
Industrial Experiences of Developing a Model for Software Development
Quality Gates

PASI OJALA
School of Business and Information Management

Oulu University of Applied Sciences
Hintanmutka 17, 90650 Oulu

FINLAND
pasiojala10@yahoo.com

Abstract: - The purposes to use quality gates in software development are many. Quite often companies see that the
usage of quality gates improves their overall efficiency, effectiveness and output quality of software delivery chain.
They also see that the usage of quality gates helps them to make things right at once by not skipping quality assurance
actions.

This paper defines quality gate model for a software company. As well it shows that even quality gates might be in
place they are not always followed because of a business reason. Companies can forget their well structured quality
gate systems when business reason justifies it. The results of neglecting quality gates might lead to a situation where
software asset output is not trusted anymore and quality is not known. In a longer run quality gate system seems to be
as good as human being who is keeping it.

This paper discusses about the most typical software development quality gates in an industrial context. As well it
gives reasoning why these gates are usable and defines general criteria for each of them. Paper notifies that even
quality gates are in place, they are not useful if not followed.

The theoretical discussion in this paper is constructive and follows the constructive research method. Industrial
experiments are explained using a case study method.

Key-Words: - Software quality, quality gates, software development

1 Introduction
There are many different activities in software product
development process [20] . According to Humphrey
[10], the paradigm of the software process proponents is
that the quality of the software development process is
closely related to the quality of the resulting software. In
this paper this relationship between development process
and resulting software has been used as a one starting
point for building the proposed and discussed quality
gating system. Therefore, the proposed and discussed
gating system tries to influence not only to the quality of
software development process but also to the quality of
resulting software (see for example [16,17]

This paper also shares the idea of Krasner [15] who
points out that “in a mature software organization, the
following holds:

• Quality is defined and therefore predictable
• Costs and schedules are predictable and

normally met
• Processes are defined and under statistical

control”.

Krasner’s idea of defined and predictable quality is one
main point for building the proposed quality criteria.
This can be seen for example in the nature of gate
keeping system, where each gate is having a gate keeper
who is having the responsibility to predict the quality of
software coming to his gate. It can also be seen that
Krasner’s idea of the need to define processes and
control them is build inside the discussed gating system.
This is because the quality gating system has been
defined as a process and it is also controlled using
different kinds of gating metrics.
 Having the basic assumptions on the background this
paper has also a long discussion on the background.
Year by year the amount of software code seems to
increase in several software products. The inevitable
result of this seems to be also that software is including
increasingly more errors as well. As competition is
becoming increasingly more demanding and customers
need to have more value in their software products, new
methods for controlling the software quality are clearly
needed.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 671 Issue 5, Volume 7, May 2010

 This paper outlines that to be effective in the quality
control a company needs to see the multidimensional
nature of software development. Software development
has many different kinds of activities and these activities
differ from each other. As well as software development
activities differ from each other, differ also the people
working in a software company. They have different
kind of ambitions and targets in their life and often they
also achieve bonuses in a different way. Taking into
account the differences in people and software
development activities it seems justified to tell that also
quality system needs to base on understanding the
differences in software development environment.
 Therefore first of all it seems justified that quality
system sets criteria for individual software developers.
Theoretically these criteria should be flexible and easy
to follow for different kind of developers working with
different kind of targets. Secondly in almost every
software company there are several teams who deliver
their code to a common codeline which combines all
contributions together. Codeline gate criteria should be
should be able to control the quality of different teams
working together.
 Thirdly every software company publishes software
releases for internal testing use. These releases are
extremely important for all technical teams. Using these
releases all technical teams are able to get a common
picture of how electronic product is working.
 Fourthly every software company publishes releases
for customer use. The quality of customer releases is
extremely important as their quality is part of customer
experience. If in a longer term customer sees this quality
bad, it will have an effect to his buying decisions as
well.

2 Model-Based Software Quality Process
Improvement
There are several different aspects for controlling
software quality [16]. One of the most discussed aspects
is modeling. Typically, in modeling, “a model is an
abstract representation of reality that excludes much of
the world’s infinite detail. Generally, the purpose of a
model is to reduce the complexity of understanding or
interacting with a phenomenon by eliminating the detail
that does not influence its relevant behavior. Therefore,
a model reveals what its creator believes is important in
understanding or predicting the phenomena modeled.”
[19]
 The purpose of this paper is to model a typical
software quality gating process which has been seen
important in improving software quality. According to
Humprey & Feiler [11] and Osterweil [21], a process
model is an abstract description of an actual or proposed

process that represents selected process elements that are
considered important to the purpose of the model and
can be enacted by a human or machine.

