
 Transformation of UML Activity Diagrams into Analyzable 
Systems and Software Blueprints Construction 

 
 

CHIEN-YUAN LAI a, DONG-HER SHIH a*, HSIU-SEN CHIANG b, CHING-CHIANG CHEN a  
Department of Information Management  

aNational Yunlin University of Science and Technology  
bDepartment of Information Management, Da-Yeh University  

a123, Section 3, University Road, Douliu, Yunlin, Taiwan, R.O.C. 
b168, University Road, Dacun, Changhua, Taiwan, R.O.C. 

g9723803@yuntech.edu.tw, shihdh@yuntech.edu.tw, chianghs@mail.dyu.edu.tw, g9723802@yuntech.edu.tw. 
 
 

Abstract: - Unified Modeling Language (UML) is a standard language for software blueprints, UML can be 
used to visualize, specify, construct and document software-intensive system of heritage. In the UML, the 
activity diagrams often are widely used to workflow and system flow in system analysis. However, the activity 
diagram of UML now there are still many drawbacks to be overcome, such as lacks support for simulation, 
dynamic semantics limits and verifiability capabilities. Petri nets are a popular technique for modeling the 
control flow dimension of workflows. Associative Petri nets (APNs) not only take all the advantages of PNs but 
also has a complete semantics, simulation and verifiability capabilities. Therefore, in this paper, we propose a 
methodology to describe how UML Activity diagrams can be intuitively translated into an APN model. This 
work can improve the simulation and verifiability capabilities of activity diagram and provides the systematic 
procedure to reduce complexity of translating activity diagrams into associative Petri net. 
 
Key-Words: - Unified Modeling Language, Activity Diagram, Visualize, System Description 
 
1 Introduction 
 
Unified Modeling Language (UML) is the standard 
notation of Object Management Group (OMG) for 
object-oriented modeling. It is easy, graphical and 
appealed, but still too imprecise in several cases. 
UML is considerably easy to be used but it does not 
support formal model analysis because it does not 
have a formal semantics. Although UML is strong 
as modeling means, supplies and several different 
diagrammatic notations for representing the 
different aspects of a system under development, it 
lacks simulation and verifiability capabilities.  

UML 2.0 is composed of several diagram types 
activity, sequence, use case, class, timing and many 
others). Activity diagrams have been added to the 
UML quiet late. They have always been poorly 
integrated, expressive lacked, and did not have an 
adequate semantic. UML 2.0 replaces ‘activity 
diagram’ concepts of UML 1.5 based on stating 
machines with activity modeling that is supposedly 
based on Petri Net semantics (Borger et al., 2000). 
Activities are suitable to model web processing, web 
service composition (Artagna & Pernici, 2007), 
business process modeling, workflow management 

systems, system integration and even basic software 
operation. 

The following are some main properties of UML 
activity diagrams: 
‧ Activity diagram nodes have flow-of-control 
constructs like synchronization, decision, 
concurrency and sequence. These are fundamentally 
similar to those of Associative Petri Nets. 
‧Activity diagram semantics are based on token 
flows. Tokens can contain objects, data, control 
information. Tokens are normally distinguishable 
through an individual time-stamp. 
‧UML activities try to deal with many different 
levels of activities: 1) fundamental 2) basic 3) 
intermediate 4) complete 5) structured, 6) complete 
structured and 7) extra structured. Each level adds 
its own constructs addressing a particular area. E.g. 
structured activities address traditional 
programming language modeling. Other activity 
classes like fundamental and basic are ideal for high 
level modeling and business process modeling.  

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 453 Issue 3, Volume 7, March 2010



 
Fig. 1 Three Sources of UML-Standardized by 

OMG 
 

Associative Petri Nets (APNs) are a popular 
technique for modeling the control flow dimension 
of workflows (Shih, et al., 2007). When modeling 
workflows, people tend to draw nodes that represent 
tasks or activities, and arrows between the nodes 
that represent sequencing of activities. The resulting 
diagrams look like Associative Petri Nets. Thus, 
Associative Petri Nets seem a natural technique for 
modeling workflows (Ellis, & Nutt, 1993). The 
following arguments are often used to support this: 
Associative Petri Nets are graphical. They have a 
formal semantics and can express most of the 
desirable routing constructs. There is an abundance 
of analysis techniques for proving properties about 
them, and finally they are vendor-independent. 
Some of reasons following items are UML 
transform into Associative Petri Net (Petriu & Shen, 
2002; Kristensen, et al., 2004; Baresi & Pezze, 
2007). 

