
Clustering Based Adaptive Refactoring

GABRIELA CZIBULA, ISTVAN GERGELY CZIBULA

Babeş - Bolyai University

Department of Computer Science

1, M. Kogalniceanu Street, Cluj-Napoca

ROMANIA

gabis@cs.ubbcluj.ro, istvanc@cs.ubbcluj.ro

Abstract: - It is well-known that maintenance and evolution represent important stages in the lifecycle of any soft-

ware system, about 66% from the total cost of the software systems development. Improving the software systems

design through refactoring is one of the most important issues during the evolution of object oriented software

systems. Refactoring aims at changing a software system in such a way that it does not alter the external behavior

of the code, but improves its internal structure. In this paper we approach the problem of adaptive refactoring, and

we propose an adaptive method to cope with the evolving structure of any object oriented application. Namely, we

handle here the case when new application classes are added to the software system and the current restructuring

scheme must be accordingly adapted. The approach proposed in this paper extends our previous clustering based

approach for identifying refactorings in an object oriented software system. We also provide an example illustrat-

ing the efficiency of the proposed approach.

Key–Words: Restructuring, adaptive refactoring, clustering

1 Introduction
The software systems, during their life cycle, are faced

with new requirements. These new requirements im-

ply updates in the software systems structure, that

have to be done quickly, due to tight schedules which

appear in real life software development process. The

structure of a software system has a major impact on

the maintainability of the system. This structure is

the subject of many changes during the system lifecy-

cle. Improper implementations of these changes im-

ply structure degradation that leads to costly mainte-

nance. That is why continuous restructurings of the

code are needed, otherwise the system becomes diffi-

cult to understand and change, and therefore it is often

costly to maintain.

Refactoring is a solution adopted by most modern

software development methodologies (extreme pro-

gramming and other agile methodologies), in order to

keep the software structure clean and easy to main-

tain. Refactoring becomes an integral part of the

software development cycle: developers alternate be-

tween adding new tests and functionality and refac-

toring the code to improve its internal consistency and

clarity.

Fowler defines in [9] refactoring as “the process

of changing a software system in such a way that it

does not alter the external behavior of the code yet im-

proves its internal structure. It is a disciplined way to

clean up code that minimizes the chances of introduc-

ing bugs”. Refactoring is viewed as a way to improve

the design of the code after it has been written. Soft-

ware developers have to identify parts of code having

a negative impact on the system’s maintainability, and

to apply appropriate refactorings in order to remove

the so called “bad-smells” [5].

We have developed in [7] a clustering based

approach, named CARD (Clustering Approach for

Refactorings Determination) that uses clustering for

improving the class structure of a software system. In

this direction, a partitional clustering algoritm, kRED

(k-means for REfactorings Determination), was de-

veloped. The algorithm suggests the refactorings

needed in order to improve the structure of the soft-

ware system. The main idea is that clustering is

used in order to obtain a better design, suggesting the

needed refactorings.

Real applications evolve in time, and new ap-

plication classes are added in order to met new re-

quirements. Consequently, restructuring of the mod-

ified system is nedeed to keep the software structure

clean and easy to maintain. Obviously, for obtaining

the restructuring that fits the new applications classes,

the original restructuring scheme can be applied from

scratch on the whole extended system. However, this

process can be inefficient, particularly for large soft-

ware systems. That is why we propose an adaptive

method to cope with the evolving application classes

set. The proposed method extends our original ap-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 391 Issue 3, Volume 7, March 2010

proach previously introduced in [7].

The rest of the paper is structured as follows. Sec-

tion 2 briefly presents the main aspects related to clus-

tering and our previous approach for clustering based

refactorings identification [7]. A clustering based ap-

proach for adaptive refactorings identification is intro-

duced in Section 3. For the adaptive process, a Core

Based Adaptive Refactoring algorithm (CBAR) is pro-

posed. Section 4 indicates several existing approaches

in the direction of automatic refactorings identifica-

tion. An example illustrating how our approach works

is provided in Section 5. Some conclusions of the pa-

per and further research directions are outlined in Sec-

tion 6.

2 Background
In this section we present some background related

to clustering and our previous approach for clustering

based refactorings identification.

2.1 Clustering
Unsupervised classification, or clustering, as it is

more often referred as, is a data mining activity that

aims to differentiate groups (classes or clusters) in-

side a given set of objects [20], being considered the

most important unsupervised learning problem. The

inferring process is, usually, carried out with respect

to a set of relevant characteristics or attributes of the

analyzed objects.

The resulting subsets or groups, distinct and non-

empty, are to be built so that the objects within each

cluster are more closely related to one another than

objects assigned to different clusters. Central to the

clustering process is the notion of degree of similarity

(or dissimilarity) between the objects.

Let O = {O1, O2, . . . , On} be the set of ob-

jects to be clustered. Using the vector-space model,

each object is measured with respect to a set of

l initial attributes, A = {A1, A2, . . . , Al}, and is

therefore described by a l-dimensional vector Oi =
(Oi1, . . . , Oil), Oik ∈ ℜ, 1 ≤ i ≤ n, 1 ≤ k ≤ l.
Usually, the attributes associated to objects are stan-

dardized in order to ensure an equal weight to all of

them [20].

