
 

 

  
Abstract—The well known fuzzy measures, λ-measure and 

P-measure, have only one formulaic solution. Two multivalent 
fuzzy measures with infinitely many solutions, L-measure and 
δ-measure, were proposed by our previous works, but the former 
do not include the additive measure as the latter and the latter has 
not so many measure solutions as the former, therefore, a 
composed fuzzy measure of above two measures, called 
Lδ -measure was  proposed by our additional previous work. 
However, all of abovementioned fuzzy measures do not contain the 
largest measure, B-measure, which all not completed measures. In 
this paper, an improved completed fuzzy measure composed of 
maximized L-measure and δ-measure, denoted mL δ -measure, is 
proposed. For evaluating the Choquet integral regression models 
with our proposed fuzzy measure and other different ones, two real 
data experiments by using a 5-fold cross-validation mean square 
error (MSE) were conducted. The performances of Choquet 
integral regression models with fuzzy measure based mL δ  

-measure, mL δ  -measure, Lδ  -measure, L-measure, δ-measure, 
λ-measure, and P-measure, respectively, a ridge regression model, 
and a multiple linear regression model are compared. Both of two 
experimental results show that the Choquet integral regression 
models with respect to our new measure based on γ-support 
outperforms others forecasting models.  
 

Keywords—Lambda-measure, P-measure, Delta-measure, 
L-measure, composed fuzzy measure.  
 

I. INTRODUCTION 
hen there are interactions among independent 

variables, traditional multiple linear regression 
models do not perform well enough. The traditional 

improved methods exploited ridge regression models [1]. 
Recently, some Choquet integral regression models with 
respect to different fuzzy measures were used [2-5, 7-15] to 
improve this situation. The well-known fuzzy measures, 
λ-measure [2-4] and P-measure [5] have only one formulaic 
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solution of fuzzy measure, the former is not a closed form, 
and the latter is not sensitive enough. Two multivalent fuzzy 
measures with infinitely many solutions were proposed by 
our previous works, called L-measure [8-11] and δ-measure 
[10,11], but L-measure do not include the additive measure 
and δ-measure has not so many measure solutions as 
L-measure. Due to the above drawbacks, an improved fuzzy 
measure composed of above two multivalent fuzzy 
measures, denoted Lδ -measure, was proposed by our 
additional previous work. This improved multivalent fuzzy 
measure is not only including the additive measure, but also 
having the same infinitely many measure solutions as 
L-measure. However, all of above mentioned fuzzy 
measures do not contain the largest measure, B-measure, 
which all not completed measures. In this paper, an 
improved completed fuzzy measure composed of 
maximized L-measure and δ-measure, denoted 

mL δ -measure, is proposed. This new measure not only 
contains the additive measure and B-measure but also have 
more fuzzy measure solutions than Lδ -measure. For 
evaluating the Choquet integral regression models with our 
proposed fuzzy measure and other different ones, two real 
data experiments by using a 5-fold cross-validation mean 
square error (MSE) are conducted. The performances of 
Choquet integral regression models with fuzzy measure 
based on mL δ -measure, mL -measure, Lδ -measure, 
L-measure, δ-measure, λ-measure, and P-measure, 
respectively, a ridge regression model, and a multiple linear 
regression model are compared.  

This paper is organized as follows: The multiple linear 
regression and ridge regression [1] are introduced in section 
II; two well known fuzzy measure, λ-measure [2] and 
P-measure [5], L -measure, δ -measure and Lδ -meassure 
are introduced in section III; B-measure, completed fuzzy 
measure and our new measure, mL δ -measure, are 
introduced in section IV; the fuzzy support, γ-support [7] is 
described in section V; the Choquet integral regression 
model [6-8] based on fuzzy measures are described in 
section VI; two experiments and results are described in 
section VII; and final section is for conclusions and future 
works. 
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II. THE MULTIPLE LINEAR REGRESSION, RIDGE 
REGRESSION  

Let ( )2,  ~ N 0, nY X I= +β ε ε σ  be a multiple linear 

model, ( ) 1ˆ X X X Y−′ ′=β  be the estimated regression 

coefficient vector, and ( ) 1ˆ
k nX X kI X Y−′ ′= +β  be the 

estimated ridge regression coefficient vector, Hoerl, Kenard 
and Baldwin [1] suggested 
 

                            
2ˆˆ

ˆ ˆ
nk =

′
σ

β β
                       (1) 

III. FUZZY MEASURES 
The two well known fuzzy measures, the λ-measure 

proposed by Sugeno in 1974, and P-measure proposed by 
Zadah in 1978, are concisely introduced as follows.   

