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Abstract: - This paper investigates the optimal inventory replenishment policy for an economic production 
quantity (EPQ) model with backordering, rework and machine breakdown taking place in stock piling time. A 
prior paper by Chiu has examined the lot-sizing problem on an imperfect quality EPQ model. Due to another 
reliability factor - random machine breakdown seems to be inevitable in most real world manufacturing 
environments, and to deal with it the production planners must practically compute the mean time between 
failures (MTBF) and establish a robust production plan accordingly in terms of the optimal replenishment lot 
size that minimizes total production-inventory costs for such an unreliable system. This study extends Chiu’s 
work and incorporates a machine breakdown taking place in the stock piling stage into his model. The effects of 
random machine failure on optimal run time and on the long-run average costs are examined in this paper. 
Mathematical modeling and cost analysis are employed. The renewal reward theorem is utilized to cope with 
variable cycle length. Convexity of the long-run average cost function is proved and an optimal lot-size that 
minimizes the expected overall costs for such an imperfect system is derived. Numerical example is given to 
demonstrate its practical usage. Managers in the field can adopt this run time decision to establish their own 
robust production plan accordingly. 
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1  Introduction 
One implicit assumption of conventional economic 
production quantity model is that the produced items 
are always of perfect quality. However, in real-life 
manufacturing systems, due to many unpredictable 
factors, generation of random defective items seems 
to be inevitable. For this reason, many studies have 
been carried out to address the imperfect quality 
item issues in EPQ model [1-8]. Lee and Rosenblatt 
[2] studied an EPQ model with joint determination 
of production cycle time and inspection schedules, 
they derived a relationship that can be used to 
determine the effectiveness of maintenance by 
inspection. Cheung and Hausman [6] developed an 
analytical model of preventive maintenance (PM) 
and safety stock (SS) strategies in a production 

environment subject to random machine breakdowns. 
They illustrated the trade-off between investing in 
the two options (PM and SS) and provided 
optimality conditions under which either one or both 
strategies should be implemented to minimize the 
associated cost function. Both the deterministic and 
exponential repair time distributions are analyzed in 
detail in their study. Boone et al. [8] investigated the 
impact of imperfect processes on the production run 
time. They built a model in an attempt to provide 
managers with guidelines to choose the appropriate 
production run times to cope with both the defective 
items and stoppages occurring due to machine 
breakdowns. Despite the simplicity of EPQ model, it 
is still the basis for the analyses of more complex 
systems [9-17]. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Feng-Tsung Cheng, Huei-Hsin Chang, Singa Wang Chiu

ISSN: 1790-0832 463 Issue 4, Volume 7, April 2010



 

The imperfect quality items produced in some 
circumstances can be reworked and repaired. For 
example, the printed circuit board assembly (PCBA) 
in PCBA production or the plastic goods in plastic 
injection molding process, etc., hence, the long-run 
average production-inventory costs can be reduced 
significantly [18-24]. Hayek and Salameh [18] 
examined an EPQ model that all defective items 
produced are repairable. They derived an optimal 
operating policy for such an imperfect EPQ model 
under the effect of reworking of defective items. 
Chiu [19] studied optimal lot size for an imperfect 
quality finite production rate model with rework and 
backlogging. Jamal et al. [20] investigated optimal 
production batch size with rework process at a 
single-stage manufacturing system. Due to excess 
demands, stock-out situations may arise occasionally. 
Sometimes, shortages are permitted and they are 
backordered and satisfied in the very next 
replenishment. Hence, the total production-inventory 
costs can be reduced substantially [18,19,22]. 

