
 Three Algorithms for Analyzing Fractal Software Networks

Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu
Department of Electrical and Electronic Engineering

University of Cagliari
piazza d’Armi – 09123 Cagliari

ITALY
{mario.locci, concas, roberto.tonelli, ivana.turnu}@diee.unica.it

http://www.diee.unica.it

Abstract: - In this work we propose an algorithm for computing the fractal dimension of a software network, and
compare its performances with two other algorithms. Object of our study are various large, object-oriented software
systems. We built the associated graph for each system, also known as software network, analyzing the binary
relationships (dependencies), among classes. We found that the structure of such software networks is self-similar
under a length-scale transormation, confirming previous results of a recent paper from the authors. The fractal
dimension of these networks is computed using a Merge algorithm, first devised by the authors, a Greedy Coloring
algorithm, based on the equivalence with the graph coloring problem, and a Simulated Annealing algorithm,
largely used for efficiently determining minima in multi-dimensional problems. Our study examines both
efficiency and accuracy, showing that the Merge algorithm is the most efficient, while the Simulated Annealing is
the most accurate. The Greeding Coloring algorithm lays in between the two, having speed very close to the Merge
algorithm, and accuracy comparable to the Simulated Annealing algorithm.

Key-Words: - Complex Systems, Complex Networks, Self-similarity, Software Graphs, Software Metrics,
Object-Oriented Systems.

1 Introduction
Software systems are characterized by being com-
posed of software modules, which are related on each
other. This characteristic holds irrespectively of the
specific technology or language used for developing
the system. In a system written in C or Fortran lan-
guage the modules are the functions, which call each
other, or the source code files, which include, and are
included by, other files. In an object-oriented (OO)
system, the modules can be classes and interfaces,
source code files holding them, or packages, with de-
creasing granularity. Among OO classes and inter-
faces, many relationships are possible, such as inheri-
tance, composition, dependency, instantiation, imple-
mentation.

A software system composed by modules, can be
easily mapped to a graph, or a network, being graph
nodes the software modules, and graph edges the rela-
tionships between modules. We will call software net-
work such a graph. It is already well known that soft-
ware networks have the characteristics of complex
networks, i.e. are scale-free and small-world [1-4]
[15]. A recent paper by Song et al. [5] demonstrated

that the structure of complex networks can also be
self-similar under a length-scale transformation, and
showed how to calculate their fractal dimension using
the “box counting” method.

This finding was applied to software networks
computed on the classes and class relationships of
large Smalltalk and Java systems, which were shown
to exhibit a consistent self-similar behavior [6]. More-
over, a significant correlation seems to hold between
the fractal dimension computed for various OO sys-
tems, and standard metrics related with software qual-
ity [6] [13] [14]. It is worth noting that the fractal
dimension is just a single number that characterizes a
whole network, and hence a whole software system,
while complexity metrics are computed on every
module of the system – think for instance to
Chidamber and Kemerer OO metrics suite [7].
Obviously, the whole system can be characterized by
some statistics computed on all modules, but this is
not the same of having just one consistent, synthetic
measure as with fractal dimension.

For this reason, we believe that the fractal dimen-
sion of software networks is a significant metric

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 371 Issue 3, Volume 7, March 2010

describing the regularity of the software structure. It is
therefore important to have efficient and reliable
algorithms to compute it. In fact, as it will be shown
in the following, the box counting algorithm is NP-
complete, and its exact computation for large
networks cannot be practically accomplished.

In this paper we recall the definition and meaning
of fractal dimension in software networks, and then
present and compare three different algorithms to
compute it – Greedy Coloring, a Merge Algorithm
devised by the authors, and Simulated Annealing –
discussing the results.

2 The Fractal Dimension of Software
Networks

2.1 Object-Oriented Systems as Networks
The basic building block of OO programming is the
class, composed of a data structure and of procedures
able to access and process these data. The data struc-
ture is made up of fields (instance or class variables)
that represent the state of an object.