 

A. Axioms of Fuzzy Measures 
Definition 1 fuzzy measure [2-4] 
A fuzzy measure μ  on a finite set X is a set function 

[ ]: 2 0,1Xμ →  satisfying the following axioms:  
 

1) ( ) ( )0 , 1Xμ φ μ= =  (boundary conditions)     (2) 

2) ( ) ( )A B A Bμ μ⊆ ⇒ ≤  (monotonicity)          (3) 
 

B.  Fuzzy density function [2-7] 
A fuzzy density function of a fuzzy measure μ  on a finite 

set X is a function [ ]: 0,1s X →  satisfying:  

( ) { }( ) ,s x x x Xμ= ∈                          (4) 

( )s x  is called the fuzzy density of singleton x . 
 

C. λ-measure 
Definition 3 λ-measure [3] 
For a given fuzzy density function s,  λ-measure, gλ , is a 
fuzzy measure on a finite set X, satisfying: 

, 2 , ,XA B A B A B Xφ∈ = ≠I U  

 
( )

( ) ( ) ( ) ( )
g A B

g A g B g A g B
λ

λ λ λ λλ

⇒

= + +

U
   (5) 

( ) ( ) { }( )
1

1 1 0,
n

i i i
i

s x s x g xλλ λ
=

⎡ + ⎤ = + > =⎣ ⎦∏   (6) 

   Where the real number, λ, is also called the determine 
coefficient of λ-measure. 
 

Note that once the fuzzy density function is known, we 
can obtain the values of λ uniquely by using the previous 
polynomial equation. In other words, λ-measure has a 

unique solution without closed form. Moreover, for given 
singleton measures s, 

( )( ) 1 ( )
x X x A

If s x then g A s xλ
∈ ∈

= =∑ ∑ , in other word, 

if ( ) 1
x X

s x
∈

=∑ then λ-measure is just the additive measure 

 

D. P-measure  
Definition 4. P-measure [5] 

For given a fuzzy density function s, P-measure, Pg , is a 
fuzzy measure on a finite set X, satisfying:  

( ) ( ){ } { }( ){ }
2

max max

X

P Px A x A

A

g A s x g x

∀

∈ ∈

∈

⇒ = =
        (7) 

Note that for any subset of X, A, P-measure considers only 
the maximum value and will lead to insensitivity. 
 

E. L-measure  
Definition 5. L-measure [8,11] 
For given a fuzzy density function ( )s x , L-measure, Lg , is 

a fuzzy measure on a finite set X, X n= , satisfying: 

1)    [ )0,L ∈ ∞    
 (8) 

2)  , ( 1) 0A X n A A L∀ ⊂ − + − > ⇒  

( )
( ) ( )

( ) ( )

( 1) 1 max
( ) max

1
x Ax A

L x A

x X

A L s x s x
g A s x

n A A L s x
∈∈

∈

∈

⎡ ⎤⎡ ⎤− − ⎣ ⎦⎣ ⎦
⎡ ⎤= +⎣ ⎦ ⎡ ⎤− + −⎣ ⎦

∑
∑

    

(9) 
Where the real number, L, is also called the determine 
coefficient of L-measure. 
 
Note that L-measure satisfies the following properties 
(i) For each [0, )L ∈ ∞ , L-measure is a fuzzy measure, in 
other words, L-measure has infinitely many solutions of 
fuzzy measures, for each [0, )L ∈ ∞ . 
(ii) [0, )L ∈ ∞ , L-measure is an increasing function on real 
number L. 
(iii) if 0L =  then L-measure is just the P-measure 
 

F. δ-measure  
Definition 6 δ-measure [9-10] 
For given fuzzy density function ( )s x , a δ-measure, gδ , is 

a fuzzy measure on a finite set X, X n= , satisfying: 

1) [ ]1,1 , ( ) 1
x X

s xδ
∈

∈ − =∑                                                     

(10) 
2) ( ) ( )0, 1g g Xδ δφ = =                                               (11)

  
3) ,A X A X∀ ⊂ ≠ ⇒  
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( ) ( )
( )

( )
1 ( )

1 max max
1 ( )

x A
x A x A

x A

s x
g A s x s x

s xδ

δ
δ δ

δ
∈

∈ ∈

∈

+
⎡ ⎤= + −⎢ ⎥⎣ ⎦ +

∑
∑

      (12)  

Note that δ -measure satisfies the following properties 
(i) For each [ ]1,1δ ∈ − , δ -measure is a fuzzy measure, 

i.e., δ -measure has infinite many fuzzy measures with 
determine coefficientδ , [ ]1,1δ ∈ − . 