The measure used for discriminating objects can

be any metric or semi-metric function d : O ×O −→
ℜ (Minkowski distance, Euclidian distance, Manhat-

tan distance, Hamming distance, etc).

The distance between two objects expresses the

dissimilarity between them. Consequently, the simi-

larity between two objects Oi and Oj is defined as

sim(Oi, Oj) =
1

d(Oi, Oj)
.

A large collection of clustering algorithms is

available in the literature. [20], [21] and [22] contain

comprehensive overviews of the existing techniques.

Most clustering algorithms are based on two popu-

lar techniques known as partitional and hierarchical

clustering.

In the following, a short overview of the partition-

ing methods is presented.

A well-known class of clustering methods is the

one of the partitioning methods, with representatives

such as the k-means algorithm or the k-medoids al-

gorithm. Essentially, given a set of n objects and a

number k, k ≤ n, such a method divides the object

set into k distinct and non-empty clusters. The parti-

tioning process is iterative and heuristic; it stops when

a “good” partitioning is achieved.

Finding a “good” partitioning coincides with op-

timizing a criterion function defined either locally (on

a subset of the objects) or globally (defined over all

of the objects, as in k-means). These algorithms try

to minimize certain criteria (a squared error function);

the squared error criterion tends to work well with iso-

lated and compact clusters [22].

Partitional clustering algorithms are generally it-

erative algorithms that converge to local optima.

The most widely used partitional algorithm is the

iterative k-means approach. The objective function

that the k-means optimizes is the squared sum error

(SSE). The SSE of a partition K = {K1, K2, ...Kp} is

defined as:

SSE(K) =
p

∑

j=1

nj
∑

i=1

d2(Oj
i , fj) (1)

where the cluster Kj is a set of objects

{Oj
1, O

j
2, ..., O

j
nj
} and fj is the centroid (mean)

of Kj :

fj =











nj
∑

k=1
O

j
k1

nj

, . . . ,

nj
∑

k=1
O

j
kl

nj











.

Hence, the k-means algorithm minimizes the

intra-cluster distance.

The k-means algorithm partitions a collection of

n objects into k distinct and non-empty clusters, data

being grouped in an exclusive way (each object will

belong to a single cluster) [21].

The algorithm starts with k initial centroids, then

iteratively recalculates the clusters (each object is as-

signed to the closest cluster - centroid), and their cen-

troids until convergence is achieved.

The main disadvantages of k-means are:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 392 Issue 3, Volume 7, March 2010

• The performance of the algorithm depends on the

initial centroids. So, the algorithm gives no guar-

antee for an optimal solution.

• The user needs to specify the number of clusters

in advance.

2.2 CARD clustering approach for refactor-

ings identification

We have introduced in [7] a clustering approach

CARD for identifying refactorings that would improve

the class structure of a software system. CARD con-

sists of three steps:

• Data collection - The existing software system

is analyzed in order to extract from it the rel-

evant entities: classes, methods, attributes and

the existing relationships between them: inheri-

tance relations, aggregation relations, dependen-

cies between the entities from the software sys-

tem. All these colletcted data will be used in the

Grouping step.

• Grouping - The set of entities extracted at the

previous step are re-grouped in clusters using a

grouping algorithm. The goal of this step is to

obtain an improved structure of the existing soft-

ware system.

• Refactorings extraction - The newly obtained

software structure is compared with the original

software structure in order to provide a list of

refactorings which transform the original struc-

ture into an improved one.

At this step we propose to re-group entities from

a software system using a vector space model based

clustering algorithm, more specifically a variant of the

k-means clustering algorithm, named kRED (k-means

for REfactorings Determination).

It is well known that the violation of the princi-

ple “Put together what belong together” is the main

symptom for ill-structured software systems. In order

to capture this aspect, we have to measure the degree

to which some parts of the system belong together.

In our approach the objects to be clustered are the

elements from the considered software system, i.e.,

S = {e1, e2, . . . , en}, where ei, 1 ≤ i ≤ n can be

an application class, a method from a class or an at-

tribute from a class. In the following, we will refer an

element ei ∈ S as an entity.

As we intend to group methods and attributes in

classes, we will consider the attribute set as the set

of application classes from the software system S,

A = {C1, C2, . . . , Cl}, i.e., the cardinality of the vec-

tor space model in our approach is the number l of

application classes from the software system S.

The focus is to group similar entities from S in

order to obtain high cohesive groups (clusters).

In the literature many cohesion measures exist,

like the ones defined in [6, 14]. We will adapt the

generic cohesion measure introduced in [14] that is

connected with the theory of similarity and dissimi-

larity. In our view, this cohesion measure is the most

appropriate to our goal.

We will consider, for a given entity from the soft-

ware system S, the dissimilarity degree between the

entity and the application classes from S.