A class has also a behavior expressed in terms of
methods that represent the procedures able to access
and process the data structure. Classes may be defined
at various levels of complexity, and are related across
different kinds of binary relationships, such as inheri-
tance, composition and dependence, which are well-
known properties of OO design.

For the software systems considered in this work,
but also in general, there is not unique way for
building a software network. One first difference can
be introduced at the vertex level, discriminating
among simple classes, abstract classes, or interfaces.

Another difference can exist at the link level, for
example distinguishing among directed or un-directed
links. It is also possible to consider only particular
kinds of links, like dependencies alone, and so on.

In this work we decided to consider only the
classes (not abstract classes or interfaces) as vertex,
and dependencies and inheritance as binary
relationships.

Analyzing the source code of an OO system, it
is possible to build its class graph —a graph whose
nodes are the classes, and the graph edges represent
directed relationships between classes (fig 1).

In this graph, the in-degree of a class is the

Fig. 1. Example of a portion of class graph for
Eclipse.Classes, abstract classes and interfaces, as well

as different relationships, have different colors.

number of edges directed toward the class, and is
related to the usage level of this class in the system,
while the out-degree of a class is the number of edges
leaving the class, and represents the level of usage the
class makes of other classes in the system. It has
already been shown that OO software networks
exhibit the scale-free and small-world properties, and
thus can be considered complex networks. The in-
degree distributions are power laws with exponent γ ≈
2.5 [1], [3], while the out-degree distributions are
more controversial, and are mainly log-normal or
Double-Pareto distributions [3], [8].

The dispute among log-normal or double Pareto
(or even simple Pareto) is not purely academical. In
fact it involves the validity and the suitability of
different models of software process production, and
presents potentially important practical implications
on software quality and costs.

With regard to this paper the possible paths on
the software graph, and thus the distances among
nodes, may be different when considering the out-
links or the in-links network. This may influence the
final value of the fractal dimension. Thus we decided
to consider only un-directed links.

2.2 Fractals

Before studying software networks scaling
properties we need to introduce the basic concept of
fractal dimension. Systems possessing fractal
dimensions fill the space in a counterintuitive manner.

One of the easy-to-understand and well known

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 372 Issue 3, Volume 7, March 2010

examples of fractals is the Cantor set.

Fig. 2 Cantor set with three steps.

Let us consider a segment of unit length. For the
sake of clarity, we label its left extreme with the
abscissa zero, and its right extreme with the abscissa
one. To obtain the Cantor set we delete pieces of this
segment applying an infinite iterative process, and
look at the remaining set of points (fig. 2).

At the first step we subtract the inner third of the
segment (any other fraction works well). The
remaining set are two segments of length one third
each.

At the second step we subtract from each of
these two segment their central third. The remaining
set are four segments of length one ninth each.

According to this process, at the nth step we
obtain 2n segments each of length 3-n each, and the
set's total length is (2/3)n.

Let us examine the limit for large n. Clearly the
number of segments grows to infinity, each segment
becoming of zero length, namely a point. But such set
is not a simple set of discrete points. In fact it is not
countable. Actually it has the power-of-continuum,
namely it is in a one-to-one correspondence with the
original unit length segment.

The reasoning is the following. Consider the first
step. The two segments may be identified with two
numbers, zero for the left segment, and one for the
right segment. For the segments at the second step we
can add another binary digit, again zero for the left
segment and one for the right segment. Thus the four
segments at the second step are identified by two
binary digits: 00, 01, 10 and 11, from left to right. In
general, each segment at the nth step may be identified
by a sequence of n binary digits. In the limit of large n
we can label each point of the remaining set by an
infinite sequence of binary digits. But each point of
the unit length segment is identified, in binary
notation, by the same infinite sequences. In other
words, all the points among zero and one may be
coded in a fractional binary number. This provides a
one-to-one mapping among the original segment and

the remaining set of points. Apparently the subtraction
of an infinite number of pieces does not modify the
segment! Nevertheless they are clearly two different
sets.