(ii) [ ]1,1δ ∈ − ,δ -measure is an increasing function on  
δ , 

(iii) if 1δ = −  then δ -measure is just P-measure 
(iv) if 0δ =  then δ -measure is just  additive measure 
(v) if 1 0δ− ≤ <  then δ -measure is a sub- additive 

measure,  
(vi) if 0 1δ< ≤  then δ -measure is a supper- additive 

measure,  
 

G. Lδ -measure 

Definition 7 Lδ -measure [11] 

For given fuzzy density function ( )s x , the composed 
measure of L-measure and δ-measure , denoted 
Lδ -measure, Lg

δ
, is a fuzzy measure on a finite set X, 

X n= , satisfying: 

1) [ )1, , ( ) 1
x X

L s x
∈

∈ − ∞ =∑                                                (13) 

2)       ( ) ( )0, 1L Lg g X
δ δ

φ = =                                     (14) 

3) A X∀ ⊂ ⇒  

   

( )

( )

( ) ( ) ( )

( ) ( ) ( ]

( ) ( ) ( )

( ) ( )
( ) ( )

                         max                                    1

1 1 max
max 1,0

1

1 1
    0,

1

x A

x Ax A
L x A

x A

x A x A

x A
x X

s x if L

L s x L s x
g A L s x if L

L s x

L A s x s x
s x if L

n A L A s x

∈

∈∈

∈

∈

∈ ∈

∈
∈

⎧
⎪
⎪
⎪ =−
⎪
⎪ ⎡ ⎤+ +⎪ ⎣ ⎦⎪= − ∈ −⎨

+⎪

⎡ ⎤
− −⎢ ⎥

⎣ ⎦ + ∈ ∞
⎡ ⎤− + −⎣ ⎦⎩

∑
∑

∑ ∑
∑∑

⎪
⎪
⎪
⎪
⎪
⎪

         (15)  

Note that Lδ -measure satisfies the following 
properties 
 
(i) [ 1, )L∈ − ∞ , Lδ -measure is a fuzzy measure family 
(ii) [ 1, )L∈ − ∞ , Lδ -measure is an increasing function on L 
(iii) if 1L = −  then Lδ -measure is just the P-measure 
(iv) if 0L =  then Lδ -measure is just the additive measure 
(v) if 1 0L− < <  then Lδ -measure is a sub-additive measure 
(vi) if 0 L< < ∞  then Lδ -measure is a supper-additive 

measure 
(vii) If ( ) 1

x X

s x
∈

=∑ and 0L =  then Lδ -measure is just the 

λ -measure 

IV. COMPOSED COMPLETED FUZZY MEASURE OF 
MAXIMIZED L-MEASURE AND DELTA-MEASURE 
 

A.  B-measure 
Definition 8 B- measure [8] 

For any given fuzzy density function, ( )s x , on a finite set, 

X, a B-measure is a set function,  [ ]: 2 0,1X
Bg → ,  

satisfying:          

( ) ( ) { }
0

,

1 1,
B

A
g A s x A x x X

A A X

φ⎧ =
⎪⎪= = ∈⎨
⎪ > ⊂⎪⎩

                    (16) 

Note that for any given fuzzy density function, ( )s x , on a 
finite set, X, B-measure is not smaller than any fuzzy  
measure, that is to say, B-measure is the largest one. 
 