The main parts of this paper are constructive.
Constructive research constructs new reality by using
research results which have in part been presented
before. [13] The used research results in this paper cover
for example earlier discussions of modeling software
processes and using modeling as a basis for improving
software quality.

This paper presents also experimental industrial
experiences of developing quality gates model. In nature
this part of the paper can be seen as a case study.
Typically, a case study is an empirical inquiry that meets
the following criteria: [25]

• It investigates a contemporary phenomenon
within its real-life context, especially when

• The boundaries between phenomenon and
context are not clearly evident.

In this study, all industrial experiences are explained
with real-life data. During the data collection phase, the
researcher read several documents and guaranteed the
findings using several interviews with different people.
Typically, in data collection, the researcher also
organized teamwork sessions to find consensus for
discussed topics. Since the criteria for each gate were
not in every detail evident, the presented criteria are
reported as they were defined in the company. This
perhaps also helps in keeping to the real-life context and
in drawing conclusions for each defined gate and criteria
separately.

Methodologically, the applied research method can
be understood also as case, because the inquiry: [25]

• Copes with the technically distinctive
situation in which there will be many more
variables of interest than data points, and as a
result

• Relies on multiple sources of evidence, with
data needing to converge in a triangulating
fashion, and as another result

• Benefits from the prior development of
theoretical propositions to guide data col-
lection and analysis.

According to Curtis et al. [6], “traditionally, the
modeling of information systems has focused on
analyzing data flows and transformations. This modeling
accounted only for the organization’s data and that
portion of its processes that interacted with data. Newer
uses of information technology extend computer use
beyond transaction processing into communication and
coordination. Successfully integrating these systems into
the enterprise often requires modeling even the manual

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 672 Issue 5, Volume 7, May 2010

organizational processes into which these systems
intervene.” Furthermore, Curtis et al. [6] list the
following three such applications:

• Business process re-engineering – the
redesign of an organization’s business
processes to make them more efficient.

• Coordination technology – an aid to
managing dependencies among the agents
within a business process; it also provides
automated support for the most routinized
component processes.

• Process-driven software development
environments – an automated system for
integrating the work of software-related
management and staff; it provides
embedded support for an orderly and
defined software development process.

• In practice, research on software process
modeling supports a wide range of
objectives [14, 22] . Curtis et al. [6] list five
basic uses for process models, ranging from
understanding aids to automated execution
support:

• Facilitate human understanding and
communication – requires that a group be
able to share a common representational
format

• Support process improvement – requires a
basis for defining and analyzing processes

• Support process management – requires a
defined process against which actual project
behaviors can be compared

• Automate process guidance – requires
automated tools for manipulating process
descriptions

• Automate execution support – requires a
computational basis for controlling behavior
within an automated environment.

Typically, in process modeling, “a model is an
abstract representation of reality that excludes much of
the world’s infinite detail. The purpose of a model is to
reduce the complexity of understanding or interacting
with a phenomenon by eliminating the detail that does
not influence its relevant behavior. Therefore, a model
reveals what its creator believes is important in
understanding or predicting the phenomena modeled.”
[6]

Humphrey & Feiler [11] have presented a
foundational lexicon on which to build a conceptual
framework for software process modeling and
definition. They define a process as “set of partially
ordered steps intended to reach a goal.” Any component
of a process is a “process element”. A process step is “an

atomic action of a process that has externally visible
substructure.” Determining that a process element is a
process step depends in part on whether any further
decomposition of the element’s structure is needed to
support the objectives of the process model.

According to Humprey & Feiler [11] and Osterweil
[21], a process model is an abstract description of an
actual or proposed process that represents selected
process elements that are considered important to the
purpose of the model and can be enacted by a human or
machine. The levels of abstraction within the domain of
software development range from the detailed process
steps executed entirely on a machine, to the larger-
grained human processes involved in executing a
lifecycle phase, to the abstract stages of the lifecycle
chosen for the product. Defined or not, the collection of
all the process steps executed to develop a software
system constitutes a software development process.
These processes, however, do not constitute a software
process model until they are represented in some
medium. A process model to be performed by a human
will be called a process script, while one to be enacted
by a machine will be called a process program.