So, each entity ei (1 ≤ i ≤ n) from the software

system S is characterized by a l-dimensional vector:

(ei1, ei2, . . . , eil), where eij (∀j, 1 ≤ j ≤ l) is com-

puted as follows:

eij =

{

1 −
|p(ei)∩p(Cj)|
|p(ei)∪p(Cj)|

if p(ei) ∩ p(Cj) 6= ∅

∞ otherwise
,

(2)

where, for a given entity e ∈ S, p(e) defines a set of

relevant properties of e, expressed as:

• If e is an attribute, then p(e) consists of: the at-

tribute itself, the application class where the at-

tribute is defined, and all methods from S that

access the attribute.

• If e is a method, then p(e) consists of: the

method itself, the application class where the

method is defined, all attributes from S accessed

by the method, all the methods from S used by

method e, and all methods from S that overwrite

method e.

• If e is an application class, then p(e) consists

of: the application class itself, all attributes and

methods defined in the class, all interfaces im-

plemented by class e and all classes extended by

class e.

As in a vector space model based clustering [22],

we consider the distance between two entities ei and

ej from the software system S as a measure of dis-

similarity between their corresponding vectors. In our

approach we will consider Euclidian distance, i.e., the

distance between ei and ej is expressed as in Equation

(3):

d(ei, ej) =

√

√

√

√

l
∑

k=1

(eik − ejk)2 (3)

We have chosen Euclidian distance in our ap-

proach, because of the following reasons:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 393 Issue 3, Volume 7, March 2010

• Intuitively, as the elements from the vector char-

acterizing an entity represents the dissimilarity

degree to the application classes, the Euclidian

distance assigns low distances to entities that

have to belong to the same application class.

• It is the most widely used distance measure in

clustering [22].

• We have obtained better results using Euclidian

distance than using other metrics.

The main idea of the kRED algorithm that we ap-

ply in order to group entities from a software system

is the following:

(i) The initial number of clusters is the number l of

application classes from the software system S.

(ii) The initial centroids are chosen as the application

classes from S.

(iii) As in the classical k-means approach, the clusters

(centroids) are recalculated, i.e., each object is

assigned to the closest cluster (centroid).

(iv) Step (iii) is repeatedly performed until two con-

secutive iterations remain unchanged, or the per-

formed number of steps exceeds the maximum

allowed number of iterations.

We mention that the partition obtained by kRED

algorithm represents a new and improved structure of

it, which indicates the refactorings needed to restruc-

ture the system.

3 Our approach
In the following we will present our core based clus-

tering approach for adaptive refactoring.

Let us consider a software system S. As pre-

sented in Subsection 2.2, the kRED algorithm pro-

vides a restructuring scheme that gives the refactor-

ings needed in S in order to improve its structure.

During the evolution and maintenance of S, new

application classes are added to it in order to met new

functional requirements. Let us denote by S ′ the soft-

ware system S after extension. Consequently, restruc-

turing of S ′ is nedeed to keep its structure clean and

easy to maintain. Obviously, for obtaining the restruc-

turing that fits the new applications classes, the origi-

nal restructuring scheme can be applied from scratch,

i.e., kRED algorithm should be applied considering all

entities from the modified software system S ′. How-

ever, this process can be inefficient, particularly for

large software systems.

That is why we extend the approach from [7]

and we propose an adaptive method to cope with the

evolving application classes set. Namely, we han-

dle here the case when new application classes are

added to the software system and the current restruc-

turing scheme must be accordingly adapted. The main

idea is that instead of applying kRED algorithm from

scratch on the modified system S ′, we adapt the parti-

tion obtained by kRED algorithm for the initial system

S, considering the newly added application classes.

Using the adaptive process, we aim at reducing the

time needed for obtaining the results, without altering

the accuracy of the restructuring process.

In this section we will introduce our approach for

adaptive refactoring, starting from the approach intro-

duced in [7].

3.1 Theoretical model

Let S = {e1, e2, . . . , en} be the set of entities

from the software system. Each entity is mea-

sured with respect to a set of l attributes, A =
{C1, C2, . . . , Cl} (the application classes from S) and

is therefore described by a l-dimensional vector: ei =
(ei1, ei2, . . . , eil), eik ∈ ℜ+, 1 ≤ i ≤ n, 1 ≤ k ≤ l.
By l we denote the number of application classes from

S.

Let K = {K1, K2, . . . , Kl} be the partition (set

of clusters) discovered by applying kRED algorithm

on the software system S. Each cluster from the par-

tition is a set of entities, Kj = {ej
1, e

j
2, . . . , e

j
nj
}, 1 ≤

j ≤ l. The centroid (cluster mean) of the cluster Kj

is denoted by fj , where fj =









nj
∑

k=1

e
j

k1

nj
, . . . ,

nj
∑

k=1

e
j

kl

nj









.

The measure used for discriminating two entities

from S is the Euclidian distance between their corre-

sponding l dimensional vectors, denoted by d.

Let us consider that the software system S is ex-

tended by adding s (s ≥ 1) new application classes,

Cl+1, Cl+2, . . . , Cl+s. Consequently, the set of at-

tributes will be extended with s new attributes, corre-

sponding to the newly added application classes. Af-

ter extension, the modified software system becomes

S ′ = {e′1, e
′
2, . . . , e

′
n, e′n+1, e

′
n+2, . . . , e

′
n+m}, where

• e′i, 1 ≤ i ≤ n is the entity ei ∈ S after extension.