B. Completed measure 
Definition 9 Completed measure [8]  
For any given fuzzy density function, ( )s x , on a finite set, X, 
a multivalent normalized monotone measure,                     
μ-measure, with determined coefficient, μ, is called a 
completed  measure , if it satisfies following conditions 

1) μ-measure is a monotone increasing function of its       
determined coefficient, μ 

2)  ifμ=0 thenμ-measure is just the P-measure 
3) If the upper limit fuzzy measure ofμ- measure is just   

the B-measure. 
Note that all of abovementioned fuzzy measures are not 
completed fuzzy measures 

C. Maximized L- measure, mL -measure 

Definition 9 mL -measure 

For given fuzzy density function ( )s x , the composed 
measure of maximized L-measure and δ-measure , denoted 

ML δ -measure, 
MLg

δ
, is a fuzzy measure on a finite set X, 

X n= , satisfying: 

1) [ )1, , ( ) 1
x X

L s x
∈

∈ − ∞ =∑                                                (16) 

2)       ( ) ( )0, 1
M ML Lg g X

δ δ
φ = =                                     (17) 

3) ,0A X A n∀ ⊂ < < ⇒  

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

1m

x A x A
L

x A
x X A x A

L A s x s x
g A s x

n A s x L A s x
∈ ∈

∈
∈ − ∈

⎡ ⎤
− −⎢ ⎥

⎣ ⎦= +
− + −

∑ ∑
∑∑ ∑

         (18) 

Note that mL -measure satisfies the following 
properties 
(i) [0, )L∈ ∞ , Lδ -measure is a fuzzy measure family 
(ii) [0, )L∈ ∞ , Lδ -measure is an increasing function of L 
(iii) if 0L =  then Lδ -measure is just the P-measure 
(iv) if 0L =  then Lδ -measure is just the additive measure 
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(v) Lδ -measure is a completed measure 
(vi) Lδ -measure does not contain the additive measure. 

 

D. Composed measure of Maximized L- measure 
and δ -measure, ML δ -measure 

Definition 9 ML δ -measure 

For given fuzzy density function ( )s x , the composed 
measure of maximized L-measure and δ-measure , denoted 

ML δ -measure, 
MLg

δ
, is a fuzzy measure on a finite set X, 

X n= , satisfying: 

1) [ )1, , ( ) 1
x X

L s x
∈

∈ − ∞ =∑                                                (19) 

2)       ( ) ( )0, 1
M ML Lg g X

δ δ
φ = =                                     (20) 

3) A X∀ ⊂ ⇒  

( )

( )

( ) ( ) ( )

( ) ( ) ( ]

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

                         max                                    1

1 1 max
max 1,0

1

1 1
0,

1

M

x A

x Ax A
L x A

x A

x A x A

x A
x X A x A

s x if L

L s x L s x
g A L s x if L

L s x

L A s x s x
s x if L

n A s x L A s x

δ

∈

∈∈

∈

∈

∈ ∈

∈
∈ − ∈

⎧
⎪
⎪
⎪ = −
⎪
⎪ ⎡ ⎤+ +⎪ ⎣ ⎦⎪= − ∈ −⎨ +

⎡ ⎤
− −⎢ ⎥

⎣ ⎦ + ∈ ∞
− + −

∑
∑

∑ ∑
∑∑ ∑

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

      (21) 

E. Important Properties ML δ -measure 

 

Theorem 1. ML δ -measure is a fuzzy measure 

Proof: if [ ]1,1L∈ − , from the property of δ -measure, we 

know that ML δ -measure is a fuzzy measure, hereafter, we 

need only to prove that if ( )0,L∈ ∞ , ML δ -measure is also a 

fuzzy measure, 
 The boundary conditions are trivial, now to prove that the 
monotonicity condition is also satisfied, 
(i) Let , 2 ,XA B A B∀ ∈ ⊂  to prove ( ) ( )

M ML Lg A g B
δ δ

≤  

    Let ( ) ( )
( ) ( ) ( )

( )
, ,

,
, ,M ML L

N A L N B L
g A g B

D A L D B Lδ δ
= =                   (22) 

   Where 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, 1

, 1
x A x A x X A

x X A x A

N A L L A s x n A s x s x

D A L n A s x L A s x
∈ ∈ ∈ −

∈ − ∈

= − + −

= − + −

∑ ∑ ∑

∑ ∑
        (23) 

and 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, 1

, 1
x B x B x X B

x X B x B

N B L L B s x n B s x s x

D B L n B s x L B s x
∈ ∈ ∈ −

∈ − ∈

= − + −

= − + −

∑ ∑ ∑

∑ ∑
        (24) 

Then 

 ( ) ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( )