In the real-life production management, random 
machine failure is another common reliability factor 
that troubles production practitioners most. To be 
able to effectively control and manage the disruption 
caused by the random breakdown in order to 
minimize overall production costs becomes a critical 
task to most of the production planners. Hence, 
determination of optimal inventory replenishment 
policy for production systems subject to machine 
failures has received extensive attention from 
researchers in past decades [25-34]. Groenevelt et al. 
[25] proposed two inventory control policies to deal 
with machine failures. One assumes that production 
of the interrupted lot is not resumed (called no 
resumption-NR policy) after a breakdown. The other 
policy considers that production of the interrupted 
lot will be immediately resumed (called abort/ 
resume-AR policy) after the breakdown is fixed and 
if the current on-hand inventory falls below a certain 
threshold level. Repair time is assumed to be 
negligible, and effects of machine breakdowns and 
corrective maintenance on the economic lot sizing 
decisions were investigated. Makis and Fung [26] 
investigated effects of machine failures on the 
optimal lot size as well as on optimal number of 
inspections. Formulas for the long-run expected 
average cost per unit time was obtained. Then the 
optimal production/inspection policy that minimizes 
the expected average costs was derived. Giri and 
Dohi [28] developed the exact formulation of 
stochastic EMQ model for an unreliable production 
system. Their EMQ model is formulated based on 
the net present value (NPV) approach and by taking 
limitation on the discount rate the traditional 

long-run average cost model is obtained. They also 
provided criteria for the existence and uniqueness of 
the optimal production time and computational 
results showing that the optimal decision based on 
the NPV approach is superior to that based on the 
long-run average cost approach. Chiu et al. [29] 
considered the optimal run time for EPQ model with 
scrap, rework and random breakdown. They proved 
theorems on conditional convexity of the integrated 
cost function and on bounds of the production run 
time. An optimal run time was located by the use of 
the bisection method based on the intermediate value 
theorem.  

This paper incorporates a machine breakdown 
factor into model studied by Chiu [19] and studies 
its effect on the optimal inventory replenishment 
policy as well as on the long-run production- 
inventory costs. Because little attention was paid to 
the area of imperfect quality EPQ model with 
backlogging, rework and machine breakdown taking 
place in stock piling time; this paper intends to 
bridge the gap. 
 
 

2  Problem Formulation 
The following describes our proposed imperfect 
quality EPQ model. Consider a manufactured item’s 
production rate is P per year and its annual demand 
rate is λ, where the value of P is much larger than 
that of λ. Manufacturing process may randomly 
produce x portion of defective items at a production 
rate d, where d=Px. All produced items are screened 
and the inspection cost per item is included in the 
unit production cost C. Assuming that the production 
rate of perfect quality items must always be greater 
than or equal to the sum of the demand rate λ and the 
defective rate d. Hence, the following condition 
must hold: (P-d-λ)>=0 or (1-x-λ/P)>=0.  

A θ portion of the imperfect quality items is scrap 
and they are discarded when the regular production 
ends. The other (1-θ) portion of imperfect quality 
items is reworked at a rate of P1 immediately after 
the regular process. Stock-out situation is allowed. 
Shortages are backordered and satisfied by the 
immediate next replenishment. Further, according to 
the mean time between failures (MTBF) data, a 
machine failure may take place randomly in the 
stock-piling time (refer to Figure 1), and an abort/ 
resume inventory control policy is adopted in this 
study. Under such a policy, when a machine failure 
occurs, machine is under corrective maintenance 
immediately. A constant repair time is assumed and 
the interrupted lot will be resumed right after the 
restoration of machine. 

In this study, we assume that probability of more 
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than one machine breakdown occurrences in a 
production cycle is very small due to a very good 
preventive maintenance schedule. However, if it 
happens, the safety stock will be used to satisfy the 
demand during machine repairing time. Therefore, 
multiple machine failures are assumed to have 

insignificant effect on the proposed model. Here, the 
purpose of using safety stock is to simplify our on- 
hand inventory analysis when multiple breakdowns 
occur. 

Figure 1 depicts the on-hand inventory level of 
perfect quality items in the proposed EPQ. 

 

 

Fig. 1: On-hand inventory of perfect quality items in EPQ model with 
backordering, rework and machine failure taking place in stock 
piling time 

 
Cost variables considered in the proposed EPQ 

model include: setup cost K, unit holding cost h, unit 
production cost C, repair cost for each defective item 
reworked CR, disposal cost per scrap item CS, unit 
shortage/backorder cost b, unit holding cost per 
reworked item h1, and the cost for repairing/restoring 
failure machine M. Additional parameters used are 
listed below. 

