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Abstract: - In this work we propose an algorithm for computing the fractal dimension of a software network, and 
compare its performances with two other algorithms. Object of our study are various large, object-oriented software 
systems. We built the associated graph for each system, also known as software network, analyzing the binary 
relationships (dependencies), among classes. We found that the structure of such software networks is self-similar 
under a length-scale transormation, confirming previous results of a recent paper from the authors. The fractal 
dimension of these networks is computed using a Merge algorithm, first devised by the authors, a Greedy Coloring 
algorithm,  based  on  the  equivalence with  the  graph coloring  problem,  and  a  Simulated  Annealing  algorithm, 
largely  used  for  efficiently  determining  minima  in  multi-dimensional  problems.  Our  study  examines  both 
efficiency and accuracy, showing that the Merge algorithm is the most efficient, while the Simulated Annealing is 
the most accurate. The Greeding Coloring algorithm lays in between the two, having speed very close to the Merge 
algorithm, and accuracy comparable to the Simulated Annealing algorithm.  

Key-Words: - Complex Systems,  Complex Networks,  Self-similarity,  Software Graphs,  Software Metrics, 
Object-Oriented Systems.

1   Introduction
Software  systems  are  characterized  by  being  com-
posed of software modules, which are related on each 
other.  This  characteristic  holds  irrespectively  of  the 
specific technology or language used for developing 
the system. In a system written in C or Fortran lan-
guage the modules are the functions, which call each 
other, or the source code files, which include, and are 
included  by,  other  files.  In  an object-oriented  (OO) 
system,  the  modules  can  be  classes  and  interfaces, 
source code files holding them, or packages, with de-
creasing  granularity.  Among  OO  classes  and  inter-
faces, many relationships are possible, such as inheri-
tance, composition, dependency, instantiation, imple-
mentation.

A software system composed by modules, can be 
easily mapped to a graph, or a network, being graph 
nodes the software modules, and graph edges the rela-
tionships between modules. We will call software net-
work such a graph. It is already well known that soft-
ware  networks  have  the  characteristics  of  complex 
networks,  i.e.  are  scale-free  and  small-world  [1-4] 
[15]. A recent paper by Song et al. [5] demonstrated 

that  the  structure  of  complex  networks  can  also  be 
self-similar  under  a length-scale  transformation,  and 
showed how to calculate their fractal dimension using 
the “box counting” method. 

This  finding  was  applied  to  software  networks 
computed  on  the  classes  and  class  relationships  of 
large Smalltalk and Java systems, which were shown 
to exhibit a consistent self-similar behavior [6]. More-
over, a significant correlation seems  to hold between 
the fractal dimension computed for various OO sys-
tems, and standard metrics related with software qual-
ity  [6]  [13]  [14].  It  is  worth noting that  the  fractal 
dimension is just a single number that characterizes a 
whole network, and hence a whole software system, 
while  complexity  metrics  are  computed  on  every 
module  of  the  system  –  think  for  instance  to 
Chidamber  and  Kemerer  OO  metrics  suite  [7]. 
Obviously, the whole system can be characterized by 
some statistics computed on all  modules, but this is 
not the same of having just one consistent, synthetic 
measure as with fractal dimension. 

For this reason, we believe that the fractal dimen-
sion  of  software  networks  is  a  significant  metric 
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describing the regularity of the software structure. It is 
therefore  important  to  have  efficient  and  reliable 
algorithms to compute it. In fact, as it will be shown 
in the following, the box counting algorithm is NP-
complete,  and  its  exact  computation  for  large 
networks cannot be practically accomplished.

In this paper we recall the definition and meaning 
of fractal  dimension in software networks,  and then 
present  and  compare  three  different  algorithms  to 
compute  it  –  Greedy  Coloring,  a  Merge  Algorithm 
devised  by  the  authors,  and  Simulated  Annealing  – 
discussing the results.

2 The Fractal Dimension of Software 
Networks

2.1 Object-Oriented Systems as Networks
The basic building block of OO programming is the 
class, composed of a data structure and of procedures 
able to access and process these data. The data struc-
ture is made up of fields (instance or class variables) 
that represent the state of an object.