, ,
, ,

, , , ,
, ,

M ML L

N B L N A L
g B g A

D B L D A L

N B L D A L N A L D B L
D B L D A L

− = −

−
=

              (25) 

to prove ( ) ( ) 0
M ML Lg B g A

δ δ
− ≥  

(ii) Since ( ) ( ),
x B x A

B A s x s x
∈ ∈

≥ ≥∑ ∑                    (26) 

     and  ( ) ( )
x X A x X B

s x s x
∈ − ∈ −

≥∑ ∑  

We can obtain  
( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

, , , ,

1

1

1

1

x B x X A

x B x X B x A

x A x X A x B

x A x X B

N B L D A L N A L D B L

L B n A s x s x

L A n B s x s x s x

L B n A s x s x s x

L A n B s x s x

∈ ∈ −

∈ ∈ − ∈

∈ ∈ − ∈

∈ ∈ −

−

= − −

+ − −

− − −

− − −

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

            (27) 

( )( ) ( ) ( )

( )( ) ( ) ( )

2

2

1

1 0

x B x X A

x A x X B

L B n A s x s x

L A n B s x s x

∈ ∈ −

∈ ∈ −

⎡ ⎤
= − − ⎢ ⎥

⎣ ⎦

⎡ ⎤
− − − ≥⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑

 

 (iii) from (i) and (ii), the proof is completed. 

Theorem 2   Important Properties of ML δ -measure 

(i) [ 1, )L∈ − ∞ , Lδ -measure is an increasing function on L 
(ii) if 1L = −  then Lδ -measure is just the P-measure 
(iii) if 0L =  then Lδ -measure is just the additive measure 
(iv) if 1 0L− < <  then Lδ -measure is a sub-additive 

measure 
(v) if 0 L< < ∞  then Lδ -measure is a supper-additive 

measure 
(vi) If ( ) 1

x X

s x
∈

=∑ and 0L =  then Lδ -measure is just the 

λ -measure 
(vii) ML δ -measure is a completed fuzzy measure. 
Proof:  
(i) if [ ]1,1L∈ − , from the property of δ -measure, we know 

that ML δ -measure is an increasing function of L, need 

only to prove that if ( )0,L∈ ∞ , ML δ -measure is also an  

increasing function of L, Let  

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

( )
1M

x A x A
L

x A
x X A x A

L A s x s x
f L g A s x

n A s x L A s xδ

∈ ∈

∈
∈ − ∈

⎡ ⎤− −⎢ ⎥
⎣ ⎦= = +

− + −

∑ ∑
∑∑ ∑

     (28) 

Then we can obtain 

( )
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

1 1
0

1

x X A x A x A

x X A x A

n A A s x s x s x
f L

n A s x L A s x

∈ − ∈ ∈

∈ − ∈

⎡ ⎤− − −⎢ ⎥
⎣ ⎦′ = ≥

⎡ ⎤− + −⎢ ⎥
⎣ ⎦

∑ ∑ ∑

∑ ∑
    (29) 

(ii)-(vi) trivial! 
(vii) Since    ( ) ( )lim ,

ML BL
g A g A A X

δ→∞
= ∀ ∈               (30) 

Hence ML δ -measure is a completed fuzzy measure. 
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V. Γ- SUPPORT 

Definition 10: γ-support [7] 
For a given fuzzy density function s of a fuzzy measure μ on 
a finite set X, if ( ) 1

x X
s x

∈

=∑ , then s is called a fuzzy 

support measure of μ, or a fuzzy support of μ, or a support of 
μ. One of fuzzy supports is introduced as below. 
Let μ be a fuzzy measure on a finite set { }1 2, ,..., nX x x x= , 

iy  be global response of subject i  and ( )i jf x  be the 

evaluation of subject i  for singleton jx , satisfying: 

( )0 1, 1,2,..., , 1,2,...,i jf x i N j n< < = =       (31) 

( ) ( )( )
( )( )

1

1
, 1, 2,...,

1

j
j n

k
k

r f x
x j n

r f x
γ

=

+
= =

⎡ ⎤+⎣ ⎦∑
           (32) 

where  ( )( ) , j

j

y x
j

y x

S
r f x

S S
=                                    (33)                                                  

2
2

1 1

1 1n N

y i i
i i

S y y
N N= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑                        (34) 