 

T = the production cycle length, 
Q = production lot size for each cycle, 
B = the maximum backorder level allowed for 

each cycle, 
H1 = level of on-hand inventory when machine 

breakdown occurs, 
H2 = level of on-hand inventory when machine is 

repaired and restored, 
H3 = level of on-hand inventory when regular 

production process ends, 
H4 = the maximum level of perfect quality 

inventory when rework finishes, 
T1 = production run time to be determined by the 

proposed study, 
t = production time before a random breakdown 

occurs, 

t2 = time needed to rework the defective items, 
tr = time required for repairing and restoring the 

machine, 
t5 = time required for filling the backorder 

quantity B, 
t3 = time required for depleting all available 

perfect quality on-hand items, 
t4 = shortage permitted time, 
TC(T1,B) = total production-inventory costs per 

cycle, 
TCU(T1,B) = total production-inventory costs per 

unit time (e.g. annual), 
E[TCU(T1,B)] = the expected total 

production-inventory costs per unit time. 
 

Let maximum machine repair time be a constant tr 
and tr =g. In this study, it is conservatively assumed 
that if a failure of a machine cannot be fixed within a 
certain allowable amount of time, then a spare 
machine will be in place to avoid further delay of 
production. The following derivation procedure is 
similar to what was used by past studies [18-19]. 

Refer to Figure 1, one can obtain the following: 
the cycle length T; production run time T1; time for 
reworking defective items t2; time required for 
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depleting all available on-hand items t3; shortage 
allowed time t4, time t5 for refilling the maximum 
backordering quantity B, and the on-hand inventory 
levels of H1, H2, H3 and H4. 

1 2 3 4 rT T t t t t= + + + +           (1) 

1 /T Q P=           (2) 

( )1

1

2

1d T

P
t

θ⋅ −
=              (3) 

43 /Ht λ=              (4) 

4 /t B λ=              (5) 

5 λ
=

− −
B

t
P d

      (6) 

( )1H P d tλ= − −       (7) 

2 1 1rH H t H gλ λ= − = −        (8) 

( ) ( )3 2 1 5H H P d T t tλ= + − − ⋅ − −      (9) 

( )14 3 2H H P tλ= + −          (10) 

where d=Px and let g be the constant machine repair 
time, i.e. tr = g. The level of on-hand defective items 
for the proposed imperfect quality EPQ model is 
illustrated in Figure 2. 

 

Fig. 2: On-hand inventory of defective items in EPQ model with 
backordering, rework and machine failure taking place in stock 
piling time 

 
Total imperfect quality items produced during the 

production run time T1 are: 

1d T x Q⋅ = ⋅                (11) 

Figure 3 depicts the on-hand inventory level of 
scrap items produced during the regular production 
process. The total scrap items produced during T1 are 
as follows. 

( ) ( ) ( )1 1θ θ θ⋅ ⋅ ⋅ ⋅ ⋅= ⋅ = ⋅d T P x T x Q        (12) 
 

Total production-inventory cost per cycle 
TC(T1,B) is: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 1

1 1 1 1

2 31 1 2
51

4 33 4
2

5 1
51

1 2
52 4

5
5 5

, (1 )

2 2 2
 

2 2

 
2 2

 
2 2 2

R

r

s

tr

TC T B K M C PT C PT x C PT x

H HH t H H
t T t t

h
H tH H

t

d t t t t dT
h t t t t T t t

Pt B B
h t b t t

θ θ= + + ⋅ + ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅  

+ +
+ + − − 

 +
 +
+ + 

 

 + + +
 + + + + + − −
  

   + + +     
 (13) 

 

 

Fig. 3: On-hand inventory level of scrap items in EPQ model with 
backordering, rework and machine failure taking place in stock 
piling time 
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By substituting all variables in Equations (1) to 
(12) in Equation (13), the production-inventory cost 
function TC(T1,B) becomes: 

 

( ) ( )

( )

1 1 1 1

22
2 2 2 2 2

1 1 1

2 2 2 22

1
1 1 1

1

1 1

( , ) (1 )

1
  1 2 2

2
1

(1 )(1 )
  

2
2 (1 )

  

(1 )

