,..., 21 Ω∈∀ ρAA  

)(sup)( ,...2,1,..2,1 iiii AA Π=∪Π ==                                 (5) 
where sup indicates the supremum of the concerned 
values. 
 
 We can say that the possibility measure is totally 
defined, if we can attribute a possibility coefficient to all 
the singletons of Ω . Consequently, the possibility 
distribution function π  defined on Ω , whose values are 
included in [ ]1,0 , such that 1)(sup =∈ xx πχ  must be 
defined. As a result the function Π  can be defined form 
the function π  by: 
 

( )Ω∈∀ ρA  )(sup)( xA Ax π∈=Π                       (6) 
 
Reciprocally, π  can be defined form Π  by: 
 

Ω∈∀x  { })()( xx Π=π                          (7) 
 
 We should also mention here that the characteristic 
function of a subset from Ω  can be considered as a 
possibility distribution π  defined on Ω .  To calculate 
the possibility degree of the couple ),( yx  given that 

1Ω∈x  and 2Ω∈y  where ,1Ω 2Ω  are two non-
interactive universes of discourse, the conjoint 
possibility distribution defined on the Cartesian product 

21 Ω×Ω  should be calculated from:  
 

1Ω∈∀x 2Ω∈∀y  ))(),(min(),( yxyx γχ πππ =      (8) 
 
 In fact, the possibility measure is not sufficient to 
describe the incertitude of the realization of an event, 
because sometimes the realization of both the event A 
and its complement CA could be completely possible 
simultaneously ( 1)( =Π A  and 1)( =Π CA  at the same 
time). This means that in this particular case it is 
impossible to take a decision concerning the realization 
of A depending on the estimated possibility measure. For 
this reason, another function, defined on )(Ωρ , whose 
values are included in [ ]1,0  and which is called the 
necessity measure (denoted N) is defined as follows: 
 
Axiom 1: 0)( =φN                          (9) 
Axiom 2: 1)( =ΩN                          (10) 
Axiom 3: )()( 21 Ω∈∀Ω∈∀ ρρ AA  

)(inf)( ,...2,1,....2,1 iiii ANAN == =∩           (11) where 
inf stands for infimum. 
 
3.1 Possibility-Based Similarity estimation  
Suppose that we have two objects jO  and kO  containing 

“S” attributes ( jO  represents the weight vector of 

Kohonen network, and kO  represents the input vector 
for example): 
 

]....[ 21 Sjijjjj xxxxO =  

]....[ 21 Skikkkk xxxxO = .  
 
 Each attribute could take a precise or an imprecise 
value modeled by its possibility distribution, and this 
value can be quantitative (numeric), qualitative 
(nominal), or ordinal. The values of some attributes 
could be unassigned (missing value). Besides, each 
attribute is associated with a “tolerance function” [11] 
defined by an expert as a formula or as a table permitting 
to describe mathematically to which degree we consider 
that two values of this attribute are similar. An example 
of tolerance function is the function that we call “close 
to”. Such a function can be defined by the following 
formula: 
 

Δ

−
−= yx

yxa

aa
aa 1),(μ  if  Δ≤− yx aa          (12) 

0),( =yxa aaμ  Otherwise 
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 Where Δ  is a variable that influences the slope of 
the function and consequently the notion of “close to”. 
The tolerance function can be also:   
 
- The function of tolerance "True/false": two values of 
an attribute are similar if they are identical (similarity 
equals to 1). If the values are different, the similarity is 
null, this type of functions is used especially when 
dealing with nominal variables having independent 
categories. In the case of ordinal variables we must use 
the function “close to”. 
 
- The "ad hoc" tolerance functions which are defined by 
the experts to reflect their point of view about the 
similarities between the attributes. 
 