Model-based software process improvement involves
the use of a model to guide the improvement of an
organization’s processes. Historically, process
improvement grew out of the quality management work
of Deming [7], Crosby [4] and Juran [12], and it is still
aimed at increasing the capability of work processes.
Essentially, process capability is the inherent ability of a
process to produce planned results. As the capability of
the process increases, it becomes predictable and
measurable, and the most significant causes of poor
quality and productivity are controlled and eliminated.
By steadily improving its process capability, the
organization matures. Maturity improvement requires
strong management support and a consistent long-term
focus. In addition, it necessitates fundamental changes in
the way managers do their jobs.[1]

One means of achieving this focus has been the use
of capability-maturity models, such as CMM, CMMI or
BOOTSTRAP. All these models provide a common set
of process requirements that capture best practices and
practical knowledge in a format that can be used to
guide priorities. By using a model, organizations can
modify or create processes using practices that have
been proven to increase process capability.
Organizations may also employ models to assess process
capability for two purposes: to establish a baseline for
improvement and to measure progress as improvement
activities proceed [1].

Generally, model-based improvement begins with
management commitment and assessment. The findings
of this assessment, in turn, feed action plans. When these
plans have been completed, further assessments are

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 673 Issue 5, Volume 7, May 2010

performed and the cycle continues. The goal is for the
organization to mature so that it continuously monitors
and improves its processes, consistently produces high-
quality products, is agile within its marketplace, and
adjusts quickly to customer needs [1].

Process modeling work is young, and the span of the
research agenda is still undergoing formulation.
According to Nielsen & Pries-Heje [18] “the use of a
CMM or similar models as a basis for your improvement
is an expression of faith in the maturity model paradigm
rather than a strictly rational act.” Therefore, when using
or combining the aforementioned models to other
models it is important to understand the models’
underlying assumptions.

Typically, process maturity models focus solely on
one factor in a company – processes – and neglect other
aspects. They assume that good processes alone will
lead to the goal of better software development.
Furthermore, they assume that what is best for one kind
of company is also good for another kind, by assuming
that you can generalize best practices across the software
industry and that the more best practices in your
company, the better your maturity [18]. Typically, these
models are also based on two underlying philosophies,
which influence their assumptions as well. The first of
these philosophies is Total Quality Management (TQM),
which is a “management philosophy embracing all
activities through which the needs and expectations are
satisfied in the most efficient and cost effective way by
maximizing the potential of all employees in a
continuing drive for improvement” [2] . The second
philosophy is step-by-step, one-small-step-at-a-time
learning, such as that practiced in the Japanese Kaizen
strategy [5].

3 Software Development Gates in
Company A
In the background of this paper there has been a long
discussion of which kind of gates are needed for
controlling quality and which are not [16,18,19,24].
Answering for the question which kind of gates are
needed in software development and which kind of gates
are not is not easy. It depends highly on the developed
software, development environment and software
development process in question [16, 18, 22, 23].

In this paper the software development process in
Company A bases on the idea that software developer
designs and writes code. Every day he delivers his code
through developer gate to daily build developed by his
team together. On weekly basis or when software teams
have implemented a full subsystem they deliver their
contribution to the mastercodeline through
mastercodeline gate which combines all builds together.

Bi-weekly the code is gathered together from
mastercodeline as releases using release gate. All
releases passing release gate are used for development
purposes in product programs. Final releases which are
going to customer products go through also a branch
gate which measures the final maturity and quality of
software.

The defined quality gate system in Company A is
managed by a program manager. Each gate has also a
special gate owner who develops his gate further and
gives support for gate users if needed. In practice, all
software packages coming to any gate need to pass gate
keepers check which is done using a criteria list defined
for the gate in question.

This paper defines quality gate as a special milestone
in a software project. It sees that quality gates are
located between different software development phases.
Furthermore this paper sees that each quality gate
includes a check of the documents of the previous phase
and includes special requirements on these documents.

Based on their software development process
definition quality gate development program in
Company A defined following four quality gates for
their software development usage:

• Developer Gate
• Mastercodeline Gate
• Release Gate
• Branch Gate

These gates were seen important because they are all

control points for delivering code to new participants of
company’s software development process. Company A
saw that by using these gates they would increase
visibility to the most problematic areas of their software
development.