In this paper, the study proposes an approach of 
translating activity diagram into Associative Petri 
Nets and improving the some drawbacks of UML2 
activity diagrams. This work can improve the 
simulation and verifiability capabilities of activity 
diagram and provides the systematic procedure to 
reduce complexity of translating activity diagrams 
into associative Petri net. 
 
2 Problem Formulation 
 
In this section we will first introduced the definition 
of an activity diagram and various types of activity 
subnets. Next, the definition of Associative Petri 
Net and various types of associative production 
rules (APRs) will be introduced. Final, a mechanism 
of mapping activity subnets to APRs is provided. 
 
2.1  Overview of the activity diagram 
Unified Modeling Language (UML) is the standard 
notation of Object Management Group (OMG) for 
object-oriented modeling. It is easy, graphical and 
appealed, but it still too imprecise in several cases. 

Activity diagrams are a technique to describe 
procedural logic, business process, and work flow. 
In many ways, they play a role similar to flowcharts, 
but the principal difference between them and 
flowchart notation is that they support parallel 
behavior (Fowler, 2004).  

An activity diagram is a special form of state 
machine intended to model computations and 
workflows (Fowler, 2004). The states of the activity 
diagram represent the states of executing the 
computations, not the states of an ordinary object. 
Normally, an activity diagram assumes that 
computations are preceded without external event-
based interruptions. 

An activity diagram contains activity states. An 
activity state represents the execution of a statement 
in a procedure of the performance of an activity in a 
workflow. Instead of waiting for an event, as in a 
normal wait state, an activity state waits for the 
completion of its computation. When the activity 
completes, then execution proceeds to the next 
activity state within the graph. A completion 
transition in an activity diagram fires when the 
preceding activity is completed. Activity states 
usually do not have transitions with explicit events, 
but they may be aborted by transitions on enclosing 
states. (Rumbaugh, et al., 1999) 

An activity diagram may also contain action 
states, which are similar to activity states. Except 
that they are atomic and do not permit transitions 
while being active. Action states should usually be 
used for short bookkeeping operations. 

An activity diagram may contain branches, as 
well as forking of control into concurrent threads. 
Concurrent threads represent activities that can be 
performed concurrently by different objects or 
persons in an organization. Frequently concurrency 
arises from aggregation, in which each object has its 
own concurrent thread. Concurrent activities can be 
performed simultaneously or in any order. An 
activity diagram is like traditional flow chart except 
it permits concurrent control in addition to 
sequential control-a big difference. (Rumbaugh, et 
al., 1999) 

The activity diagram contains seven types of 
state: 1) Action state, 2) Initial/Final action state, 3) 
Transition, 4) Branching, 5) Fork and join, 6) Object 
flow, and 7) Swimlanes. 
(1)Action states: In the flow of control, action 
stated is modeled by an activity diagram. It might 
evaluate some expression that sets the value of an 
attribute or returns some value. Alternately, it might 
call an operation of an object, send a signal to an 
object, or even create or destroy an object. These 
executable, atomic computations are called action 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 454 Issue 3, Volume 7, March 2010



states because they are states of the system. Each 
represents the execution of an action.  

(2)Initial/Final action state: The initial action 
state can express the first action state in activity 
diagram and the start state is represented by a solid 
cycle. The final action state can express final action 
state in activity diagram and the final state is 
represented by a concentric cycle. 

(3)Transitions: When the action or activity of a 
state completes, flow of control passes immediately 
to the next action or activity state. It’s specify this 
low by using transitions to show the path from one 
action or activity state to the next action activity 
state (Booch, et al., 1999). 

(4)Branching: Simple sequential transitions are 
common, but they aren’t the only kind of path. You 
will need to model a flow of control. As in a 
flowchart, you can include a branch, which specifies 
alternate paths taken based on some Boolean 
expression (Booch, et al.). It represents a branch as a 
diamond. A branch may have one incoming 
transition and two or more outgoing ones. On each 
outgoing transition, you place a Boolean expression, 
which is evaluated only once on entering the branch. 
Across all these outgoing transitions, guards should 
not overlap (otherwise, the flow of control would be 
ambiguous), but they should cover all possibilities 
(otherwise, the flow of control would freeze). 