A class has also a behavior expressed in terms of 
methods that represent the procedures able to access 
and process the data structure. Classes may be defined 
at various levels of complexity, and are related across 
different kinds of binary relationships, such as inheri-
tance, composition and dependence, which are well-
known properties of OO design.

For the software systems considered in this work, 
but  also  in  general,  there  is  not  unique  way  for 
building a software network. One first difference can 
be  introduced  at  the  vertex  level,  discriminating 
among simple classes, abstract classes, or interfaces. 

Another difference can exist at the link level, for 
example distinguishing among directed or un-directed 
links.  It  is  also  possible  to  consider  only  particular 
kinds of links, like dependencies alone, and so on. 

In  this  work  we  decided  to  consider  only  the 
classes (not abstract  classes or interfaces)  as vertex, 
and  dependencies  and  inheritance  as  binary 
relationships. 

Analyzing the source code of an OO system, it 
is possible to build its class graph —a graph whose 
nodes are the classes, and the graph edges represent 
directed relationships between classes (fig 1). 

In this graph, the in-degree of a class is the 

Fig. 1. Example of a portion of class graph  for 
Eclipse.Classes, abstract classes and interfaces, as well  

as different relationships,  have different colors.

number  of  edges  directed  toward  the  class,  and  is 
related to the usage level of this class in the system, 
while the out-degree of a class is the number of edges 
leaving the class, and represents the level of usage the 
class  makes  of  other  classes  in  the  system.  It  has 
already  been  shown  that  OO  software  networks 
exhibit the scale-free and small-world properties, and 
thus  can  be  considered  complex  networks.  The  in-
degree distributions are power laws with exponent γ ≈ 
2.5  [1],  [3],  while  the  out-degree  distributions  are 
more  controversial,  and  are  mainly  log-normal  or 
Double-Pareto distributions [3], [8].

The dispute among log-normal or double Pareto 
(or even simple Pareto) is not purely academical. In 
fact  it  involves  the  validity  and  the  suitability  of 
different models of software process production, and 
presents  potentially  important  practical  implications 
on software quality and costs.

With regard to this paper the possible paths on 
the  software  graph,  and  thus  the  distances  among 
nodes,  may  be  different  when  considering  the  out-
links or the in-links network. This may influence the 
final value of the fractal dimension. Thus we decided 
to consider only un-directed links. 

2.2 Fractals 

Before  studying  software  networks  scaling 
properties we need to introduce the basic concept of 
fractal  dimension.  Systems  possessing  fractal 
dimensions fill the space in a counterintuitive manner.

One of the easy-to-understand and well known 
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examples of fractals is the Cantor set. 

Fig. 2 Cantor set with three steps.

Let us consider a segment of unit length. For the 
sake  of  clarity,  we  label  its  left  extreme  with  the 
abscissa zero, and its right extreme with the abscissa 
one. To obtain the Cantor set we delete pieces of this 
segment  applying  an  infinite  iterative  process,  and 
look at the remaining set of points (fig. 2). 

At the first step we subtract the inner third of the 
segment  (any  other  fraction  works  well).  The 
remaining set  are  two segments  of  length one third 
each. 

At  the  second  step  we  subtract  from  each  of 
these two segment their central third. The remaining 
set are four segments of length one ninth each.

According  to  this  process,  at  the  nth step  we 
obtain 2n segments each of length 3-n each,  and the 
set's total length is (2/3)n. 

Let us examine the limit for large n. Clearly the 
number of segments grows to infinity, each segment 
becoming of zero length, namely a point. But such set 
is not a simple set of discrete points. In fact it is not 
countable.  Actually  it  has  the  power-of-continuum, 
namely it is in a one-to-one correspondence with the 
original unit length segment. 

The reasoning is the following. Consider the first 
step.  The two segments may be identified with two 
numbers,  zero for  the left  segment,  and one for the 
right segment. For the segments at the second step we 
can add another binary digit,  again zero for  the left 
segment and one for the right segment. Thus the four 
segments  at  the  second  step  are  identified  by  two 
binary digits: 00, 01, 10 and 11, from left to right. In 
general, each segment at the nth step may be identified 
by a sequence of n binary digits. In the limit of large n 
we can label  each point  of  the remaining set  by an 
infinite sequence of binary digits.  But each point of 
the  unit  length  segment  is  identified,  in  binary 
notation,  by  the  same  infinite  sequences.  In  other 
words,  all  the  points  among  zero  and  one  may  be 
coded in a fractional binary number. This provides a 
one-to-one mapping among the original segment and 

the remaining set of points. Apparently the subtraction 
of an infinite number of pieces does not modify the 
segment! Nevertheless they are clearly two different 
sets. 