Following chapters present how the quality gate
system is working in Company A. The purpose has been
to explain who is responsible of each gate and who are
delivering code to the each gate in question. Some
emphasis has been used also for illustrating what kind of
criteria each gate includes and how each criteria should
be interpreted. As all gates are clearly different to each
other their implementation has also differed from each
other. Due to these reasons some initiative has also been
taken for illustrating how each criteria was reviewed and
approved.

As industrial experience paper the purpose of this
paper is to open up discussion for developing quality
gate system for industry use. Therefore clearly more
studies are needed for finding out better criteria for each
gate than presented here. In the future studies it is also
clearly more necessary to find more empirical support
for proposed criteria.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 674 Issue 5, Volume 7, May 2010

4 Software Developer Gate
In Company A there are several software development
teams. All development teams have several software
developers who design, write and module test
individually their software code. Company A sees that
their designers have specialized to build different kinds
of software. Some designers are specialists in building
user interfaces and some designers have specialized in
building embedded software with more direct need to
understand the nature of hardware as well.
 Company A has confirmed that it uses a lot of effort
to give to its designers a possibility to build that kind of
software for which they have a strong interest. Company
A organizes development discussions twice in a year
with each designer and tries to agree together with each
designer the content of personal development plan. This
is done because Company A sees that when it is having
motivated designers for designing software code it can
also publish a more mature gating system for controlling
the quality of each designer’s software code. The basic
underlying idea for building developer gate has been to
understand the need for personal development and give
more space for each designer to design their code in
question. In all together Company A sees that it has
creative and independent software designers who are
able to take bigger responsibility in code designing than
what normally seems to happen in average software
companies.
 Company A saw that the most natural point to
control developer quality is to control the contribution of
software developer who delivers his code to the daily
software build. For this purpose Company A defined a
developer gate which needed to be passed daily by each
software developer. In practice all contributions of each
software developer were checked daily using a
developer gate criteria list. The persons responsible of
checking were the subsystem owners of the code and
each developer in question.

From software process point of view developer gate
in Company A includes all those steps that developer
needs to do when committing a task to the version
control tool (for example Synergy). The developed
criteria for the developer gate included following
criteria:

1. Check that developer uses a copy of the
latest available version of the target
environment.

2. Check that developer runs a private build
and that his /her code must compile without
errors and warnings.

3. Changes or error fixes done by developer
should not cause any additional errors or
warnings.

4. Make sure that code dependencies are
known, taken into the development
environment and changes are communicated
to all relevant persons.

5. Check that new code and changes are unit
tested and configurability tested according
to guidelines.

6. Test coverage is measured and new code
and changes are tested in reference
hardware

7. Peer code review is done for the major
changes

8. Static analysis has been run before review
and high warnings should be analysed and
removed

9. Code is committed to the version control
tool.

10. There are zero memory leaks with memory
allocation failures on in hardware.

11. Complexity analysis is executed and results
are analyzed.

All developer gate criteria were reviewed in
Company A. The participants of the review included
several developers, subsystem owners and architects.
Generally the review was easy. The longest discussion
was held around the use of latest available target
environment. There were opinions which saw that it is
not possible to follow these criteria literally. Even the
latest available target environment always exists it is not
available always for example for subcontractors as they
are not working in the same premises. This comment
was written down and software development manager
took an action point to start discussions how latest
available target environments could have been offered
also for subcontractors.

Company A organized several trainings of developer
gate criteria interpretation for all software developers,
architects and subsystem owners. Software developers
saw defined criteria usable and they were satisfied that
they had finally agreed practices for daily builds. They
considered it to be a relief that they now had common
principles for everyday work. Subsystem owners and
architects also saw that developer gate system helps
them to control the general quality of code developed in
different teams.

Software development project managers saw that the
biggest challenge for them is to try to make schedule
planning for which their teams would always be
committed. They saw this difficult because Company A
was not used to situation where software development
commitment was driving software contribution in every

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 675 Issue 5, Volume 7, May 2010

software project. Software development project
managers were also skeptical that even plans would be
realistic, is top management letting them to follow them
even they had been approved beforehand.