(5) Forking and joining: Simple and branching 
sequential transitions are the most common paths 
you’ll find in activity diagrams (Booch, et al., 1999). 
However, especially when you are modeling 
workflows of business processes, you might 
encounter flows that are concurrent. In the UML, 
you use a synchronization bar to specify the forking 
and joining of these parallel flows of control. A 
synchronization bar is rendered as a thick horizontal 
or vertical line. 

For example, considering the concurrent flows 
involved in controlling an audio-animatronics 
device that mimics human speech and gestures. A 
fork represents the splitting of a single flow of 
control into two or more concurrent flows of control. 
A fork may have one incoming transition and two or 
more outgoing transitions. Each of which represents 
an independent flow of control. Below the fork, the 
activities associated with each of these paths 
continue in parallel. Conceptually, the activities of 
each in these flows are truly concurrent. In a 
running system, these flows may be either truly 
concurrent (in the case of a system deployed across 
multiple nodes) or sequential yet interleaved (in the 
case of a system deployed across one node). Thus 
they are only gave the illusion of true concurrency. 

A join represents the synchronization of two or 
more concurrent flows of control. A join may have 
two or more incoming transitions and one outgoing 
transition. Above the join, the activities associated 
with each of these paths continue in parallel. At the 
join, the concurrent flows synchronize, meaning that 
each wait until all incoming flows has reached the 
join. At which point, one flows of control continues 
on below the join. 

(6)Object flow: An activity diagram can show 
the flow of object values, as well as the flow of 
control. An object flow state represents an object 
that is the input or output of an activity (Fowler, 
2004). For an output value, a dashed arrow is drawn 
from an activity to an object flow state. For an input 
value, a dashed arrow is drawn from an object flow 
state to an activity. If an activity has more than one 
output value or successor control flow, the arrows 
are drawn from a fork symbol. Similarly, multiple 
inputs are drawn to a join symbol. 

(7)Swimlanes: The activities in an activity 
diagram can be partitioned into regions, which are 
called swimlanes from their visual appearance as 
regions on a diagram separated by dashed lines. A 
swimlane is an organizational unit for the contents 
of an activity diagram. It has no inherent semantics, 
but can be used as the modeler desires. Often, each 
swimlane represents an organizational unit within a 
real-world organization. 

It is often useful to organize the activities in a 
model according to responsibility. For example, by 
grouping together all the activities handled by one 
business organization. This kind of assignment can 
be shown by organizing the activities into distinct 
regions separated by lines in the diagram. Because 
of their appearance, each region is called a 
swimlane. 
 
2.2 Associative Petri Nets (APN) 
Petri Nets (PN) has its original in Carl Adam Petri’s 
dissertation. It submitted in 1962 to the faculty of 
Mathematics and Physics at the Technical 
University of Darmstadt, West Germany. PN is a 
graphical and mathematical modeling tool 
applicable to many systems. (Murata, 1989) They 
are a promising tool for describing and studying 
information processing systems that are 
characterized as being concurrent, asynchronous, 
distributed, parallel, nondeterministic, and/or 
stochastic. However, APN is different with current 
modeling tools. It belongs to dynamic modeling, 
except for providing with parallel and distributed 
system of dynamic behavior. On other hand, they 
support of graphical for simple hierarchical theory 
and support mathematics for qualitative and 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 455 Issue 3, Volume 7, March 2010



Let A be a set of directed arcs. If pj  I(ti), then 
there exists a directed arc aji, aji  A, from place pj 
to transition ti. If pk  O(ti), then there exists a 
directed arc aik, aik  A, from transition ti to place pk. 
If W(sm) = wm , wm  [0,1], then the support sm is 
said to be associated with a real value wm. If C(ti) = 
ci, c,  [0,1], then transition ti is said to be 
associated with a real value ci. If β(pj) = dj, dj  D, 
then place pj is said to be associated with 
proposition dj . 

quantitative analysis, further development on special 
flow.  

We shall derive the definition of a generalized 
APN and augment the association production rules 
(APRs) of APN by adding association rule operators 
and equipping the nets with reasoning facilities. 
Based on the generalized associative Petri Net 
model, a systematic procedure of Associative Petri 
Net model construction methodology had been 
proposed. 

 An associative Petri net with some places 
containing tokens is called a marked associative 
Petri net. In a marked associative Petri net, the token 

in a place pj is represented by a labeled dot •
)( jpα

. 