• e′i,∀n + 1 ≤ i ≤ n + m are the entities (classes,

methods and attributes) from the newly added ap-

plication classes Cl+1, Cl+2, . . . , Cl+s.

We mention than each entity from the extended

software system is characterized by a l+s dimensional

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 394 Issue 3, Volume 7, March 2010

vector, i.e. e′i = (ei1, . . . , eil, ei,l+1, . . . , ei,l+s), ∀1 ≤
i ≤ n + m.

We want to analyze the problem of grouping the

entities from S ′ into clusters, after the software sys-

tem’s extension and starting from the partition K ob-

tained by applying kRED algorithm on the software

system S (before application class extension). We aim

to obtain a performance gain with respect to the parti-

tioning from scratch process.

The partition K′ of the extended software system

S ′ corresponds to its improved structure. Following

the idea from [7], the number of clusters from K′

should be the number of application classes from S ′,

i.e. l+s.

We start from the fact that, at the end of the ini-

tial kRED clustering process, all entities from S are

closer to the centroid of their cluster than to any other

centroid. So, for any cluster Kj ∈ K and any entity

e
j
i ∈ Kj , inequality below holds.

d(ej
i , fj) ≤ d(ej

i , fr),∀j, r, 1 ≤ j, r ≤ l, r 6= j.
(4)

We denote by K ′
j , 1 ≤ j ≤ l, the set contain-

ing the same entities as Kj , after the extension. By

f ′
j , 1 ≤ j ≤ l, we denote the mean (center) of the

set K ′
j . These sets K ′

j , 1 ≤ j ≤ l, will not necessar-

ily represent clusters after the attribute set extension.

The newly arrived attributes (application classes) can

change the entities’ arrangement into clusters, formed

so that the intra-cluster similarity to be high and inter-

cluster similarity to be low. But there is a considerable

chance, when adding one or few attributes to entities,

that the old arrangement in clusters to be close to the

actual one. The actual clusters could be obtained by

applying the kRED clustering algorithm on the set of

extended entities. But we try to avoid this process and

replace it with one less expensive but not less accurate.

With these being said, we agree, however, to continue

to refer the sets K ′
j as clusters.

The partition K′ should also contain clusters cor-

responding to the newly added application classes.

The initial centroids of these clusters are considered

to be the newly added application classes themselves,

i.e. f ′
j = Cj ,∀l + 1 ≤ j ≤ l + s.

We therefore take as starting point the previous

partitioning into clusters (as explained above) and

study in which conditions an extended object e
j′
i is

still correctly placed into its cluster K ′
j . For that, we

express the distance of e
j′
i to the center of its cluster,

f ′
j , compared to the distance to the center f ′

r of any

other cluster K ′
r.

Theorem 1 When inequalities (5) and (6) hold for an

extended entity e
j′
i (1 ≤ j ≤ l)

e
j
iv ≥

nj
∑

k=1
e
j
kv

nj

,∀ v ∈ {l + 1, l + 2, . . . , l + s} (5)

and

d(ej′
i , f ′

j) ≤ d(ej′
i , Cv),∀ v ∈ {l + 1, l + 2, . . . , l + s}

(6)

then the entity e
j′
i is closer to the center f ′

j than to any

other center f ′
r, 1 ≤ j, r ≤ l + s, r 6= j.

Proof

We prove below this statement.

First, we will prove that the entity e
j′
i is closer to

the center f ′
j than to any other center f ′

r, 1 ≤ j, r ≤
l, r 6= j.

d2(ej′
i , f ′

j) − d2(ej′
i , f ′

r) =

d2(ej
i , fj) +

l+s
∑

v=l+1









nj
∑

k=1

e
j

kv

nj
− e

j
iv









2

−

d2(ej
i , fr) −

l+s
∑

v=l+1







nr
∑

k=1

er
kv

nr
− e

j
iv







2

.

Using the inequality (4), we have:

d2(ej′
i , f ′

j)− d2(ej′
i , f ′

r) ≤
l+s
∑

v=l+1









nj
∑

k=1

e
j

kv

nj
− e

j
iv









2

−

l+s
∑

v=l+1







nr
∑

k=1

er
kv

nr
− e

j
iv







2

⇔

d2(ej′
i , f ′

j)−d2(ej′
i , f ′

r) ≤
l+s
∑

v=l+1









nj
∑

k=1

e
j

kv

nj
−

nr
∑

k=1

er
kv

nr









·









nj
∑

k=1

e
j

kv

nj
+

nr
∑

k=1

er
kv

nr
− 2 · ej

iv









.

If the inequality (5) holds for every new attribute

of e
j′
i , then the inequality above becomes:

d2(ej′
i , f ′

j) − d2(ej′
i , f ′

r) ≤

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 395 Issue 3, Volume 7, March 2010

−
l+s
∑

v=l+1









nj
∑

k=1

e
j

kv

nj
−

nr
∑

k=1

er
kv

nr









2

⇔

d2(ej′
i , f ′

j) − d2(ej′
i , f ′

r) ≤ 0.