 In our approach the similarity between the two 
objects jO  and kO  can be estimated by means of two 
measures: the possibility degree of similarity between 

jO  and kO  that tells us to which degree it is possible 
that these vectors are similar, and the necessity degree of 
similarity of these vectors that tells us to which degree 
we are certain of their similarity. The probability of the 
similarity between jO  and kO  exists between the 
necessity degree that represents the lower limit and the 
possibility degree that represents the upper limit. To 
calculate the possibility and the necessity degrees of 
resemblance, we must calculate the local possibility and 
necessity degrees between their corresponding attributes 
and aggregate them by taking their average, for example 
in order to take a decision concerning the total similarity. 
The local possibility and necessity degrees of similarity 
between ijx  given by its possibility distribution 

),(
,

yxijxX ijj

π  and ikx  given by its possibility distribution 

),(
, ikxX

xx
ikk

π  for all { }Si ,...,2,1∈  are calculated 

according to the following relations: 
 
 Supposing that D  is the definition domain of the 
considered attribute ix  ( DDU ×= ) and that μ  is the 
tolerance function associated to this attribute, the 
conjoint possibility distribution Dπ  is calculated as: 
 

))(),(min(),( ,, yxxx
ikkijj xXxXikijD πππ =          (13) 

 
In this case, the local possibility degree of similarity iπ  
can be calculated as: 
 

))](),([min(sup),( uuxx DUuikiji πμπ ∈=          (14) 
 

The local necessity degree of similarity iN  can be 
calculated as: 
 

))](1),([max(inf),( uuxxN DUuikiji πμ −= ∈          (15) 
 

We consider that if the value of an attribute is 
given in one object and is unassigned in the other (the 
case of missing values), it is completely possible that 
these values are similar 1=iπ  but we are entirely 
uncertain 0=iN .  The total possibility (necessity) 
degree of a certain node j  is the average of all the local 
possibility (necessity) degrees connected to this node. 
 
3.2 Possibilistic Approach  
In order to overcome the drawbacks and the limitations 
of the conventional auto-organizing maps discussed in 
section 2.1.1, we propose the following simple 
modifications: 
 
1)- Concerning the similarity between the output units 
and the input vectors, we can either calculate the 
similarities between all the input vectors using the 
possibilistic similarity that we have previously proposed 
(section 3.1) to deal with the heterogeneity and the 
imperfections of the information elements at the same 
time [13-15], and then to introduce this possibilistic 
similarity matrix to the inputs of the SOMs, or we model 
the similarity between each output unit and the input 
vector, using the necessity and the average necessity and 
possibility degrees of the resemblance between each 
variable of the vector and the corresponding weight. In 
this last case, the winning neuron is the one that has the 
greatest necessity degree. When two or more neurons 
have equal necessity degrees, their possibility degrees 
are compared. It is recommended to introduce the 
possibilistic inter-variable similarity matrix to the input 
of the SOMs (the first solution) when the number of the 
training vector is small, since the number of the input 
neurons is equal to their number. However, for a 
significant number of the learning vectors, it is more 
judicious to apply the second solution to accelerate the 
learning phase. 
 
2)- As the weights are given as a vector of precise values 
and the input attributes could modeled or transformed to 
possibility attributions like 
{ },....)(,...,)(,)( 2211 ii xxxxxx πππ , we suggest to 
use the following equation to compute the new weight: 
 

∑∑
−×+= )]()([

)( currentii
i

currentnew wxx
x

ww π
π
η  
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Thanks to the robust tools of possibility theory, 
these simple and logical modifications can easily handle 
the aforementioned challenging points assuring the 
generality of the approach in a simple and fast way as we 
will show via a concrete example in the following 
paragraph. 
 
4   Illustrative Example 
Consider the following simple example. Suppose that we 
have a dataset with two attributes, “age” and “income”, 
which have already been normalized (see table 1), and 
the knowledge about these attributes might be imprecise 
modeled by a possibility distribution. Suppose that we 
would like to use a 2 × 2 Kohonen map to represent 
hidden clusters in the data set. Therefore, we would have 
the topology shown in Figure 1. This type of data set 
cannot be solved using the traditional scoring functions 
that suppose that the compared values have to be crisp. 
Besides, we cannot manage to apply the weight 
adjustment equation with such imprecise attributes, 
given as possibility distributions.  
 