2.2.1 Definition of APN 
An APN is a directed graph, which contains three 
types of nodes: places, squares, and transitions 
where circles represent places, squares represent 
thresholds of association degree, and bars represent 
transitions. 3 each place may contain a token 
associated with a truth-value between zero and one. 
Each transition is associated with a CF value 
between zero and one. Directed arcs represent the 
relationships between places. A generalized APN 
structure is and it can be defined as a 13-tuple: 

The token value in a place pj, pj  P, is denoted 
by α(pj), where α(pj)  [0,1]. If α(pj) = yi and β(pj) = 
dj, then it indicates that the degree of truth of 
proposition dj is yi. 
 
2.2.2 Definition of APN 

( ThWCOIDSTPAPN ,,,,,,,,,,,, βαΓΛ= )  

If the antecedent portion or consequence portion of 
an associative production rule (APR) contains "and" 
or "or" connectors, then it is called a composite 
APR. The composite APR can be distinguished into 
the following five rule-types: where  

{ }npppP ,......., 21=  is a finite set of places, Type 1: IF dj THEN dk (CF = c). The reasoning 
process of this type of association rule can be 
represented by (1)  

{ itttT ,......., 21= }
}

}
}

 is a finite set of transitions,  
{ msssS ,......., 21=  is a finite set of supports, 
{ ndddD ,......., 21=  is a finite set of propositions, 
{ mτττ ,......., 21=Λ  is a finite set of thresholds of the 
supports,  
{ i}γγγ ,......., 21=Γ  is a finite set of thresholds of the 
confidences, 

DPDTP == ,φII  
∞→ PTI :  is an input function, a mapping from 

transitions to bags of places,  
∞→ PTO :  is an output function, a mapping from 

transitions to bags of places, 
[ ]1,0: →TC  is an association function that assigns a 

real value between zero to one to each 
transition, 

[ 1,0: →P ]α  is an association function, a mapping 
from places to real values between zero and 
one, 

DP →:β  is an association function, a bijective 
mapping from places to propositions, 

[ ]1,0: →SW  is an association function that assigns a 
real value between zero to one to each support, 

Γ→Λ→ TSTh  ,:  is an association function that 
defines a mapping from support and transition 
to thresholds of  confidences. 

cpp jk *)()( αα =   when τ≥s , γ≥c  (1)
Type 2: IF dj1 and dj2 and….and djn THEN dk 

(CF= c). The reasoning process of this type of 
association rule can be represented by (2). 

{ } cpppMinp jnjjk *)(),....(),()( 21 αααα =  
when iis τ≥ , γ≥c ,  ni ,...2,1= (2)

Type 3: IF dj THEN dk1 and dk2 and…and dkn 
(CF= c). The reasoning process of this type of 
association rule can be represented by (3). 

cpp jk *)()( 1 αα =

pp jkn *)()( αα =
,  ,…, 

    when 

cpp jk *)()( 2 αα =

c τ≥s , γ≥c  (3)
Type 4: IF dj1 or dj2 or….or djn THEN dk (CF= ci). 

The reasoning process of this type of association 
rule can be represented by (4).  

{ }njnjjk cpcpcpp *)(,....*)(,*)(max)( 2211 αααα =  
when iis τ≥ , iic γ≥ ,  ni ,...2,1= (4)

Type 5: IF dj THEN dk1 or dk2 or….or dkn (CF= 
ci). The reasoning process of this type of association 
rule can be represented by (5).  

njknjkjk cppcppcpp *)()(,...*)()(,*)()( 2211 αααααα ===

when iis τ≥ , iic γ≥ ,  ni ,...2,1= (5)
Using this simple mechanism, all the APRs can 

be mathematically and graphically illustrated. By 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 456 Issue 3, Volume 7, March 2010



carefully connecting related place and assigning 
reasonable values of CFs to transitions, it can come 
up with an APN that can make a decision based on 
the expertise during its construction. 
 
3 Mapping activity diagram to APN 
 
Activity diagrams are a technique to describe 
procedural logic, business process, and workflow. It 
is a graphical and appealing. However, in many 
ways, activity diagram lacks support for simulation, 
formal semantics and verifiability capabilities.  
APN is a graphical and strong modeling tool. In 
many ways, they play a role similar to activity 
diagram, and APN has formal semantics, simulation 
and verifiability capabilities. Therefore, we purpose 
APN to improving activity diagram for system 
analysis and workflow in this study. 
 