Because all distances are non-negative numbers,

it follows that:

d(ej′
i , f ′

j) ≤ (ej′
i , f ′

r), ∀r, 1 ≤ r ≤ l, r 6= j. (7)

It is obvious that inequality (6) indicates that the

entity e
j′
i is closer to the center f ′

j than to any other

center f ′
r, l + 1 ≤ j, r ≤ l + s, r 6= j.

Consequently, from (7) and (6), we can conclude

that the entity e
j′
i is closer to the center f ′

j than to any

other center f ′
r, 1 ≤ j, r ≤ l + s, r 6= j.

⊓⊔
We have to notice that the inequality in (5) im-

poses only intra-cluster conditions. An entity is com-

pared against its own cluster in order to decide its new

affiliation to that cluster.

3.2 The Core Based Adaptive Refactoring Al-

gorithm

We will use the property enounced in the previous

subsection in order to identify inside each cluster

K ′
j , 1 ≤ j ≤ l, those entities that have a consider-

able chance to remain stable in their cluster, and not

to move into another cluster as a result of the software

system’s class (attribute set) extension. In our view,

these entities form the core of their cluster. In the fol-

lowing definition we will consider that 1 ≤ j ≤ l.

Definition 2

a) We denote by StrongCorej = {ej′
i |e

j′
i ∈ K ′

j , e
j′
i

satisfies the set of inequalities (5) and (6)} the

set of all objects in K ′
j satisfying inequalities (5)

and (6) for each new attribute (class) v, l + 1 ≤
v ≤ l + s.

b) Let sat(ej′
i) be the set of all new attributes v, l+

1 ≤ v ≤ l + s, for which object e
j′
i satisfy in-

equalities (5) and (6).

We denote by WeakCorej = {ej′
i |e

j′
i ∈

K ′
j , |sat(ej′

i)| ≥

nj
∑

k=1

|sat(ej′

k
)|

nj
} the set of all enti-

ties in K ′
j satisfying inequalities (5) and (6) for at

least the average number of attributes for which

(5) and (6) hold.

c) Corej = StrongCorej iif StrongCorej 6= ∅;

otherwise, Corej = WeakCorej .

We mention that the initial number of centroids

(clusters) in the adaptive clustering algorithm is the

number of application classes after the extension of

S, i.e., l+s.

In the following we will present our idea in choos-

ing the first l initial centroids and initial clusters from

the partition that will be adapted. We will assume in

the following that 1 ≤ j ≤ l. For each new appli-

cation class (attribute) Cv, l + 1 ≤ v ≤ l + s, and

each cluster K ′
j there is at least one entity that sat-

isfies the inequality (5) with respect to the attribute

Cv. Namely, the entity that has the greatest value for

attribute Cv between all entities in K ′
j certainly sat-

isfies inequality (5) (the maximum value in a set is

greater or equal than the mean of the values in the

set). But it is not sure that there is in cluster K ′
j

any entity that satisfies relations (5) and (6) for all

new application classes (attributes) Cl+1, . . . , Cl+s.

If there are such entities (StrongCorej 6= ∅), we

know that, according to Theorem 1, they are closer

to the cluster center f ′
j than to any other cluster cen-

ter f ′
r, 1 ≤ r ≤ l + s, r 6= j. Then, Corej will

be taken to be equal to StrongCorej and will be the

seed for cluster j in the adaptive algorithm. But if

StrongCorej = ∅, then we will choose as seed for

cluster j other entities, the most stable ones between

all entities in K ′
j . These entities (WeakCorej) can be

less stable than would be the entites in StrongCorej .

This is not, however, a certain fact: the entities in the

“weaker” set WeakCorej can be as good as those is

StrongCorej . This comes from the fact that Theo-

rem 1 enounces a sufficient condition for the entities

in K ′
j to be closer to f ′

j than to any other f ′
r, but not a

necessary condition, too.

The cluster cores, chosen as we described, will

serve as seed in the adaptive clustering process. All

entities in Corej will surely remain together in the

same group if clusters do not change. This will not be

the case for all core entities, but for most of them.

We have presented above the idea for choosing

the initial l centroids and clusters. Considering that

s new application classes are added to the software

system S, the next s centroids are chosen as the newly

added classes, i.e., f ′
j = Cj ,∀l + 1 ≤ j ≤ l + s.

The adaptive algorithm starts by calculating the

old clusters’ cores. The cores will be the new ini-

tial clusters from which the adaptive process begins.

Next, the algorithm proceeds in the same manner as

the classical k-means method does.

We mention that the algorithm stops when the

clusters from two consecutive iterations remain un-

changed or the number of steps performed exceeds a

maximum allowed number of iterations.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 396 Issue 3, Volume 7, March 2010

We give next the Core Based Adaptive Refactor-

ing algorithm.

Algorithm CBAR is

Input:

- the software system S = {e1, . . . , en} of

l-dimensional entities

- l, the number of classes from S

- the set of newly added classes

{Cl+1, . . . , Cl+s}

- the extended software system S ′ =

{e′1, . . . , e
′

n+m} of (l+s)-dimensional

extended objects

- the metric d between objects in the

l-dimensional space,

- s, the number of added classes

- noMaxIter the maximum allowed

number of iterations.