We can also consider another peculiarity. Let us
calculate the length of all the subtracted sub-segments.

At the first step we subtracted one segment of
length one third. At the second step we subtracted two
other segments, each of length one ninth. In general at
the nth step we have to consider 2(n-1) segments of
length 3-n. We obtain the following series providing
the total length:

This sum converges to one. Thus at the end we
subtracted all the original segment's length! These are
the paradoxes we have to face when dealing with
fractal objects.

Even if the two sets are in a one-to-one
correspondence, they substantially fill the available
space in a different manner. Roughly speaking, the
segment fills all the available space, while the Cantor
set (the set of remaining points) leaves lots of holes: it
is non-continuous. This is the key observation to
define the fractal dimension.

In fact, if we partition the available space in
cells, with varying sizes or diameters, we can note the
difference among the two kinds of sets if we look at
how many cells are filled or empty. In the segment
case, regardless of the cells diameter, all the cells will
be full. Thus the number of filled cells grows with the
inverse of the cells diameter. In the case of the Cantor
set this is not true, and the number of filled cells
grows with a fractional power of the inverse of the
diameter.

More formally, in the first case, we simply
partition the segment in N identical subsegments of
diameter (in one dimension all the partition cells are
simply segments, while in dimension D we can use D-
dimensional cubes). The relationship among the two is
N = 1/, and thus the number of filled cells scales
with the inverse power of the diameter. If we use a
different segment length we obtain a multiplicating
factor in front of the previous formula.

In two dimensions, instead of a segment we
partition a unit square, using -side subsquares. Their
number is given by N = 1/2, and scales with the
second inverse power of the diameter.

Ltot=∑n=1

∞

2n−1
/3n

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 373 Issue 3, Volume 7, March 2010

Generalizing to dimension D, a unit D-cube will
be partitioned by -side D-cubes, and their total
number will be N = 1/D, scaling with the D inverse
power of the diameter. All these powers are integer,
that we are use to call “integer dimensions”.

In the case of Cantor set, for the covering
partition at step n we need N = 2n cells of diameter
= 3-n. Then the scaling of N with is:

with K < 1. This defines the fractal dimension of
the Cantor set as d = log(2)/log(3), and indicates the
scaling of the number of non empty cells with
diameter, or, in a sense, how many points fill the
space in a range of the diameter, a concept that will be
extended for the network's fractal dimension.

This way of proceed to calculate the fractal
dimension is known as the box-counting method,
since the partition divides the space into equal boxes.

The value log(2)/log(3) clearly indicates that
Cantor set does not fill the space nor like a one
dimensional segment, neither like a set of disjoint
point, whose fractal dimension is zero.

The Cantor set, by construction, shows an
important signature of fractal sets, the self-similarity:
at any length scale the set looks the same. The
structure reveals always the same details when viewed
at different magnifications, and there is not lower
limit, or something like “atomic” components, from
which all the set is built.

While for mathematical sets this is exactly true
at any length scale, for real objects the scaling regime
and self-similarity hold only in a limited range of
lengths, and finite size or granularity effects are
revealed out of these limits.

2.2 Fractal Dimension of OO
Networks

A recent study [5] found that the structure of
complex networks is often also self-similar, and it is
possible to calculate their fractal dimension using the
box-counting method. As we saw, this method
consists in covering the entire set, the network in this
case, with the minimum number of boxes NB of linear
size (diameter) lB. For a given network G and box size
lB, a box is a set of nodes where all distances lij
between any two nodes i and j in the box are smaller

than lB. If the number of boxes scales with the linear
size lB following a power law (see eq. (1)), then dB is
the fractal dimension, or box dimension, of the graph
[5]:

(1)

The computation of the fractal coefficient of a
network is thus a two-step one. First, an assessment of
the self-similarity of the network has to be done, com-
puting the minimum number of boxes covering the
network, varying lB from one to a given number,
usually 10 or 20. This is the most computational
intensive step. Then, one has to check whether NB(lB)
is linear in a log-log plot, showing a power-law
behavior. This check is somewhat subjective, though
it is possible to compute confidence intervals to this
purpose. Eventually, an estimate of dB is made fitting
the plot with an LMS algorithm.