5 Mastercodeline Gate
In Company A there are several software development
teams. All development teams have several software
developers who design, write and module test
individually their software code.
 Historically, software integration had faced a lot of
challenges in Company A. One reason for these
challenges had been the way how developers had been
implementing their code. Rather often the code had been
implemented in isolation from each other which had
caused a lot of incompatibility and visibility problems
between software modules. From Company A point of
view the result of isolation had often been long
integration times and huge amount of integration errors.
 The purpose of mastercodeline gate in Company A
was to make sure that software code passes needed
criteria before new implementation can be brought to the
mastercodeline. Furthermore it was seen to ensure that
software modules have been made ready enough so that
they do not cause a lot of feedback (in the form of
errors) from the later phases of software development
process. In practice mastercodeline gate was assuring
that software modules have been build up using best
practices and efficient communication before
integration.
 Company A defined that the gate keeper of
mastercodeline gate is defined by the software
development team. The possible gate keepers in their
organization were therefore for example subsystem
owners, chief engineers or architects. This was because
these people were understood to have wide enough
understanding of the developed software to understand
integration related problems as well.
 The discussion of developing mastercodeline gate was
rather long. This discussion revealed all typical
problems of Company A’s software development. It also
showed that typically many integration related problems
are caused because people see that their responsibility
has ended when they have delivered their code. Many
designers also notified that as their personal
compensation systems are based on their individual
contribution, historically there has not been strong
enough interest for looking integration related problems
with other designers.
 Keeping in mind the development discussions related
to the mastercodeline gate Company A saw that
following gate criteria would hel them to control and

improve the code coming to the mastercodeline for
integration purposes:

1. Software asset is compliant with build
tool and build is done

2. Codeline policy rules are followed
3. Configuration policy rules are followed
4. Intellectual patent rights issues are

closed and documented
5. Unit and module testing coverage are

measured
6. Code complexity is measured
7. All features are done
8. Functionality, performance and

regression are measured
9. There are 0 critical errors

Especially, software subsystem owners, chief engineers
and architects saw the gate criteria usable. Some of them
highlighted that if there are continuous errors in code
they do not know how long they should send back this
kind of code as the danger is that it starts to influence
other developer team’s code too. The solution for the
discussed problem was that common sense needs to be
followed in this kind of situations. However, criteria
were seen to increase the visibility to the most
problematic areas which was seen to give better
possibility for correcting problems as well.
 Even in practice the mastercodeline gate criteria was
developed for controlling the software integration
quality it was often neglected to the business reason.
Business reason was developed for being an exception
for situation where the entire product would be in danger
not coming to the markets in time. However, in practice
several teams did not dedicate themselves for their
deadlines and their code was not good enough in quality
when coming to the mastercodeline. The result of this
was that mastercodeline jammed of different kinds of
code contributions which were not good enough in
quality.
 Mastercodeline would have worked better in
Company A if there would have been more visibility to
the each contribution coming to the gate. Later on
Company A saw that it needs to develop more
preventive actions for controlling the software quality
before software arrives to the gate as it is too late to
influence to the code when it already has arrived there.

6 Release Gate
The purpose of releasing software in Company A was to
ensure that product programs will get integrated
software for their product development purposes. In
Company A release gate was considered to ensure the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 676 Issue 5, Volume 7, May 2010

quality of software releases and provide high quality
development environment for developer teams.

According to release gate Company A saw that
software release is not ready unless gate is passed.
Company A defined release gate as biweekly
implemented cyclic gate. It saw that if release gate is not
passed in planned time then the release in Company A is
cancelled. Company A defined following release gate
criteria:

1. No build breaks
2. Smoke tests passed
3. Maturity criteria for main and other

configurations available
4. BAT (basic acceptance test) test results

available
5. All needed language variants created
6. R&D environments shared to relevant

places
7. Release done according to approved release

template
8. Release note done according to approved

template.

The responsible release gate keeper in Company A
was an integration manager. He highlighted in gate
criteria review that developer gate and mastercodeline
gate are more important when assuring good code
quality than release gate. However, he saw that the
release gate is also important because it gives visibility
of software quality to the product programs. Other
software developers saw this important because there
had been problems in communicating software maturity
and quality related issues to other product development
areas. Generally, approved release templates and notes
were considered to be good initiatives for handling these
problems.

The approval procedure of release gate criteria was
rather easy. The main reason for this was perhaps that
there were not so many people who worked as
integration managers. For a smaller group of people it is
easier to come to a final conclusion than for a bigger
amount of people.

7 Branch Gate
The purpose of branch gate in Company A was to give
visibility to the software maturity for every branch off
from the mastercodeline. The Branch gate was a set of
criteria that was used to guard and understand the
quality and maturity of the software content prior to any
software branch was given for final use (customer
releases) to a product program.