3.1 Mapping activities to APN notation 
Activity diagram is lack of formal semantic, 
simulation, verifiability, and capability; thus, 
we propose an APN building through activities. 
The various characteristics of activities are as 
follows: 

(1)Action node to conversion: Action node is a 
rounded rectangular, in rectangle marked with its 
activities, status and process. It is can express action 
state and process. The theory is similar to Place by 
APN. The Place is a cycle, its express activity is 
flowed and stated by token transition, and marked 
its activity properties on a nearby Place.  

(2)Transition to conversion: Transition (AD) is 
a direction. It can be represented the transition 
between action flows and workflows. Transition 
(APN) is a rectangle. The Transition (APN) can be 
fired to next state by token. Through description of 
above the Transition (AD) function is similar to 
Transition (APN). Therefore, in this paper, it has 
been mapping Transition (AD) to Transition (APN).  

(3)Initial/Final node to conversion: Initial node 
and Final node are represented the starting place and 
final place of activity diagram. The Initial node is a 
solid cycle, and the Final node is a concentric cycle. 
APN are circles starting node (ps) and final node 
(pg). They flow-through by token, and the node only 
presents as a node or a child node. It’s similar with 
Initial node and Final node of activity diagram. 

(4)Branching to conversion: Branching is a 
diamond, it can represent workflow for flow 
decision, e.g. loop structure and Boolean condition, 
etc. Therefore, it can be called a decision node. The 
decision node has a single incoming flow and 
several guarded outbound flows. Each outbound 

flow has a guard: a Boolean condition placed inside 
square brackets. Each time it reaches a decision, it 
can take only one of the outbound flows, so the 
guards should be mutually exclusive. However, we 
deal with a conditional behavior, and are usually 
accompanied by a merge node, and the merge node 
has multiple input flows and a single output flows. 
A merge marks the end of conditional behavior 
started by a decision. Due to APN is no single 
notation for express decision state, therefore, we are 
going to show more than one notation into a 
graphics to illustrate the state of the decision node. 

(5)Fork/Join node to conversion: Fork node 
and Join node deal with the parallel computing in 
action flow.  When a parallel computing occurs, it 
will use Fork node to destroy several activities, and 
then all the parallel computing to Join node end of 
this activity computing. It is represented by a solid 
rectangle. Owing to APN has parallel computing 
capability, and it represents notation for “transition”, 
and it represented by a rectangle. They flow-through 
by token and fire of transition to finish this work. 

(6)Object node and object flow to conversion: 
An object flow state represents an object that is the 
input or output of an activity (Fowler, 2004). The 
object flow represents as a directed dashed line. The 
Object node is represented by a rectangle, and it 
divides into upper and lower level: The upper level 
is express object name, and lower level is express 
object state. In this study, we shall express object 
node by Place node of APN, and mark object 
properties on Place. The object flow represents by 
arc, and mark object state on is to express object 
flow. 
 
3.2 The transformation activity diagrams 
into APNs 
According to Table 1, the basic model contains five 
types of structures: 1) activity sequence structure, 2) 
activity fork and activity join structure, 3) activity 
branching structure, 4) activity iteration state 
structure, 5) activity object flow structure. We adopt 
the five kinds of types to translate activity diagram 
into associative Petri net. 

(1)Activity sequence structure: The activity 
sequence is the most frequently used in activity 
diagram. Through a sequence structure can 
explicitly state the workflow processes and steps. 
The activity sequence structure, and starts by Initial 
node through the directed arcs to transform Action 
node. An example, the structure is an activity 
diagram for activity sequence basic patterns. If it 
will accomplish this procedure, it has to transit 
action 1, action 2 and action 3 to perform this 
procedure. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 457 Issue 3, Volume 7, March 2010



Table 1 The general notation mapping 

Activity type Activity Diagram notation Associative Petri Nets notation 

Action node/transition 

 

 

 

Initial/Final node 
 

 
Branching node 

  

Fork/ join node 

  

Swimlane 
  

Activity edges  

 

 

 

Object node/flow  

 

 

 
 
 
According to data, it can convert Fig. 2a into Fig. 2b. 
The flow-through by token and fire by Transition; it 
can complete to express a simple process for APN. 