- K = {K1, . . . , Kl} the partition

of entities in S reported by kRED.

Output:

- the re-partitioning of the entities

from S ′, K′ = {K′

1, . . . , K
′

l+s}.

Begin

@ The old cluster cores are computed

For j ← 1, l do

Corej ← (StrongCorej 6= ∅)?StrongCorej :

WeakCorej

@ The initial centroids are determined

f ′

j ← the mean of objects in Corej

EndFor

@ Centroids corresponding to the added

@ application classes are determined

For j ← l + 1, l + s do

f ′

j ← Cj

EndFor

K′ ← {f ′

1, f
′

2 . . . f ′

l+s}

While (K′ changes) and (there were

not performed noMaxIter iterations) do

For j ← 1, l + s do

@ The clusters are recalculated

K′

j ← {ei | ∀fk, d(ei, fj) ≤ d(ei, fk)}

EndFor

For j ← 1, l + s do

If K′

j = ∅ then

@ remove element K′

j from K′

//the no. of clusters is decreased

Else

f ′

j ← the mean of K′

j

Endif

EndFor

EndWhile

@ K′ is the output partition

End.

Remark 3 We mention two main characteristics of

CBAR algorithm: (a) the time complexity for cal-

culating the cores in the clustering process does not

grow the complexity of the global calculus; (b) the

method for calculating the core of a cluster C (us-

ing inequality (2)) depends only on the current cluster

(does not depend on other clusters).

In order to identify possible improvements of

CBAR algorithm, we have considered the following

adaptation:

• When calculating the core Corej of a certain

cluster Kj (1 ≤ j ≤ l), we will consider not only

StrongCorej , but WeakCorej as well. Conse-

quently, if StrongCorej is not empty, then the

seed for cluster j is set as the union between

StrongCorej and WeakCorej , as illustrated in

Equation (8). Our intuition for this choice is that

it is a large enough probability that the entities

from WeakCorej to be stable in the cluster, and

this will increase the efficiency of the adaptive

process.

Corej = (StrongCorej 6= ∅)?

StrongCorej

⋃

WeakCorej : WeakCorej .

(8)

In the following, we will dentote this variation of

CBAR algorithm as CBARv.

4 Related Work
There are various approaches in the literature in the

field of refactoring. But, only very limited support

exists in the literature for automatic refactorings de-

tection.

Deursen et al. have approached the problem of

refactoring in [17]. The authors illustrate the dif-

ference between refactoring test code and refactoring

production code, and they describe a set of bad smells

that indicate trouble in test code, and a collection of

test refactorings to remove these smells.

Xing and Stroulia present in [18] an approach for

detecting refactorings by analyzing the system evolu-

tion at the design level.

A search based approach for refactoring software

systems structure is proposed in [13]. The authors use

an evolutionary algorithm for identifying refactorings

that improve the system structure.

An approach for restructuring programs written

in Java starting from a catalog of bad smells is intro-

duced in [8].

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 397 Issue 3, Volume 7, March 2010

Based on some elementary metrics, the approach

in [16] aids the user in deciding what kind of refactor-

ing should be applied.

The paper [15] describes a software vizualization

tool which offers support to the developers in judging

which refactoring to apply.

Clustering techniques have already been applied

for program restructuring. A clustering based ap-

proach for program restructuring at the functional

level is presented in [19]. This approach focuses on

automated support for identifying ill-structured or low

cohesive functions. The paper [12] presents a quan-

titative approach based on clustering techniques for

software architecture restructuring and reengineering

as well for software architecture recovery. It focuses

on system decomposition into subsystems.

A clustering based approach for identifying the

most appropriate refactorings in a software system

is introduced in [7]. Based on the approach from

[7], a hierarchical clustering algorithm for refactor-

ings identification is developed in [2].

Fatiregun et al. [23] applied genetic algorithms to

identify transformation sequences for a simple source

code, with 5 transformation array, whilst we have ap-

plied 6 distinct refactorings to 23 entities. Seng et al.

[25] apply a weighted multi-objective search, in which

metrics are combined into a single objective function.

An heterogeneous weighed approach is applied here,

since the weight of software entities in the overall sys-

tem and refactorings cost are studied. Mens et al. [24]

propose the techniques to detect the implicit depen-

dencies between refactorings.

To our kowledge, there are no existing approaches

in the literature in the direction of adaptive refactor-

ing, as it is approached in this paper.

5 Experimental Evaluation
In this section we present an experimental evaluation

of CBAR algorithm on a simple case study. We aim to

provide the reader with an easy to follow example of

adaptive refactorings extraction. Let us consider the

software system S consisting of the Java code exam-

ple shown below. The evaluation was also made for

the variation CBARv of CBAR algorithm presented

in Subsection 3.2.

public class Class_A {

public static int attributeA1;

public static int attributeA2;

public static void methodA1(){

attributeA1 = 0;

methodA2();

}

public static void methodA2(){

attributeA2 = 0;

attributeA1 = 0;

}

public static void methodA3(){

attributeA2 = 0;

attributeA1 = 0;

methodA1();

methodA2();

}

}

public class Class_B {

private static int attributeB1;

private static int attributeB2;

public static void methodB1(){

Class_A.attributeA1=0;

Class_A.attributeA2=0;

Class_A.methodA1();

}

public static void methodB2(){

attributeB1=0;

attributeB2=0;

}

public static void methodB3(){

attributeB1=0;

methodB1();

methodB2();

}

}

Analyzing the code presented above, it is obvious

that the method methodB1() has to belong to class A,

because it uses features of class A only. Thus, the

refactoring Move Method should be applied to this

method.