     ( ) ( )
2

2

1 1

1 1
j

n N

x i j i j
i i

S f x f x
N N= =

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑             (35) 

              

( ) ( ),
1 1 1

1 1 1
j

n N N

y x i i i j i j
i i i

S y y f x f x
N N N= = =

⎛ ⎞ ⎡ ⎤
= − −⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
∑ ∑ ∑     (36) 

satisfying ( )0 1jxγ≤ ≤  and ( )
1

1
n

j
j

xγ
=

=∑        (37) 

then the function [ ]: 0,1Xγ →  satisfying 

{ }( ) ( )x xμ γ= , x X∀ ∈  is a fuzzy support of μ, called 

γ-support of μ. 
 

VI. CHOQUET INTEGRAL REGRESSION MODELS 

A. Choquet Integral   
Definition 11 Choquet Integral [2-6] 
Let μ be a fuzzy measure on a finite set X. The Choquet 
integral of :if X R+→  with respect to μ for individual i  is 
denoted by  

( )( ) ( )( ) ( )( )1
1

, 1,2,...,
n

i
C i i ij j j

j

f d f x f x A i Nμ μ−
=
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where ( )( )0 0if x = , ( )( )i jf x  indicates that the indices 

have been permuted so that 
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B. Choquet Integral Regression Models  

Definition 12 Choquet Integral Regression Models [7-15] 
Let 1 2, ,..., Ny y y  be global evaluations of N objects and 

( ) ( ) ( )1 2, ,..., , 1,2,...,j j N jf x f x f x j n= , be their 

evaluations of jx , where : , 1,2,...,if X R i N+→ = . 

Let μ be a fuzzy measure, , Rα β ∈ , 
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then ˆˆˆ , 1,2,...,i iy f dg i Nμα β= + =∫  is called the 

Choquet integral regression equation of μ, where 
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VII. EXPERIMENTS AND RESULTS 

A. Education Data 

The total scores of 60 students from a junior high school 
in Taiwan are used for this research [9-13]. The 
examinations of four courses, physics and chemistry, 
biology, geoscience and mathematics, are used as 
independent variables, the score of the Basic Competence 
Test of junior high school is used as a dependent variable.  

The data of all variables listed in Table IV is applied to 
evaluate the performances of seven Choquet integral 
regression models with P-measure, λ-measure and 
δ-measure, L-measure measure, Lδ -measure, and 

mL δ -measure based on γ-support respectively, a ridge 
regression model, and a multiple linear regression model by 
using 5-fold cross validation method to compute the mean 
square error (MSE) of the dependent variable. The formula 
of MSE is 
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The fuzzy density function, γ-support of the P-measure, 
λ-measure, δ-measure, L-measure, Lδ -measure, 

mL -measure, and mL δ -measure are listed as follows which 
can be obtained by using the formula (32). 

 
{0.2488, 0.2525, 0.2439, 0.2547}                 (48) 
 

Due to above same fuzzy support, all event measures of 
any fuzzy measure can be found, and then, the Choquet 
integral based on abovementioned fuzzy measures and the 
Choquet integral regression equation based on those fuzzy 
measures can also be found by using above corresponding 
formulae. 

The experimental results of nine forecasting models are 
listed in Table I. We find that the Choquet integral 
regression model with mL δ -measure based on γ-support 
outperforms other forecasting regression models. 

TABLE I MSE OF REGRESSION MODELS 

Regression model 
measure

5-fold CV 
MSE 

mL δ  47.5698 

mL  47.6187 
Lδ  47.9742 
L 48.4610 
δ 48.7672 
λ 49.1832 

Choquet 
Integral 

Regression 
model 

p 53.9582 
Ridge regression 59.1329 

Multiple regression 65.0664 
 

B. Thermostable Proteins Data 

A thermostable proteins data set was downloaded from 
the Protein Data Bank (PDB), http://www.rcsb.org, [16]. By 
substituting four physicochemical quantities of each residue 
of amino acid in sequence of the thermostable proteins using 
the four feature scaling estimators, we can obtain four 
non-symbolic sequences of the thermostable proteins. Then 
we can estimate the Hurst exponents of each non-symbolic 
sequence of the thermostable proteins by using R/S method 
[17]. It is based on empirical observations by Hurst in 1965 
and estimates Hurst exponents are based on the R/S statistic. 
It indicates (asymptotically) second-order self-similarity. 
Hurst exponent is roughly estimated through the slope of the 
linear line in a log-log plot, depicting the R/S statistics over 
the number of points of the aggregated series. That is, given 
a time sequence of observations, tw  define the Series 
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In plotting ( )log
( )

R
S

τ
τ

 against logτ , we expect to get a 

line whose slope determines the Hurst exponent. 