R STC T B C P T K M C T P x C T Px

x Bh P
x x T PT Px T

x
P

P x Tb x B P Px
h h h T B h T B

P
x

P

hg
B hPgT hPgx T hP

x
P

θ θ

θ θ θ
λλ λ

θ θ
λ λ λλ

θ
λ

= ⋅ ⋅ + + + ⋅ ⋅ ⋅ ⋅ − + ⋅

 
 − 

+ − + + − + 
  − −    

−−
+ + − − +

− −

+ − + +
− −

2

1

hg
gt

x
P

λ
λ

+
 − − 
 

 

(14) 

Owing to the defective, scrap, and machine failure 
rates are random (in this study, we assume uniformly 
distributed defective rate and the Poisson distributed 
breakdown rate, with mean equals to β per unit time); 
production cycle length is not constant. Therefore, to 
take randomness of defective, scrap, and breakdown 
rates into account, one can employ renewal reward 
theorem [30,35] in the production-inventory cost 
analysis to cope with the variable cycle length and 
use the integration of TC(T1,B) to deal with the 
random breakdown happening in stock-piling time.  

Hence, the long-run average production-inventory 
costs per unit time E[TCU(T1,B)] can be calculated 
as follows. 

( )
( ) ( )

[ ]

( ) ( )
[ ]( ) ( )( )

1

1

51

0

51
10

1
1 5

,

,

,

             

1 / 1

T

T

T t

t

t t

E TC T B f t dt

E TCU T B
E T

E TC T B dt

T P E x

e

e

β

β

β

θ λ

−

−

−

−

−

 ⋅  =  

 ⋅  =
 − ⋅ − 

∫

∫

   (15) 

Substituting all related parameters from Equations 
(1) to (14) in the numerator of Equation (15), one 
has the following: 

 

( ) ( )

( ) ( )

[ ] [ ]
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∫

( ) [ ]( ) [ ]222 2

1 1

1

1

2

P T E x h h

P

θ

 
 
 
 
  
 
 
 
 − −
 +  

   (16) 

After further derivations, one should be able to 

obtain the E[TCU(T1,B)] as follows. 
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 
 
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 
 
  
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(17) 
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E x E x

E x x
E E E
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  (18) 

Then Eq. (17) becomes: 
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3  The Optimal Replenishment Policy 

To find the optimal replenishment policy for the 
proposed imperfect quality EPQ model, one should 
first prove the convexity of the long-run average cost 
function E[TCU(T1,B)]. Hessian matrix equations 
[35] can be employed to verify the existence of the 
following for the proof of convexity. 

[ ]
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( ) ( )
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∂ ∂ ∂    ⋅ >  ∂ ∂         
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(20) 

E[TCU(T1,B)] is strictly convex only if equation 
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(20) is satisfied, for all T1 and B different from zero: 
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 (21) 

Equation (21) is resulting positive because all 
parameters are positive. Hence, E[TCU(T1,B)] is a 
strictly convex function. It follows that for the 
optimal uptime T1 and maximal backorder level B, 

one can differentiate E[TCU(T1,B)] with respect to 
T1 and with respect to B, and solve linear systems of 
equations (22) and (23) by setting these partial 
derivatives equal to zero. 
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Equation (24) can be rewritten as: 
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With further derivations, equation (22) becomes: 
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Substituting Equation (24) in Equation (25), one 
has: 
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or 
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Finally the optimal replenishment policy in terms 
of production run time and level of backordering can 
be obtained as follows: 
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         (29) 

It is noted that practitioner should check both the 
numerator and denominator of Eq. (28) are positive 
before adopting this optimal replenishment run time 
in real life usage. Proof of positive of denominator 
can be found in Appendix of [24]. One notes that 
verification of B* to be a positive number is required 
when put it in use. 

From Equations (2) and (28), one can also obtain 
the optimal lot-size Q* as follows: 
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3.1 Solution Verification 
If the machine failure is not a factor to be considered, 
then the repairing cost and time for the failure 
machine, M=0 and g=0, Equations (29) and (30) 
become the same equations as were given by [19]: 
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            (32) 

Further, if the regular production process produces 
no defective items (i.e. x=0) then Equations (31) and 
(32) become the same equations as were presented 
by the classic EPQ model with shortages permitted 
and backordered [33,36]: 
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4 Numerical Example 
Consider the annual demand of a manufactured item 
is 3,600 units and it can be produced at a production 
rate of 9,000 units per year. The percentage x of 

imperfect quality items produced follows a uniform 
distribution over the interval [0, 0.2].  