Company A defined following criteria for branch
gate:

1. Fully understand the maturity of each
feature

2. Fully understand the system maturity
3. Localization testing run rates
4. SW Maturity Regression
5. Full understanding of all problems with fix

plans are in place
6. Reliability results available
7. Software application certification status is

available
8. First round of pre-certification testing is

done
9. First round of pre-certification testing is

done
10. Product requirement lists are checked
11. Plans for mandatory features are approved

for productization activities

The responsible gate keeper in branch gate was a
branching manager. He saw in criteria review that even
branch gate might not be the most important from
software quality point of view, it surely gives a good
visibility to the final maturity of code given to product
programs. Therefore, he saw that defined criteria and
gate are in place as they help to communicate about the
situation with product lines.

In addition it was mentioned that branched quality is
the quality which goes also to the customer. Therefore
direct customer feedback should be discussed in contrast
with branched software quality. If customers are happy
for the quality branch criteria works but if customer is
not happy it should have an influence to new branch gate
criteria.

8 Experiences and Collected Opinions of
Quality Gate Development and
Implementation
During the quality gate definition and implementation
program all software development personnel in
Company A were highly motivated and happy for the
purpose of the quality gate program. They saw that gate
system is very logical and helps to tackle software
development problems in early phase of the
development. It was also a common expectation that the
implemented gate system will increase efficiency and
visibility of the software development.

After Company A had been running quality gate
system for six months all gate owners, gate keepers and
several developers were interviewed. Based on the
interview results it was possible to make general
conclusions. Firstly, all interviewees told that gating

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 677 Issue 5, Volume 7, May 2010

system is not working as effectively as it could. During
six months they had started to develop exception
handling policies for each gate for letting bad quality to
pass the gates. Especially mastercodeline gate seemed to
be in chaos because it was receiving several builds
which were far away from planned quality. The reason
for this was that software development teams were not
making realistic schedules for their code development.
They were too often too optimistic regarding to the
schedules and the result was that that the delivered code
was not fulfilling the mastercodeline gate criteria.

Based on the interviews software development teams
told that even they have responsibility of making
realistic schedules they did try to do so in the beginning.
However, due to business reasons they did not ever have
planned and approved time for making their code.
Product programs and their management seemed to be
stronger in Company A and for these reasons they were
constantly pushing software deadlines tighter. Finally
the result was that software development teams did not
have enough time to make sure that delivered code is
good in quality.

Integration manager and branching manager told that
in their opinion their gates worked very well. They saw
that their gates give a good visibility to the code and
even it should be send back to the developers they were
forced to approve bad quality because of a business
reason coming from product programs and top
management. In their opinion Company A was back in a
situation where it was before starting quality gate
development program. They had huge amount of errors
in their code and when something was fixed for the next
release another new problem popped up which had not
been known earlier. Finally, also unstable software
development environments were causing more and more
errors.

The personnel had presented constructive criticism of
the quality gate implementation program to the top
management of Company A. Top management saw that
the product schedules (time to market) are more
important than software quality.

The results of this implementation projects support
the findings of Hammers & Schmitt [17] when say that
adapting quality gates effectively is challenging. The top
management of Company A had prioritized time to
market for products so important that it was possible to
neglect software quality for that reason. In the end the
personnel of Company A started to create exception
handling policies for criteria which was earlier seen very
important for software quality.

The motivation of software development personnel
dropped significantly. Software development personnel
saw that they are not getting enough support for their
work. They notified that it is amazing that even software
development takes almost 80% of the development

resources in the company it is still not possible to make
reasonable schedules for software development. In their
opinion other development areas were always planned
more realistically and their planning also started clearly
earlier. So the conclusion was that the planning of
software development always started too late and it was
done separately from other product planning with the
result that software was always waited to be ready as the
last thing.

The results of this study also support the statement
that top management’s support is crucial for software
quality and process improvement initiatives. However,
in product business it is not always inevitable that this
support would be present. There are many other
development areas which are competing inside the
company of the management support.

Finally, it was easy to see that in Company A quality
related problems started already in developer and
mastercodeline gates. Even Company A tried to
encourage designers for having more agile working
methods too much agility just seemed to lead to a chaos.
For an observer it looked that schedules were not made
to be followed and the lack of preventive quality
controlling actions just increased the chaos in each gate.