It has been already reported that OO software
networks related to classes of large Smalltalk and Java
systems show a patent self-similar behavior, with frac-
tal dimension between 3.7 and 5.1 [6]. So, for OO
software networks it is important to have efficient and
reliable algorithms able to compute their fractal di-
mension.

Fig. 3. Log-log plot of NB vs. lB for JDK 1.5.0.

Fig. 3 shows the box counting analysis of the
software network related to JDK 1.5.0 Java system.
The log-log plot of NB vs. lB reveals a self-similar
structure. The slope of the fit is 4.24; this value is the
fractal dimension dB for JDK 1.5.0

N Bl B~lB
−d B

N ~
−log2 /log 3

=
−K

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 374 Issue 3, Volume 7, March 2010

.Fig. 4. Log-log plot of NB vs. lB for Eclipse 2.1.3.

In fig. 4 we report the box counting result for
Eclipse 2.1.3, whose software graph has partially been
shown in the first figure. Also for this system the log-
log plot of NB vs. lB is clearly linear, and the system
exhibits the power-law scaling. The slope provides
4.31 for the box-counting fractal dimension of this
software network.

Fig. 5. Log-log plot of NB vs. lB for VWorks 7.3.

In fig. 5 we show the same plot for another
software system, VWorks 7.3. Once again it shows a
self-similar structure and a power-law relationship
among NB and lB. Here the value provided by the
box-counting method for the fractal dimension is 4.54.

2.3 Computing the Fractal Dimension
Song et. al. in their first paper [5] do not give details
about how they actually computed the fractal dimen-
sion. Subsequently, Concas et al. shortly presented a
simple algorithm for computing dB [6]. Later, Song et
al. demonstrated that this computational problem is
equivalent to the graph coloring problem, and conse-
quently took advantage of the many well-known
greedy algorithms to perform this task [9]. Here we
compare three algorithms both in terms of perfor-
mance and precision – greedy coloring as in [9], a
merge algorithm similar to that reported in [6], and
simulated annealing, which is considered one of the
best approaches to find the global minimum of
difficult, multi-modal problems.

2.3.1 Greedy Coloring (GC)
Song et al. demonstrate that the box counting

problem can be mapped to the graph coloring
problem, which is known to belong to the family of
NP-hard problems. Vertex coloring is a well-known
procedure, where colors are assigned to each vertex of
a network, so that no edge connects two identically
colored vertexes [10]. We used the greedy algorithm
described by Song et al. For this implementation we
need a two-dimensional matrix cil of size N × lB

max,
whose values represent the color of node i for a given
box size l = lB. The algorithm works in the following
way [9]:

(1) Assign a unique id from 1 to N to
all network nodes, without assigning any
colors yet.

(2) For all lB values, assign a color

value 0 to the node with id=1, i.e. cil = 0.
(3) Set the id value i = 2. Repeat the

following until i = N.
(a) Calculate the distance lij from i to

all the nodes in the network with id j less
than i.

(b) Set lB = 1.
(c) Select one of the unused colors

cjlij from all nodes j<i for which lij≥ lB.
This is the color cjlB of node i for the

given lB value.
(d) Increase lB by one and repeat (c)

until lB = lBmax..
(e) Increase i by 1.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 375 Issue 3, Volume 7, March 2010

This greedy algorithm is very efficient, since it
can cover the network with a sequence of box sizes lB

performing only one network pass.
The main steps are illustrated in fig. 6, where the

example shows the case lB = 3. Starting from the
network G representing the software graph, we build
the dual network G', obtained from G connecting two
nodes when their distance, calculated in the original
graph G, is larger than, or equal to, lB. Next we use a
greedy algorithm for vertex coloring in G'. Then we
go back to the original network determining the box
covering on G.