 We can obtain four features of Hurst exponents in each 
sequences of the thermostable protein. The data of all 
features are listed in Table IV. Using these extracted 
features, we can predict the temperature of the 40 
thermostable proteins. 

For evaluating the performances of seven 
Choquet integral regression models with P-measure, 
λ-measure and δ-measure, L-measure measure, 
Lδ -measure, and mL δ -measure based on γ-support 
respectively, a ridge regression model, and a multiple linear 
regression model we can use 5-fold cross validation method 
to compute the mean square error (MSE) of the dependent 
variable by equation (47).  

The fuzzy density function, γ-support of the P-measure, 
λ-measure, δ-measure, L-measure, Lδ -measure, 

mL -measure, and mL δ -measure are listed as follows which 
can be obtained by using the formula (32). 

 
{0.1697, 0.2633, 0.31799, 0.2490}                   (56) 
 

TABLE II MSE OF REGRESSION MODELS 

Regression model 
measure 

5-fold CV 
MSE 

mL δ  21.4563 

mL  21.5634 

Lδ  21.6173 

L  21.7794 
δ 22.3164 
λ  22.0117 

HE-Choque
t Integral 

Regression 
model with 

fuzzy 
measure 

P  22.5051 
HE-Ridge regression 23.9718 

HE-Multiple regression 
regression 25.3937 

 
For any fuzzy measure, μ-measures, once the fuzzy 

support of the μ-measure is given, all event measures of μ 
can be found, and then, the Choquet integral based on μ and 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Hsiang-Chuan Liu, Hsien-Chang Tsai, 
Yu-Du Jheng, Tung-Sheng Liu

ISSN: 1790-0832 479 Issue 4, Volume 7, April 2010



 

 

the Choquet integral regression equation based on μ can also 
be found by using above corresponding formulae. 

The experimental results of nine forecasting models are 
listed in Table II. We find that the Choquet integral 
regression model with mL δ -measure based on γ-support 
outperforms other forecasting regression models. 

VIII. CONCLUSION  
In this paper, a improved multivalent composed fuzzy 

measure of maximized L-measure and δ-measure, called 
mL δ -measure, is proposed. This new measure is proved that 

it is of closed form with infinitely many solutions, and it can 
be considered as an extension of the two well known fuzzy 
measures, λ-measure,  P-measure and B-measure. 
Furthermore, this improved multivalent fuzzy measure is 
not only including the additive measure, but also a 
completed fuzzy measure having the more infinitely many 
measure solutions than other abovementioned multivalent 
fuzzy measures. By using 5-fold cross-validation MSE, two 
experiments are conducted for  comparing the performances 
of a multiple linear regression model, a ridge regression 
model, and the Choquet integral regression model with 
respect to P-measure, λ-measure, δ-measure, 
L-measure, Lδ -measure and the new measure, mL δ -measure, 
based on γ-support respectively. Both of two results show 
that the Choquet integral regression models with respect to 
the proposed mL δ -measure based on γ-support outperforms 
other forecasting models. 

In the future, we will apply the proposed Choquet integral 
regression model with the new fuzzy measure based on 
γ-support to develop multiple classifier systems and 
multi-criteria decision making systems. . 
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TABLE III THE DATA SET WITH FOUR COURSES AND SCIENCE SCORES OF THE BCT 

No. C1 C2 C3 C4 BCT No. C1 C2 C3 C4 BCT 

1 72 66 78 72 19 31 66 68 75 74 25 
2 86 80 82 81 35 32 68 70 74 76 40 
3 56 63 69 75 21 33 57 65 75 70 24 
4 78 86 86 86 33 34 74 70 80 75 35 
5 66 72 80 76 23 35 49 60 69 64 13 
6 68 74 77 80 28 36 51 60 63 64 18 
7 74 86 87 88 44 37 58 64 68 66 32 
8 54 56 62 68 7 38 73 78 84 81 39 
9 71 74 80 77 26 39 56 56 65 61 6 