9 Discussion and Conclusion
The purpose of this paper was to model a typical
software quality gating process. This was done because
software quality improvement was seen important and
industrial experiences seemed to require a solid model
for building quality gates in an industrial context.
 The main theoretical parts of this paper were
constructive. Constructive research, in this paper,
constructed new reality by using research results which
had in part been presented before. These most important
starting results of the research included discussions of
modeling, software process development and
improvement and quality gating.
 This paper saw that the purpose of a quality gate
model was to reduce the complexity of understanding or
interacting with a phenomenon by eliminating the detail
that does not influence its relevant behavior. Therefore,
a quality gate model was seen to reveal what its creator
believed to be important in understanding or predicting
the phenomena modeled.”

Furthermore this paper saw that a quality gate
process is a “set of partially ordered steps intended to
reach a goal.” Any component of a quality gate process
included therefore a “process element”. In addition a
quality gate process step was seen to be “an atomic
action of a quality gate process that had externally
visible substructure.” Determining that a quality gate
process element had a process step depended in part on

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 678 Issue 5, Volume 7, May 2010

whether any further decomposition of the element’s
structure was needed to support the objectives of the
quality gate process model.
 The experimental industrial experiences of this paper
were discussed using a case research. This was seen
important so that it would be possible to have a rich and
thorough understanding of examined phenomena in an
industrial context.
 Based on the experimental discussion in Company A
it was seen that the quality gates needed to be
synchronized with the existing software development
process. They needed also to be constantly developed
further by gate owners and the software content coming
to the gate needed to be checked by a gatekeeper.

The gate implementation project in Company A was
run by a project manager who had the overall
responsibility of approving each gate criteria. Each
separate gate was developed further in development
teams lead by gate owners who facilitated development
discussions.

After theoretical discussions in Company A software
engineers defined and implemented four different
quality gates. These gates were considered to ensure the
efficiency, effectiveness and output quality of the
software. The defined quality gates included developer
gate, mastercodeline gate, release gate and branch gate.

The purpose of developer gate was to ensure the
daily quality of the developer’s code. This gate was
defined because it was seen important that many quality
problems are corrected in the earliest possible phase.
Mastercodeline gate was dedicated for ensuring that the
code made by several developer teams is good in
quality. It was justified because Company A saw that
there are several integration problems caused by bad
visibility and inefficient communication and efficient
use of mastercodeline gate would minimize them.

As developer gate and mastercodeline gate were
dedicated more for the purposes of software developer
and teams, Company A saw that they have a need to
provide visibility of their software quality also for the
product lines. For these purposes Company A defined
the release gate for controlling the quality of biweekly
releases given to product lines for development
purposes. As Company A saw that final customers and
the releases going to final products are extremely
important, they decided to define a branch gate for
controlling the software quality in final products as well.

Even quality gate system was seen usable in
Company A it faced several problems. Biggest problem
was that Company A did not seem to believe on it after
taking it into use. Company A seemed to think that the
extra time used for controlling software quality is not
paying back as more predictable and efficient software
development. Therefore Company A started to develop
several exception handling policies so that bad quality

was finally accepted to go through the gating process.
One major reason justifying bad quality was the general
business reason and business schedules.

However, as software products are becoming more
and more complex and more and more people are
involved in making them it would be a good idea to
continue researching quality gating as one tool for
improving software quality. More experimental research
on implementing different kinds of gate criteria in
different kinds of companies and software development
processes is clearly needed for having more complete
research results.

It should also be notified that process maturity
models to which this gating system also based on focus
solely on one factor in a company – processes – and
neglect other aspects. They assume that good processes
alone will lead to the goal of better software
development with better quality. In real life this
assumption might necessarily not come true what also
happened in Company A. Furthermore, we should also
understand that what is best for one kind of company is
not necessarily best for all kinds of companies and
therefore modeling a quality gate process for any
company bases on understanding its business needs.

References:
[1] Ahern DM, Clouse A & Turner R (2001) CMMI
 Distilled. A Practical Introduction to Integrated
 Process Improvement. New Jersey, Addison-Wesley.
[2] British Standard (1991) British Standard 4778:
 Part 2.
[3] Brown, N. (1996): Industrial strength management

strategies. IEEE Software, volume 13, issue 4, July
19, pp. 94-103.

[4] Crosby PB (1979) Quality is Free. New York,
McRaw-Hill.

[5] Colenso M (2000) Kaizen Strategies for Successful
Organizational Change: Enabling Evolution and
Revolution within the Organization. New York,
Prentice Hall.