We have applied kRED algorithm, and the

Move Method refactoring for methodB1() was deter-

mined. A partition K = {K1, K2} was obtained,

where K1 = {Class A, methodA1(), methodA2(),

methodA3(), methodB1(), attributeA1, attributeA2}
and K2 = {Class B, methodB2(), methodB3(), at-

tributeB1, attributeB2}.

Cluster K1 corresponds to application class

Class A and cluster K2 corresponds to application

class Class B in the new structure of the system.

Consequently, kRED proposes the refactoring Move

Method methodB1() from Class B to Class A.

Let us consider that the system is now extended

with another class, Class C. Let us denote by S ′ the

extended software system.

public class Class_C {

private static int attributeC1;

private static int attributeC2;

public static void methodC1(){

Class_A.attributeA1=0;

Class_A.methodA2();

}

public static void methodC2(){

attributeC1=0;

attributeC2=0;

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 398 Issue 3, Volume 7, March 2010

}

public static void methodC3(){

attributeC1=0;

methodC1();

methodC2();

}

}

Analyzing the newly added application class, it is

obvious that the method methodC1() has to belong to

class A, because it uses features of class A only. Thus,

the refactoring Move Method should be applied to this

method.

Consequently, a partition K′ = {K ′
1, K

′
2, K

′
3} of

the extended system has to be obtained, with clus-

ters K ′
1, K ′

2 and K ′
3 corresponding to the restruc-

tured classes class A, class B and class C respec-

tively, i.e., K ′
1 = {Class A, methodA1(), methodA2(),

methodA3(), methodB1(), methodC1(), attributeA1, at-

tributeA2}, K ′
2 = {Class B, methodB2(), methodB3(),

attributeB1, attributeB2} and K ′
3 = {Class C,

methodC2(), methodC3(), attributeC1, attributeC2}.

There are two possibilities to obtain the restruc-

tured partition K′ of the extended system S ′.

1. To apply kRED algorithm from scratch on the

extended system containing all the entities from

application classes class A, class B and class C.

2. To adapt, using CBAR algorithm, the partition

K obtained after applying kRED algorithm be-

fore the system’s extension.

We comparatively present in Table 1 the results ob-

tained after applying kRED, CBAR and CBARv

algorithms for restructuring the extended system S ′.

We mention that all algorithms have identified the par-

tition K′ corresponding to the improved structure of

S ′.

Table 1: The results

No (l) of classes from S 2

No of entities from S 12

No (s) of newly added classes 1

No (l+s) of classes from S ′ 3

No of entities from S ′ 18

No of kRED iterations for (l+s) attributes 3

No of CBAR iterations for (l+s) attributes 2

No of CBARv iterations for (l+s) attributes 2

From Table 1 we observe that CBAR algorithm

finds the solution in a smaller number of iterations

than kRED algorithm. This confirms that the time

needed by CBAR to obtain the results is reduced, and

this leads to an increased efficiency of the adaptive

process. For large software systems, it is very likely

that the number of iterations performed by CBAR
will be significantly reduced in comparison with the

number of iterations performed by kRED.

We also notice that the number of iterations per-

formed by CBAR and CBARv is the same, but we

think that for larger systems CBARv algorithm will

find the solution in a smaller number of iterations than

CBAR.

6 Conclusions and Future Work
We have proposed in this paper a new method for

adapting a restructuring scheme of a software system

when new application classes are added to the sys-

tem. The considered experiment proves that the result

is reached more efficiently using CBAR method than

running kRED again from the scratch on the extended

software system.

Further work will be done in the following direc-

tions:

• To isolate conditions to decide when it is more

effective to adapt (using CBAR) the partitioning

of the extended software system than to recalcu-

late it from scratch using kRED algorithm.

• To apply the adaptive algorithm CBAR on open

source case studies and real software systems.

• To study the apropriateness of other clustering al-

gorithms [3, 4] for refactorings identification and

to develop adaptive variants of them.

• To study the apropriateness of adaptive fuzzy

clustering algorithms [1] for refactorings identi-

fication.

Acknowledgements: This work was supported by

the research project ID 2286, No. 477/2008, spon-

sored by the Romanian National University Research

Council (CNCSIS).

References:

[1] Chih-Hung Hsu, Tzu-Yuan Lee, Hui-Ming Kuo.

Mining the Body Features to Develop Sizing

Systems to Improve Business Logistics andMar-

keting Using Fuzzy Clustering Data Mining.

WSEAS Transactions on Computers, 8(7), 2009,

pp.1215–1224.