10 68 70 80 75 33 40 61 62 70 70 25 
11 53 56 70 63 22 41 57 60 68 64 23 
12 67 70 80 75 35 42 57 64 67 70 26 
13 70 66 70 74 13 43 50 52 68 60 7 
14 60 65 75 70 23 44 84 80 76 72 49 
15 68 68 78 76 35 45 62 66 76 71 22 
16 58 66 76 71 37 46 70 74 78 82 32 
17 61 66 72 78 33 47 69 70 80 75 26 
18 68 68 80 74 26 48 63 74 74 74 42 
19 56 66 76 71 21 49 66 78 80 82 39 
20 59 62 70 78 29 50 67 70 80 75 31 
21 62 64 76 70 36 51 56 65 75 70 23 
22 71 72 78 75 26 52 50 54 66 60 18 
23 74 63 69 75 12 53 71 75 85 80 41 
24 59 70 80 76 37 54 74 77 80 85 26 
25 75 75 85 80 39 55 71 72 76 80 31 
26 73 78 84 81 24 56 60 65 75 70 21 
27 62 68 72 74 29 57 59 57 70 68 17 
28 77 74 80 76 42 58 50 56 65 68 13 
29 63 60 68 69 17 59 72 76 80 78 38 
30 56 61 75 68 22 60 81 76 78 80 33 

C1 : physics and chemistry 
C2 : biology 
C3 : geoscience 
C4 : mathematics 
BCT : Basic Competence Test of nature science 
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Table IV  Hurst  exponents of four feature scaling of  Thermostable Proteins 

 

Code of Proteins Temperature ASA Electrostatic 
Interactions Contact Energy 

Solvent 
Accessibility 
Percentages 

1L 37 0.3832 0.4125 0.3335 0.7335 
1H 100 0.4691 0.6572 0.3411 0.5636 
2L 35 0.4129 0.3985 0.3315 0.4772 
2H 60 0.5119 0.537 0.4524 0.5345 
3L 37 0.5079 0.4489 0.2766 0.5512 
3H 71 0.4224 0.4183 0.4881 0.5818 
4L 27.5 0.4463 0.3964 0.3807 0.6805 
4H 47.5 0.4936 0.5039 0.501 0.629 
5L 37 0.3577 0.4718 0.4509 0.6078 
5H 100 0.4751 0.5812 0.4299 0.5699 
6L 30 0.2847 0.5155 0.3618 0.6286 
6H 60 0.4314 0.6042 0.3244 0.4178 
7L 37 0.5432 0.5496 0.4466 0.6699 
7H 90 0.255 1 0.3501 0.5807 
8L 28 0.3573 0.5062 0.1892 0.6273 
8H 80 0.3461 0.5167 0.2403 0.4284 
9L 37 0.5153 0.4902 0.3485 0.6008 
9H 72.5 0.3989 0.4223 0.409 0.5215 
10L 28 0.4641 0.4432 0.3261 0.5817 
10H 80 0.446 0.581 0.2082 0.5506 
11L 30 0.3832 0.4125 0.3335 0.7335 
11H 80 0.4691 0.6572 0.3411 0.5636 
12L 37 0.4129 0.3985 0.3315 0.4772 
12H 95 0.5119 0.5371 0.4524 0.5345 
13L 35 0.5079 0.4489 0.2766 0.5512 
13H 65 0.4224 0.4183 0.4881 0.5818 
14L 27.5 0.4463 0.3964 0.3807 0.6805 
14H 74.5 0.4936 0.5039 0.501 0.629 
15L 47.3 0.3577 0.4718 0.4509 0.6078 
15H 94 0.4751 0.5812 0.4299 0.5699 
16L 47.5 0.2847 0.5155 0.3618 0.6286 
16H 90 0.4314 0.6042 0.3244 0.4178 
17L 35 0.5432 0.5496 0.4466 0.6699 
17H 86 0.255 0.5078 0.3501 0.5807 
18L 27.5 0.3573 0.5062 0.1892 0.6273 
18H 85 0.3461 0.5167 0.2403 0.4284 
19L 30 0.5153 0.4902 0.3485 0.6008 
19H 85 0.3989 0.4223 0.409 0.5215 
20L 55 0.4641 0.4432 0.3261 0.5817 
20H 113 0.446 0.581 0.2082 0.5506 
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