Fig. 6: Construction of the dual network G’ for a
given box size (here lB = 3), where two nodes are
connected if they are at a distance l ≥ lB. We use a

greedy algorithm for vertex coloring in G’, which is
then used to determine the box covering in G, as

shown in the plot.

2.3.2 Merge Algorithm (MA)
This method is based on the union of two or more
clusters into a third one. Two clusters are merged if
the distance between them is less than lB. MA uses the
configuration at lB to obtain the starting point for the
successive aggregation at lB+1 = lB + 1.

In the initial configuration each cluster ck con-
tains only a node, so each node is marked with a dif-
ferent label. Let n be the number of nodes of the

network, and lmax the maximum value for lB. The al-
gorithm works in the following way:

lB = 2;
C ≡ {c1, c2 , c3 ,..., cn};

while lB lmax;
D ≡ Φ;
repeat

get a random cluster ck from C;
C’ ≡ {cj C| d(ck,cj) ≤ lB};
get a random cluster ci from C’;
ĉ = merge(ck,cj);
C = C - {ck,cj};
D = D {ĉ};

until size(C) < 2 or C’= Φ c C;
D = D C;
NB = size(D);
lB := lB +1;
C = D;

end while;

In order to find the set C’ we use an efficient
burning algorithm to determine in a single step all
clusters belonging to C’.

2.3.3 Simulated Annealing(SA)
The MA described above is an efficient method to
estimate the fractal dimension, and the base for
Simulated Annealing algorithm. SA is a class of
algorithms inspired by the annealing process in
metallurgy [11]. In the SA context, a box partition
(box covering) is the state S of the physical system
and the number of boxes NB is the “internal energy” in
that state.

In order to consider a neighbor state S’ of the
current state S we compute three fundamental
operations:

• movement of nodes;
• creation of new clusters;
• union of clusters.

If S’ is a solution worse that S, there is a
probability to accept the state S’ even if it has the
energy E(S’) > E(S).

A new state or partition with boxes of size lB is
obtained from the current state by moving nodes and

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 376 Issue 3, Volume 7, March 2010

merging clusters. Let A and B be two generic clusters of
the current partition. We define the following operations:

• movement: a node is moved from A to B if B
diameter doesn’t exceed lB, and A includes at
least two nodes;

• creation: a node is taken from cluster A to
form a new cluster;

• merge: all clusters are merged by using the
merge algorithm described in section 2.3.2..

At each “temperature” we perform k1 movements
and k2 creations of nodes, and a single merge of all
clusters by using MA. We always accept a better or
equal solution, while we accept a solution S’ worse
than S with probability:

(2)

At each step the system is cooled down to a lower
temperature T0 = cT , where c < 1 is the cooling
constant. The typical starting temperature T is about
0.6 and the typical values of k1 and k2 are 5000 and 5,
respectively. Similar values are used by Zhou et al. in
their implementation of the SA algorithm [12]. In
deeper detail, the algorithm works in the following
way:

create first configuration S using MA
for j (j = 1, 2,,k3) do

move k1 nodes;
create k2 new clusters;
if E(S’) ≤ E(S) then

S := S’
else

get a random number RND;
if RND < exp(−(E(S’)−E(S))/T) then

S := S’
endif;

endif;
merge clusters using MA algorithm;
T := cT;

endFor;

We perform about 5000 steps at each
temperature, and then reduce T. The number of outer
cycles (temperature reductions) is k3, and it is set to

20, with cooling constant c set to 0.995 [12].

3 Results

We implemented in Java the three algorithms and
compared their performance in terms of speed and
quality of the result. In fact, being the box partitioning
problem NP-complete, on large networks its exact
solution is not feasible. Consequently, it is not enough
to have a fast algorithm to compute the box
partitioning, but the results must be trusted, in the
sense that the partitioning found should be close
enough to the global minimum to guarantee the
consistency of the results. We tested the goodness of
the results by repeatedly running the same algorithm,
selecting randomly the initial configuration. We then
checked the variance of the resulting estimate of
NB(lB) for various values of lB, which in turn depends
on the number of boxes found in each partitioning.