A portion θ= 0.2 of defective items is scrap. The 
rate of rework process is P1=600 units per year. 
Other parameters are summarized as follows. 

C = $1 per item, 
CR  = $0.5 for each item reworked, 
CS = $0.3 disposal cost for each scrap item, 
K = $450 for each production run, 
h = $0.6 per item per unit time, 
h1 = $0.8 per item per unit time, 
b = $0.2 per shortage item backordered per unit 

time, 
g = 0.018 years, time needed to repair and 

restore the machine, 
M = $500 repair cost for restoration of machine 

failure. 

Applying Equations (28) to (30), one obtains the 
optimal production run time T1* =0.8794 years, the 
optimal backorder quantity B* =3,146, and optimal 
lot-size Q* =7,915. By using Equations (18) and 
(19), one obtains the optimal long-run expected cost 
E[TCU(T1*,B*)]= $4,680.  

Figure 4 depicts variation of the defective rate x 
and scrap rate θ effects on the optimal production 
run time T1*. It indicates that as x increases, the 
value of optimal production run time T1* decreases 
slightly, and as scrap rate θ increases, T1* increases 
significantly. 

 

 
Fig. 4: Behavior of the optimal production run time with respect 

to the defective rate x and the scrap rate θ 

 
Variation of the defective rate x and the scrap rate 

θ effects on the optimal backorder quantity B* is 
illustrated in Figure 5. It shows that as x increases, 
the value of optimal backorder quantity B* decreases 
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significantly; and as the scrap rate θ increases, the 
value of the optimal backorder quantity B* decreases 
slightly. Figure 6 depicts behavior of 
E[TCU(T1*,B*)] with respect to the defective rate x 
and the scrap rate θ. It shows that for different 

defective rate x values, as x increases, the overall 
production-inventory costs E[TCU(T1*,B*)] 

increases significantly; and as scrap rate θ increases, 
E[TCU(T1*,B*)] increases slightly. 

 

 

Fig. 5: Variation of the defective rate x and scrap rate θ effects 
on the optimal backordering quantity B* 

 

 

Fig. 6: Behavior of E[TCU(T1*,B*)] with respect to the scrap 
rate θ and the defective rate x 

 
Figure 7 illustrates the convexity of the long-run 

expected production-inventory costs E[TCU(Q,B)] 
with respect to the level of backorder B and the 
replenishment lot-size Q. 
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Fig. 7: Convexity of the expected cost function E[TCU(Q,B)] for the 
proposed EPQ model with backordering, rework and machine 
failure taking place in stock piling time 

 
5 Concluding Remarks 

When dealing with an unreliable production system 
with backordering, rework, and machine breakdown 
taking place in stock piling time, if the results of the 
present study are not available, one can only use the 
lot-size solutions given by [19] and obtain run time 
T1 = 0.5834 years and B = 2131 units. Plugging T1 
and B into equation (17) of this paper, one obtains 
E[TCU(T1,B)]=$4,757. In comparison with the 
optimal E[TCU(T1*,B*)]=$4,680, the difference is 
$77. If we exclude $4268 (i.e. the sum of costs for 
rework, disposal, and variable manufacturing cost) 
from the E[TCU(T1*,B*)]; as a result, E[TCU(T1,B)] 

=$4,757 is 18.69% more on sum of holding and 
setup costs than that obtained by using the optimal 
inventory replenishment policy of this study. 

With an in-depth investigation on such a real life 
unreliable manufacturing system, optimal operating 
disciplines and related facts of the system can now 
be revealed. Practitioners and managers in the field 
can adopt the research results of this study as their 
inventory replenishment decisions to establish their 
own robust production plan accordingly.  

For future research, to investigate the effect of 
random machine failure taking place in the backorder 
refilling time and with an abort/resume inventory 
control policy on the optimal lot-size decision, will 
be an interesting topic. Also, decisions on maximum 
repairing time of the machine to be allowed as well 
as acquisition of the spare machine may also have 

important effects on the replenishment run time 
studied. 
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