[2] I.G. Czibula and G. Serban. Software systems

design improvement using hierarchical cluster-

ing. WSEAS TRansactions on Electronics, 5(7),

2008, pp.291–302.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 399 Issue 3, Volume 7, March 2010

[3] J. Avila, A. Ramirez, C. Cruz, and I. Vasquez-

Alvarez. The clustering algorithm for nonlinear

system identification. WSEAS Transactions on

Computers, 7(7), 2008, pp.1179–1188.

[4] W. Barbakh and C. Fyfe. A novel construction of

connectivity graphs for clustering and visualiza-

tion. WSEAS Transactions on Computers, 7(5),

2008, pp.424–434.

[5] William J. Brown, Raphael C. Malveau, III Hays

W. McCormick, and Thomas J. Mowbray. An-

tiPatterns: refactoring software, architectures,

and projects in crisis. John Wiley & Sons, Inc.,

New York, NY, USA, 1998.

[6] Shyam R. Chidamber and Chris F. Kemerer.

A metrics suite for object oriented design.

IEEE Transactions on Software Engineering,

20(6):476–493, 1994.

[7] I.G. Czibula and G. Serban. Improving sys-

tems design using a clustering approach. IJC-

SNS International Journal of Computer Science

and Network Security, 6(12):40–49, 2006.

[8] T. Dudzikan and J. Wlodka. Tool-supported di-

covery and refactoring of structural weakness.

Master’s thesis, TU Berlin, Germany, 2002.

[9] M. Fowler. Refactoring: Improving the Design

of Existing Code. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1999.

[10] E. Gamma. JHotDraw Project.

http://sourceforge.net/projects/jhotdraw.

[11] A. Jain and R. Dubes. Algorithms for Clustering

Data. Prentice Hall, New Jersey, 1998.

[12] Chung-Horng Lung. Software architecture re-

covery and restructuring through clustering tech-

niques. In ISAW ’98: Proceedings of the third in-

ternational workshop on Software architecture,

pages 101–104, New York, NY, USA, 1998.

ACM Press.

[13] Olaf Seng, Johannes Stammel, and David

Burkhart. Search-based determination of refac-

torings for improving the class structure of

object-oriented systems. In GECCO ’06:

Proceedings of the 8th annual conference on

Genetic and evolutionary computation, pages

1909–1916, New York, NY, USA, 2006. ACM

Press.

[14] Frank Simon, Silvio Loffler, and Claus Lewer-

entz. Distance based cohesion measuring. In

proceedings of the 2nd European Software Mea-

surement Conference (FESMA), pages 69–83,

Technologisch Instituut Amsterdam, 1999.

[15] Frank Simon, Frank Steinbruckner, and Claus

Lewerentz. Metrics based refactoring. In CSMR

’01: Proceedings of the Fifth European Confer-

ence on Software Maintenance and Reengineer-

ing, pages 30–38, Washington, DC, USA, 2001.

IEEE Computer Society.

[16] Ladan Tahvildari and Kostas Kontogiannis. A

metric-based approach to enhance design quality

through meta-pattern transformations. In CSMR

’03: Proceedings of the Seventh European Con-

ference on Software Maintenance and Reengi-

neering, pages 183–192, Washington, DC, USA,

2003. IEEE Computer Society.

[17] A. van Deursen, L. Moonen, A. van den Bergh,

and G. Kok. Refactoring test code. pages 92–95,

2001.

[18] Zhenchang Xing and Eleni Stroulia. Refactor-

ing detection based on UMLDiff change-facts

queries. WCRE, pages 263–274, 2006.

[19] Xia Xu, Chung-Horng Lung, Marzia Zaman,

and Anand Srinivasan. Program restructuring

through clustering techniques. In SCAM ’04:

Proceedings of the Source Code Analysis and

Manipulation, Fourth IEEE International Work-

shop on (SCAM’04). pages 75–84. Washington,

DC, USA, 2004. IEEE Computer Society.

[20] Jiawei Han. Data Mining: Concepts and Tech-

niques. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2005.

[21] Anil K. Jain and Richard C. Dubes. Algorithms

for clustering data. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1988.

[22] A. Jain and R. Dubes. Algorithms for Clustering

Data. Prentice Hall, New Jersey, 1998.

[23] D. Fatiregun, M. Harman, and R. Hierons.

Evolving transformation sequences using ge-

netic algo- rithms. In 4th International Work-

shop on Source Code Analysis and Manipulation

(SCAM 04). pages 65–74. Los Alamitos, Califor-

nia, USA. 2004. IEEE Computer Society Press.

[24] T. Mens, G. Taentzer, and O. Runge.

Analysing refactoring dependencies using

graph transforma- tion. Software and System

Modeling, 6(3). pages 269–285. 2007.

[25] O. Seng, J. Stammel, D. Burkhart. Search-based

determination of refactorings for improving the

class structure of object-oriented systems. In

Proceedings of the 8th Annual Conference on

Genetic and Evolutionary Computation. ACM

Press. pages 1906–1916. Seattle, Washington,

USA. 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Gabriela Czibula, Istvan Gergely Czibula

ISSN: 1790-0832 400 Issue 3, Volume 7, March 2010