1 
11x  is about 

0.8 figure 6-
a 

8.012 =x  Older 
person with 
high 
income 

2 8.021 =x  1.022 =x  Older 
person with 
low income 

3 
31x  is about 

0.2 figure 6-
b 

32x  is 
somehow 
high 
figure 6-c 

Younger 
person with 
high 
income 

4 1.041 =x  1.042 =x  Younger 
person with 
low income 

5 
51x is given 

by its 
possibility 
distribution 

51π  figure 
6-d  

8.052 =x  Older 
person with 
high 
income 

 
Table 1 The dataset of our example 

 
With such a small network, we set the 

neighborhood size to zero ( 0=R ), so that only the 
winning node will be awarded the opportunity to adjust 
its weight. Also, we set the learning rate η  to 0.5. 
Finally, assume that the weights have been randomly 
initialized as follows: 

20.010.080.010.0
20.090.080.090.0

24142313

22122111

====
====

wwww
wwww

 

 

For the first input vector, we perform the following 
competition, cooperation, and adaptation sequence: 
 
A. Competition: We compute the necessity and the 
possibility degrees of similarity between this input 
vector and the weight vector for each of the four output 
nodes (see table 2): 
 

 

 
(a) 

 

 
(b) 

 
(c)  

  (d) 
 

Fig. 6  Possibility distributions of the imprecise values  
 

 
Table 2. The necessity and the possibility degrees (the 

first vector) 
 

The winning node for this first input record is 
therefore “node 1”, since it maximizes the similarity 
(modeled by the possibility and the necessity degrees) 
between the input vector for this record, and the weight 
vector, over all nodes. Node 1 won the competition for 
the first record because its weights are more similar to 
the field values for this record than the other nodes’ 
weights. For this reason, we may expect node 1 to 
exhibit an affinity for records of older persons with high-
income. In other words, we may expect node 1 to 
represent a cluster of older, high-income persons. 
 
B. Cooperation: In this simple example we have set the 
neighborhood size R = 0 therefore, only the winning 
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node, “node 1”, will be able to adjust its weights. 
 
C. Adaptation: For the winning node, “node 1”, the 
weights are adjusted as follows: 
 

85.0,11 =neww , 8.0,21 =neww  
 
For the next input vector [ ]1.0,8.02 =X , see table 3: 
 

 
Table 3. The necessity and the possibility degrees (the 

second vector) 
 
Node 2 won the competition because its weights (0.9, 
0.2) are more similar to the field values for this record 
than the other nodes’ weights. As a result: 

85.0,12 =neww , 15.0,22 =neww . 
 
For the third input vector, see table 4: 
 

 
Table 4. the necessity and the possibility degrees (the 

third vector) 
 
Figure 7 shows us the main steps of possibility and 
necessity degree calculation. 
 
 
Node 2 wins the competition, and as a result: 

15.0,13 =neww , 85.0,23 =neww . 
 
For the vector [ ]1.0,1.04 =X , see table 5. 
 

 
Table 5. The necessity and the possibility degrees (the 

fourth vector) 
 
Node 3 wins the competition, and as a 
result: 1.0,14 =neww , 15.0,24 =neww . 
 

 
Finally, for X5, see table 6: 
 

 
Table 6. the necessity and the possibility degrees (the 

last vector) 
 

Node 1 wins the competition, so given that 
85.0,11 =currentw  and 11x  is given as possibility 

distribution 
⎭
⎬
⎫

⎩
⎨
⎧

85.0
50.0

80.0
1

75.0
25.0

70.0
75.0  (figure 2-d), the 

new weight neww ,11  is calculated as following: 
 

[ ] 81.00)85.080.0()85.075.0(25.0)85.070.0(75.0
)50.0125.075.0(

5.085.0,11 =+−+−+−
+++

+=neww

 

Given that 80.021 =w  and 80.012 =x  the new weight 

neww ,21  won’t change. 
 

 
Fig. 7 Local possibility and necessity calculation. X 
represents the first fuzzy proposition concerning the 

value of the attribute in the first object. Y represents the 
second fuzzy proposition concerning the value of the 
same attribute in the second object. μ represents the 

possibility or the necessity degree. 
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Notice that even if the value of an attribute is 
given as a probability distribution, it can easily be 
transformed to possibility distribution using a suitable 
transformation [16], and the estimation of the similarity 
will then be simple and straightforward unlike the prior 
conventional methods that stand paralyzed in front of 
such cases. 
 
5   Medical Application 
The proposed method will be applied in the following to 
the medical gastroenterology database of the hospital 
“Morvan” in Brest, France. This database [17] is briefly 
described in the following subsection, and the results 
will be presented in section 6.2.  
 
5.1 Medical Dataset Description  
The possibility-based similarity modeling exploited by 
this clustering algorithm was tested on a digestive 
endoscope atlas of documented endoscopic lesions 
descriptions, and scene information of the upper 
gastrointestinal tract, esophagus, stomach, and 
duodenum [17]. Database images attributes description 
characterize observed anomalies or lesions identified by 
an expert, according to a well defined and exhaustive 
description structure: 
 
 

 Object location: anatomic 
(longitudinal), position in the 
organ (axial), and distance from 
the teeth. 