(2)Activity fork and activity join: While 
dealing with a parallel computing, then fork will be 
used to process the partition of activity. If all states 
reach a join node is used to combine those actions 
and fire to next action. For example, Fig. 3a; it’s a 
parallel computing state. In Fig. 3a, the action 1 is 

forked to three actions A, B and C through fork 
node. The A, B and C are combined by join node, 
and the workflow is moved to action 2. The fork and 
join of activity diagram is shown in Fig. 3a. The 
mapping graph of APN is shown in Fig. 3b. 
According to Table 1, the fork node and join node 
convert into a “transition”, they flow-through by 
token and fire of transition to finish this work. If the 
token meet a fork transition the token is forked and 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 458 Issue 3, Volume 7, March 2010



transmitted to A, B and C places by enabling 
transition. Then three tokens moved to next action 2 
through enabling joint transition, such as in Fig. 3. 
 

 (a)  (b) 
Fig. 2 Activity sequence Structure (a)AD (b)APN 
 

 (a) (b)
Fig. 3 Activity fork/join Structure (a)AD (b)APN 
 

(3)Activity Branching: Branching is using in 
workflow decision state. It can decide the workflow 
direction of the change process. The Fig. 4a 
indicates a branching state by activity diagram, and 
the action1 transmitted to action4 that through a 
branching. Through judge of branching, it can 
represent the flow of action state in activity diagram, 
like Fig. 4a. If “N” is rejected, then it transfer to 
action 2, and other else will transfer to action 3. 
Finally, it combines this flow by branching, and 
transmits to action 4. According to Table1, the Fig. 

4b is activity diagram transform APN’s graph. It can 
express decision of multi flow in APN, and flow-
through by token and fire of transition to represent 
one of branching state. 
 

(a) (b)
Fig. 4 Activity Branching Structure (a)AD (b)APN 
 

(4)Activity branching iteration state: 
branching is using in workflow decision state. 
However, the workflow contains two types of 
decision state: one is “or” state, another state for 
“loop”. In workflow or program language, the 
structure will be used to system development and 
workflow planning. Through the decision of 
Branching express “loop” sate. The Fig. 5a shows 
an activity state. The action 2 is transmitted to 
action 3, that need one of decision by branching. If 
flow is “y”, it then transmits to action 3 and other 
else transmits to action 1. In the Table1, APN 
combines with several notations to express a “loop” 
structure. Therefore, through Table1, the result of 
notation mapping transforms activity diagram into 
APN graph is show in Fig. 5b. 

(5)Activity object flow: An object flow state 
represents an object that is the input or output of an 
activity. In the Fig. 6a, it represents an action 1 to 
output an object. The object name is “object”, and 
its state is “state”. In this example, illustrating the 
action1 converts to action 2, and then output an 
object. According to Table 1, the result of mapping, 
it transforms all notations, and shows in Fig. 6b. In 
Fig. 6b, it represents the object output and object 
input by APN. The object name is place and the 
state is arc. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 459 Issue 3, Volume 7, March 2010



Action 1

Action 2

Action 3

N

Y

 (a)  (b)
Fig. 5 Activity branching iteration state (a)AD 
(b)APN 
 

Action 1

Action 2

Action 3

Object
State

(a)  (b)
Fig. 6 Activity object flow (a)AD (B)APN 
 
4 A Methodology of Translating 
Activity diagrams to APN  
 
A methodology based on a five-stage schema was 
developed for activity diagrams transfer to APN. 
The five steps correspond to 1) Initial node 
determination, 2) Finding basic structure models, 3) 
Final node determination, 4) AD-to APN model 
mapping, 5) Models combination, and 6) APN 

model accomplishment were shown in Fig. 7 and 
described as follows: 
 