We used for the tests the software network related
to Java JDK 1.5 system, which includes the standard
Java libraries and development tools. The JDK
network has 8499 nodes and 42048 edges, so it can be
considered a quite large network.

3. Execution speed

We computed the execution speed on the whole
computation of dB, which is what actually matters,
running the three algorithms starting from random
configurations of the initial box partitioning and
performing 100 times the computation. The results for
a PC with Windows XP and a processor Intel Core
1.4 GHz are reported in Table 1and Table 2.

Table 1. Average execution times for dB computation
on JDK 1.5 class graph (8499 nodes and

42048 links).

Algorithm Time (s) dB

GC 410 3.96
MA 289 4.24
SA 8807 4.06

p=e
−

E S '− E S
T

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 377 Issue 3, Volume 7, March 2010

Table 1I. Average execution times for dB computation
on the E. Coli protein interaction network graph

(2859 nodes and 6890 links).

Algorithm Time (s) dB

GC 13 3.44
MA 21 3.57
SA 1177 3.47

As you can see, the most efficient algorithm is
MA, and this is confirmed also by other test runs on
other networks, not reported here for the sake of
brevity. GC is still very efficient, while SA is much
worse as regards execution speed, being at least one
order of magnitude slower.

It has to be pointed out that these results may
depend not only from the system analyzed, but also
from the particular release. In fact, changes of the
software structure among various releases are
reflected in changes of their fractal dimension.
Depending on the system, these changes may be more
or less pronounced.

Fig. 7. Fractal dimension for different versions of the
analyzed systems, as a function of the release version,

according to the number of classes of each version.

In fig. 7 we report the results of the fractal
dimension for various versions of different software
systems. It can be noted that, for Glass Fish, Eclipse
Birt, Netbeans, the fractal dimension is quite stable
among releases, while for JDK and Eclipse, it shows
major variations. This is an index of major topological
changes in the structure of the graph associated to
these systems, and, consequently, of major
modifications applied onto the software.

Regarding the quality of results, they look similar

but not exactly the same. This is discussed in detail in
the next section.

3.2 Result Quality

We computed the reliability of the three tested
algorithms by testing for their repeatability in 1000
runs on a smaller network than the whole JDK 1.5

Fig. 8. Empirical distributions of the values of NB for six

values of lB, for GC algorithm run 1000 times.

software graph, the E. Coli protein interaction
network [5]. This network has 2859 nodes and 6890
edges. We varied lB, from 2 to 7. Figs. 8, 9 and 10
show the empirical distributions of the values of NB

for each value of lB, and for GC, MA and SA
algorithms, respectively.

As you can see, GC and SA algorithms show a
very small dispersion of the resulting values of NB,
showing that both are highly reliable. On the other
hand, the results of Fig. 8 regarding MA algorithm
show a much higher dispersion. Consequently, despite
its high performances, we deem that MS algorithm is
not suitable for the computation of software networks
fractal dimension.

We report in Fig. 11 the standard deviation of
the computed NB for the three algorithms, for eight
values of lB, from 2 to 9. Fig. 11 confirms the
previous results on the reliability of the three
algorithms.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 378 Issue 3, Volume 7, March 2010

Fig. 9. Empirical distributions of the values of NB for

six values of lB, for MA algorithm run 1000 times.

The standard deviation of MA results is
consistently higher than that of GC and SA. The latter
algorithms are quite similar, with a slightly better
average performance of SA over GC on the eight test
values of lB.

Fig. 10. Empirical distributions of NB for six values of lB,
for SA algorithm run 50 times.

Fig. 11. Standard deviations of the values of NB for eight

values of lB, for MA algorithm run 1000 times.

4 Conclusion
The fractal dimension of software networks has the
potential to be a significant, synthetic metric
describing the regularity of the structure of a software
system, and moreover it has been proven to be
correlated to source code quality metrics of OO
systems. It is therefore important to have efficient and
reliable algorithms to compute it.