[6] Curtis B, Kellner M & Over J (1992) Process
Modeling. Communication of the ACM Sept 35(9):
75-90.

[7] Deming WE (1986) Out of Crisis. Cambridge, MA,
MIT: Center for Advanced Engineering Study.

[8] Gill, N.S. (2005): Factors affecting effective
software quality management revisited. ACM
SIGSOFT Software Engineering, volume 30, issue 2,
March, pp. 1-4.

[9] Hammers, C, Schmitt, R (2008): Governing the
process chain of product development with an
enhanced Quality Gate approach. CIRP Journal of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 679 Issue 5, Volume 7, May 2010

Manufacturing Science and Technology, volume 1,
Issue 3, pp. 206-211.

[10] Humprey WS (1989) Managing the Software
Process, Reading (MA), Addison-Wesley.

[11] Humprey WS & Feiler PH (1992) Software Process
Development and Enactment: Concepts and
definitions. Tech. Rep. SEI-92-TR-4. Software
Engineering Institute. Pittsburgh.

[12] Juran JM (1988) Juran on Planning for Quality.
New York, MacMillan.

[13] Järvinen, P. (2001) On research Methods.
Opinpajan kirja, Tampere, Finland.

[14] Kellner M (1989) Software Process Modeling:
Value and Experience. SEI techn. Rev. Software
Engineering Institute. Pittsburgh, Carnegie Mellon
University: 22-54.

[15] Krasner H (1999) The Payoff for Software Process
Improvement: What it is and How to get it. In: E1
Emam K & Madhavji NH (eds) Elements of
Software process assessment and improvement. Los
Alamitos (CA), IEEE Computer Society.

[16] Mahnic, V (2008) Assessing Scrum-based Software
Development Process Measurement from COBIT
Perspective. 2nd WSEAS Int. Conf on COMPUTER
ENGINEERING and APPLICATIONS (CEA'08)
Acapulco, Mexico, January 25-27, 2008, pp. 23-28,
pp. 589-594.

[17] Mahnic, V & Zabkar, N (2008) Measurement
repository for Scrum-based software development
process. 2nd WSEAS Int. Conf on COMPUTER
ENGINEERING and APPLICATIONS (CEA'08)
Acapulco, Mexico, January 25-27, 2008, pp. 23-28.

[18] Nielsen PA & Pries-Heje J (2002) A framework
for Selecting an Assessment Strategy. On Improving
Software Organizations. From Principles to Practice.
New Jersey, Addison-Wesley: 185-198.

[18] Ojala, P., Implementing a Value-Based Approach
to Software assessment and Improvement. Doctoral
dissertation. University of Oulu, 2006.

[19] Ojala, P., (2008) Experiences of Implementing a
Value-Based Approach. WSEAS Transactions on
Information Science and applications, issue 1, vol 5,
January 2008.pp. 385-395.

[20] Ojala, P (2008) Experiences of Implementing a
Value-Based Approach to Software Process and
Product Assessment. 2nd WSEAS Int. Conf on
COMPUTER ENGINEERING and
APPLICATIONS (CEA'08) Acapulco, Mexico,
January 25-27, 2008.

[21] Osterweil L (1997) Software Processes are
Software too. Proceedings of the Ninth International
Conference on Software Engineering. Washington
D.C. IEEE Computer Society May 17-23: 540-548.

[22] Riddle W (1989) Session Summary: Opening
Session. Proceedings of the Fourth International

Software Process Workshop. Brighton, UK. IEEE
Computer Society: 5-10.

[22] Salger, F, Engels, G, Hofmann, A. (2009):
Inspection effectiveness for different quality
attributes of software requirement specifications: An
Industrial Case Study. WoSQ’09, Vancouver,
Canada, May 16, pp. 15-21.

[23] Salger, F, Sauer, S, Engels, G. (2009): Integrated
specification and quality assurance for large business
information systems. Proceedings of the 2nd annual
conference on India software engineering, Pune,
India, February 23–26, pp. 129-130.

[24] Wilson, P. (2006): Quality gates in use-case driven
development. Proceedings of the international
workshop on software quality, Shanghai, China, pp.
33-38.

[25] Yin RK (1994) Case Study Research. Design and
Methods. Second Edition. Thousand Oaks (CA),
Sage Publications.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Pasi Ojala

ISSN: 1790-0832 680 Issue 5, Volume 7, May 2010