 Repeated objects: number of 
identical objects and spatial 
organization. 

 Object aspect: shape and edge, 
dominant color and color 
regularity, relief and regularity 
of relief, sizes (major, minor 
axes and thickness), axes ratio 
and major axis orientation, 
height, motility, effect of 
insufflations, and consistency. 

 Relation with adjacent organ: 
color contrast, texture contrast, 
and consequences on the lumen. 

 
 
These descriptors represent 24 features, 

summing 145 distinct values for simple objects. 
Attributes are either semantically or numerically coded, 
with the help of an adapted interface by an expert 
physician. Complex objects are defined when two or 
more simple objects are related on the same visual scene. 
Each one has its own attributes and a spatial relation 

(closeness and order, rated as: into, in contact, in contact 
and upward, around, and around and upward) links them, 
resulting in 33 features and 206 different values. 
Depending on the secondary objects types, other 
relationships may appear like relative sizes and 
consistency, combined with the absence of some features 
in some objects, uncertain and incomplete descriptions. 

 
Endoscopic diagnosis relies on the analysis of 

associations between these elementary lesions and the 
medical context, which includes sex, age, clinical 
antecedents, consultation circumstances, and symptoms. 
Complementary exams may be necessary to determine 
whether the initial diagnosis is confirmed or refused. 
These exams include histological examination of biopsy 
specimens, coloration of the digestive mucosa, and 
morphological or functional evaluations. Once 
processed, all these elements and diagnostic decisions 
are then recorded on a medical report. Among the 
documented lesions and pathologies we find: dilated 
lumen, stenosis, extrinsic compression, web, ring, hiatal 
hernia, undigested food, liquid blood, blood clot, z-line, 
spot, circular Barrett’s, moniliasis, simple erosion, ulcer, 
and Petechial mucosa. 

 
Lesions and diagnosis are intended to be 

independently described under this scheme, even though 
practical experience shows that endoscopic findings may 
point towards a particular diagnosis, whereas other 
diagnosis alternatives including the same lesions could 
also be specified. For this reason, the digestive 
endoscope atlas also defines specialized findings, which 
are classes that describe more in detail the generic 
diagnosis. Validated by medical experts, the atlas 
consists of 89 endoscopic findings, 126 endoscopic 
diagnoses, and 118 specialized findings, a priori 
descriptions. 

 
To illustrate our results in a clear and simple 

manner, a subset of cases (CB) belonging to the main 
image database were processed. This facilitates 
understanding the studied possibilistic clustering 
approaches, the results graphic representation, and 
emphasizes the general character of the proposed 
approach. Defined as CB = {p1, p2, …, p18}, the subset of 
cases contains 18 described images, presented in figure 
8. CB is structured in the following manner according to 
the ground-truth provided by the specialist: P1 = {p1, p2} 
corresponds to the “Dilated Lumen” pathology; P2 = {p3, 
p4, p5, p6, p7, p8, p9, p10} conforms with the description of 
“Esophagus Stenosis”; P3 = {p11, p12, p13, p14} is a set of 
images that represent the “Extrinsic Compression” 
pathology; P4 = {p15} describes the “Web Shape” 
pathology; P5 = {p16, p17, p18} is a set of images on which 
the “Ring Shape” pathology is visible. 
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Figure 8. The medical dataset. 

 
5.2 Experimental Results  
In the beginning, the proposed method has been applied 
to the dataset CB described in the precedent section 
using the batch training in which the dataset is presented 
entirely in each epoch. Firstly, we assume that we have a 

45×  map and then a 1515×  output units. The 
visualization models briefly illustrated in section 2.2 will 
be used to display the experimental outcome.  
 