In this paper we presented three different algo-
rithms to compute the fractal dimension of networks,
which to our knowledge cover all the approaches
proposed in literature. These algorithms – Greedy
Coloring, Merge Algorithm, and Simulated
Annealing, have been described and compared using
the software network related to Java JDK 1.5 open
source system and, for the purpose of assessing the
algorithm reliability, also using a smaller protein
interaction network.

We found that SA is the best algorithm in terms
of precision, but it is by far the worst in terms of
speed. The time performance of MA is better than GC
for large networks but the greedy coloring produces
more precise solutions. In conclusion, the Greedy
Coloring algorithm, based on the equivalence of the
box counting problem with the graph coloring
problem, looks the best compromise, having speed
comparable to MA, and accuracy comparable with
SA.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 379 Issue 3, Volume 7, March 2010

References:

[1] S. Valverde, R. Ferrer-Cancho, and R. Sole´,
Scale-Free Networks from Optimal Design. Eu-
rophysics Letters, vol. 60, 2002, pp. 512-517.

[2] C. Myers, “Software Systems as Complex
Networks: Structure, Function, and Evolvability
of Software Collaboration Graphs”. Physical
Rev. E, vol. 68, 2003.

[3] G. Concas, M. Marchesi, S. Pinna, and N. Serra,
Power-Laws in a Large Object-Oriented Software
System, IEEE Transactions on Software
Engineering, vol. 33, No. 10, 2007, pp. 687-708.

[4] P. Louridas, D. Spinellis and V. Vlachos, Power
Laws in Software. ACM Trans. Software Eng.
and Method., Vol. 18, No. 1, 2008.

[5] C. Song, S. Havlin and Makse H. A., Self-
similarity of complex networks, Nature, vol. 433,
pp. 392-395, and related supplementary infor-
mation, 2006.

[6] G. Concas, M. Locci, M. Marchesi, S. Pinna, and
I. Turnu, Fractal dimension in software networks,
Europhysics Letters, vol. 76, 2006, pp.
1221-1227.

[7] S. Chidamber, and C. Kemerer, “A Metrics Suite
for Object-Oriented Design”, IEEE Trans. Soft-
ware Eng., vol. 20, no. 6, pp. 476-493, June 1994.

[8] G. Concas, M. Marchesi, A. Murgia, R. Tonelli,
I. Turnu, Stochastic models of software
development activities, submitted for publication.

[9] C. Song, L.K. Gallos, S. Havlin, H. A. Makse,
How to calculate the fractal dimension of a
complex network: the box covering algorithm,
Journal of Statistical Mechanics, P03006, 2007.

[10] D.W. Matula, G. Marble and J.D. Isaacson,
Graph Coloring Algorithms. In Graph Theory
and Computing (Ed. R. Read). New York:
Academic Press, pp. 109-122, 1972.

[11] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,
Optimization by Simulated Annealing. Science,
vol. 220, 1983, pp. 671-680.

[12] W.X. Zhou, Z.Q. Jiang, D. Sornette, Exploring
self-similarity of complex cellular networks: the
edge-covering method with simulated annealing
and log-periodic sampling. Physica A vol. 375,
No. 2, 2007, pp. 741-752.

[13] L. Lazic, S. Popovic, N. E. Mastorakis, A
Simultaneous Application of Combinatorial
Testing and Virtualization as a Method for
Software Testing. WSEAS Trans. on Inf. Sci, and
App., Vol. 6, 2009.

[14] L. Lazic, N. E. Mastorakis OptimalSQM:
Integrated and Optimized Software Quality
Management. WSEAS Trans. on Inf. Sci, and
App., Vol. 6, 2009.

[15] V. Podgorelec, Improved Mining of Software
Complexity Data on Evolutionary Filtered
Training Sets. WSEAS Trans. on Inf. Sci, and
App., Vol. 6, 2009.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 380 Issue 3, Volume 7, March 2010