 
Fig. 7 Transform steps of an AD-to-APN model 

 
Step1 Initial node determination: In this step, it 
incises the starting place pi. If a node is no parent 
node, it calls this node as a start node pi. It is 
determined as a start node. Next step, an incision 
place are decided for model combination, therefore, 
next node of pi facilitates follow-up action. Finally, 
pi will be mapped and next node of pi.    
Step2 Finding basic structure models: According 
to section 3.2 description, the basic structure models 
contains five types: 1) activity sequence structure, 2) 
activity fork and join structure, 3) activity branching 
structure, 4) activity iteration structure, 5) activity 
object flow structure. On the other hand, we 
facilitate for model combination, therefore, we shall 
incision the basic model for parent node and child 
node.  
Step3 Final node determination: In this step, the 
main purpose of deciding the final node of activity 
diagram, determining the model range, and mapping 
the Final node. If a node is no child node then called 
this node is a final node pf. Through the pf, the 
action of activity diagram can be judged between pi 
and pf. Due to pf is no child node, therefore, it will 
incise pf and present node of pf for combining point. 
Finally, it will map pf and present node of pi.     
Step4 AD-to-APN model mapping: As describing 
in section 3.1 and 3.2, the various types basic 
structure models of activity diagrams are 
transformed into corresponding APN models.  
Step5 Models Combination: Due to activity 
diagram is a directed graph, and workflow 
transmitted by transition, it’s the same as the 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 460 Issue 3, Volume 7, March 2010



required permutations and combinations. Otherwise 
this graph through the conversion would be an error 
graph. Therefore, for each place state to match, if 
the place of the same states, it combines this model 
and just leaves one place, and repeats above then 
can output a goal graph. 
Step6 APN model accomplishment: According to 
above steps, we can obtain an APN model.  
 
5 Conclusion 
 
Unified Modeling Language (UML) is the standard 
notation of Object Management Group (OMG) for 
object-oriented modeling. UML activity diagram 
(AD) is widely used to workflow and system flow in 
system analysis. However, activity diagram lacks 

support for simulation, dynamic semantics limits 
and verifiability capabilities. APN are a popular 
technique for modeling the control flow dimension 
of workflows and APN. It has a complete semantics, 
simulation and verifiability capabilities. The activity 
diagrams are widely used to workflow and system 
flow in system analysis. However, activity diagram 
lacks support for simulation, dynamic semantics 
limits and verifiability capabilities. Therefore, in 
this paper, we propose a transform methodology 
with AD-to-APN model. This work can improve of 
the simulation and verifiability capabilities for 
activity diagram. In the further, a case is used for 
explaining and illustrating this concept.  
 
 

 
References: 
 
[1] W.M.P. van der Aalst, “The application of Petri Nets to workflow management,” The Journal of 

Circuits, Systems and Computers, vol. 8, no. 6, pp. 21-66, 1998. 
[2] Fan Yang, Zhi-Mei Wang, A Mobile Location-based Information Recommendation System 

Based on GPS and WEB2.0 Services, WSEAS TRANSACTIONS on COMPUTERS, Issue 4, 
Volume 8, April 2009, pp. 725-734. 

[3] Chang-Chun Tsai, Cheng-Jung Lee, Shung-Ming Tang,The Web 2.0 Movement: Mashups Driven 
and Web Services, WSEAS TRANSACTIONS on COMPUTERS, Issue 8, Volume 8, August 
2009, pp.1235-1244. 

[4] Zhi-mei Wang, Ling-Ning Li, Enable collaborative learning: an improved e-learning social 
network exploiting approach, Proceedings of the 6th Conference on WSEAS International 
Conference on Applied Computer Science, Vol.6, 2007, pp.311-314. 

[5] S. S. Alhir, Learning UML. Sebastopol, CA: O'Reilly & Associates, Inc., 2003. 
[6] R. Agrawal, T. Imielinski, and A. Swami, “Database Mining: A Performance Perspective,” IEEE 

Trans. Knowledge and Data Eng, vol. 5, no. 6, pp. 914-925, Dec. 1993. 
[7] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in 

Large Databases,” Proc. ACM SIGMOD Conf. Management of Data, pp. 207-216, May 1993. 
[8] D. Artagna and B. Pernici, “Adaptive Service Composition in Flexible Processes,” IEEE 

Transactions on Software Engineering, vol. 33 no. 6, pp. 369-384. Jun. 2007. 
[9] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. Int’l Conf. 

Very Large Databases (VLDB ’94), pp. 487-499, Sept. 1994. 
[10] E. Borger, A. Cavara and E. Riccobene, “ An ASM Semantics for UML activity diagrams,” 

Proceedings of the 8th International Conference on Algebraic Methodology and Software 
Technology, Iowa City, Iowa, USA, pp. 293-308. May 2000. 

[11] L. Baresi and M. Pezze, “Improving UML with Petri Nets,” Electronic notes in Theoretical 
Computer Science, vol.44, no. 2, pp. 107-119, Jul. 2007. 

[12] S. Chen, J.S. Ke, and J. Chang, “Knowledge Representation Using Fuzzy Petri Nets,” IEEE Trans. 
Knowledge and Data Eng, vol. 2, no. 3, pp. 311-319, Sept. 1990. 