Figure 9 schematizes the unified similarity 
matrix using the color codes depicted in the vertical 
color bar at the upper left corner of figure 9. The 
similarity between each object and the output unites in 
the map are also coded with colors according to their 
associated bars in this figure. As it is clearly shown, the 
objects having the same pathology belong to the same or 
neighbor units. Looking closely to the coloring maps of 
these objects that reassemble to fingerprints, we can 
notice that colored maps of all the objects having the 
same class are approximately the same, i.e. the similar 
objects have similar fingerprints that differ from one 
pathology to another. Figure 10 depicts another type of 
results representation using bar charts in each output unit 
that present its similarity to all the objects. Again, it can 
be remarked that units having objects of the same class 
are more similar than the other ones. The visual 
presentation of these information elements using the 
principal component analysis in a 3-dimensional 

coordinate space is also plotted in figure 11. Another 
example is given in figures 12 and 13 in which we apply 
the same steps to a 1515× unit map. The same remarks 
and observations can be deduced. The fingerprints of 
each object are clearer in this example. 
 

At last, to show the generality and the validity of 
our approach in all the types of training, all the 
aforementioned steps are applied to a 45×  unit map 
using the sequential mode of training (figures 14 and 
15). It is clear that we get similar analysis and 
conclusions from the observation of the depicted plots. 
 

 
Fig. 9 Visualization of the SOM of the gastroenterology 
dataset using a 45×  unit map (batch training). U-matrix 

on the top left, then component planes, and map unit 
labels on bottom right 

 

 
Fig. 10 The bar charts in each output unit show its 

similarity to each object of the 45×  unit map (batch 
training) 
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Fig. 11 Projection of the gastroenterology dataset to the sunspace spanned by its  
three eigenvectors with greatest eigenvalues.  

The different pathologies have been plotted using different colors.  
Neighboring map units are connected with lines. Labels associated with map units are also shown 

Fig. 12 Visualization of the SOM of the gastroenterology dataset using 1515× unit map (batch training).  
U-matrix on the top left, then component planes, and map unit labels on bottom right 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Anas Dahabiah, John Puentes, Basel Solaiman

ISSN: 1790-0832 518 Issue 4, Volume 7, April 2010



  

Fig. 13 The bar charts in each output unit of a 1515× unit map  
show its similarity to each object (batch training) 

Fig. 14 Visualization of the SOM of the gastroenterology dataset using 45×  unit map 
(sequential training) 
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Fig. 15 The bar charts in each output unit of a 45×  unit 

map show its similarity to each object (sequential 
training) 

 
6   Discussion and perspectives 
Kohonen networks are a type of the unsupervised 
artificial neural networks that are trained to produce and 
to visualize low-dimensional views of high-dimensional 
data, akin to multidimensional scaling (MDS). These 
networks have been widely used in different signal 
processing and data mining applications thanks to their 
simplicity and performance. Nevertheless, calculating 
the similarity between the input vector and the weight 
vector using the scoring function limits their use 
especially when dealing with imperfect and 
heterogeneous data. For instance, the traditional 
networks cannot solve the case presented in the example 
given in the section 4 for instance.  
 

To overcome this drawback and to ameliorate 
the performance of these networks, we modeled the 
similarity by two fuzzy measures: the possibility and the 
necessity degrees in order to insure a wide use of 
Kohonen networks taking into account the imperfection 
of the variables (uncertain, imprecise or missing data). In 
fact, these degrees could estimate the similarity between 
the qualitative, quantitative and the ordinal variables. 
Thus, they can be used without any modification in any 
other domain of signal and image processing (image 
retrieval for example). They can also be used in all the 
data mining techniques that demand the estimation of 
similarity (the k-nearest neighbor for instance). In 
addition to their generality and their similarity to human 
reasoning, these measures insure a fast computation time 
which is very important in neural network applications 
since they are based fundamentally on basic 
mathematical operators (max, min, etc.) and because we 

don’t need additional preprocessing phases to prepare 
the data and to estimate the missing values or to deal 
with the imprecise observations. In fact, this last 
operation (data cleaning and data preparation) could be 
very cost and complicated, and could reduce 
scientifically the size of the training set especially when 
we have missing values in many attributes of the 
records.  

 
The proposed approach has been applied to a 

gastroenterology dataset, and the classes of the objects 
have correctly been assigned. It has been shown that the 
objects of the same class flock in neighbor output units. 
This may enable the doctors to study the similarity 
between the objects themselves and between the classes 
of the dataset as well, in order to build knowledge 
databases. Then doctors can study the characteristics and 
the properties of the features of the similar objects in 
order to get new potential unknown rules as future work 
using the techniques of rule extraction algorithms in data 
mining. Briefly, these characteristics of Kohonen 
networks and the possibility measures can open new 
directions for future researches and can solve practical 
problems. 
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