[13] C.A. Ellis and G. J. Nutt. “Modelling and Enactment of Workflow Systems,” Lecture Notes in 
Computer Science (LNCS), vol. 691, pp. 1-16, Springer, 1993. 

[14] R. Eshuis and R. Wieringa, “Comparing Petri Net and activity diagram variants for workflow 
modeling - a quest for reactive Petri Nets,” Lecture Notes in Computer Science (LNCS), vol. 
2472, pp. 321–351, Springer-Verlag 2003. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 461 Issue 3, Volume 7, March 2010



[15] M. Fowler, UML distilled: a brief guide to the standard object modeling language (3nd ed.). 
Boston, MA: Addison-Wesley Publishing, 2004. 

[16] J. L. Garrido and M. Gea, “A Colored Petri Net Formalization for a UML-based Notation Applied 
to Cooperative System Modeling, Interactive Systems: Design, Specification and Verification,” 
Lecture Notes in Computer Science (LNCS), vol. 2545, pp.16-28, Springer, 2002. 

[17] K.M. van Hee, “Information Systems Architecture A Practical and Mathematical Approach,” 
Technische Universiteit Eindhoven, http://wwwis.win.tue.nl/~wsinhee/sm1/, 2005. 

[18] J. Han and M. Kamber, Data Mining Concepts and Techniques, pp. 226-230. Morgan Kaufmann, 
2001. 

[19] Z. Hu and S. M. Shatz, “Mapping UML diagrams into a Petri Net notation for system 
simulation,” Proceedings of the Sixteenth International Conference on Software Engineering & 
Knowledge Engineering (SEKE'2004), pp. 213-219, Jun. 2004. 

[20] L.M. Kristensen, J.B. Jorgensen, K. Jensen, “Application of Coloured Petri Nets in System 
Development,” Lecture Notes in Computer Science, vol. 3098, pp. 626-685, Springer, 2004. 

[21] J. LI, X. Dai, Z. Meng, J. Dou and X. Guan, “Rapid design and reconfiguration of Petri net 
models for reconfigurable manufacturing cells with improved net rewriting systems and activity 
diagram,” Computers & Industrial Engineering, Vol. 57, no. 2, pp. 1431-1451, 2009.  

[22] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. IEEE, vol. 77, no. 4, pp. 
541-580, 1989. 

[23] D. C. Petriu and H. Shen, “Applying the UML Performance Profile: Graph Grammer based 
derivation of LQN models from UML Specifications,” Proceedings of the 12th International 
Conference on Computer Performance Evaluation, Modelling Techniques and Tools, pp. 159- 
177, London UK, 2002. 

[24] J. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling language user guide. Boston, MA: 
Addison-Wesley Publishing, 1999. 

[25] J. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling language reference manual. 
Boston, MA: Addison-Wesley Publishing, 1999. 

[26] T. S. Staines, “Intuitive mapping of UML 2 activity diagrams into fundamental modeling concept 
Petri Net diagrams and Colored Petri Nets,” 15th Annual IEEE International Conference and 
Workshop on the Engineering of Computer Based Systems (ECBS), pp. 191-200, Apr. 2008. 

[27] D. H. Shin, H. S. Chiang and B. Lin, “A generalized associative Petri Net for reasoning,” IEEE 
Transactions on Knowledge and Data Engineering, vol. 19, no. 9, pp. 356-366, 2007. 

[28] UML 2 Superstructure Specification. V2.11, Object Management Group (OMG), 
http://www.omg.org/technology/documents/formal/uml.htm/ ,2009. 

[29] D.S. Yeung and E.C.C. Tsang, “A Multilevel Weighted Fuzzy Reasoning Algorithm for Expert 
Systems,” IEEE Trans. Systems, Man, and Cybernetics, vol. 28, no. 2, pp. 149-158, 1998. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Chien-Yuan Lai, Dong-Her Shih, 
Hsiu-Sen Chiang, Ching-Chiang Chen

ISSN: 1790-0832 462 Issue 3, Volume 7, March 2010

http://www.omg.org/technology/documents/formal/uml.htm/

	89-326
	89-331
	89-336
	89-337
	89-344
	89-358
	89-359
	89-363
	89-372
	89-374
	89-378
	89-379
	89-392
	89-393