We can also consider another peculiarity. Let us 
calculate the length of all the subtracted sub-segments. 

At the first  step we subtracted one segment of 
length one third. At the second step we subtracted two 
other segments, each of length one ninth. In general at 
the  nth step  we  have  to  consider  2(n-1) segments  of 
length  3-n.  We obtain the following series providing 
the total length: 

This sum converges to one. Thus at the end we 
subtracted all the original segment's length! These are 
the  paradoxes  we  have  to  face  when  dealing  with 
fractal objects. 

Even  if  the  two  sets  are  in  a  one-to-one 
correspondence,  they  substantially  fill  the  available 
space  in  a  different  manner.  Roughly  speaking,  the 
segment fills all the available space, while the Cantor 
set (the set of remaining points) leaves lots of holes: it 
is  non-continuous.  This  is  the  key  observation  to 
define the fractal dimension. 

In  fact,  if  we  partition  the  available  space  in 
cells, with varying sizes or diameters, we can note the 
difference among the two kinds of sets if we look at 
how many cells  are filled or empty.  In the segment 
case, regardless of the cells diameter, all the cells will 
be full. Thus the number of filled cells grows with the 
inverse of the cells diameter. In the case of the Cantor 
set  this  is  not  true,  and  the  number  of  filled  cells 
grows with a fractional power  of the inverse of the 
diameter.

More  formally,  in  the  first  case,  we  simply 
partition the segment in  N identical  subsegments of 
diameter  (in one dimension all the partition cells are 
simply segments, while in dimension D we can use D-
dimensional cubes). The relationship among the two is 
N = 1/,  and thus the number  of  filled cells  scales 
with the inverse power of the diameter. If we use a 
different  segment  length  we  obtain  a  multiplicating 
factor in front of the previous formula. 

In  two  dimensions,  instead  of  a  segment  we 
partition a unit square, using -side subsquares. Their 
number  is  given  by  N = 1/2,  and  scales  with  the 
second inverse power of the diameter. 

Ltot=∑n=1

∞

2n−1
/3n
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Generalizing to dimension D, a unit D-cube will 
be  partitioned  by  -side  D-cubes,  and  their  total 
number will be N = 1/D, scaling with the D inverse 
power of the diameter. All these powers are integer, 
that we are use to call “integer dimensions”. 

In  the  case  of  Cantor  set,  for  the  covering 
partition at step n we need N = 2n cells of diameter 
= 3-n. Then the scaling of N with  is: 

with K < 1. This defines the fractal dimension of 
the Cantor set as  d = log(2)/log(3), and indicates the 
scaling  of  the  number  of  non  empty  cells  with 
diameter,  or,  in  a  sense,  how  many  points  fill  the 
space in a range of the diameter, a concept that will be 
extended for the network's fractal dimension. 

This  way  of  proceed  to  calculate  the  fractal 
dimension  is  known  as  the  box-counting  method, 
since the partition divides the space into equal boxes.

The  value  log(2)/log(3)  clearly  indicates  that 
Cantor  set  does  not  fill  the  space  nor  like  a  one 
dimensional  segment,  neither  like  a  set  of  disjoint 
point, whose fractal dimension is zero.

The  Cantor  set,  by  construction,  shows  an 
important signature of fractal sets, the self-similarity: 
at  any  length  scale  the  set  looks  the  same.  The 
structure reveals always the same details when viewed 
at  different  magnifications,  and  there  is  not  lower 
limit,  or  something like “atomic” components,  from 
which all the set is built. 

While for mathematical sets this is exactly true 
at any length scale, for real objects the scaling regime 
and  self-similarity  hold  only  in  a  limited  range  of 
lengths,  and  finite  size  or  granularity  effects  are 
revealed out of these limits.

2.2 Fractal  Dimension  of  OO 
Networks

A recent  study [5]  found that  the  structure  of 
complex networks is often also self-similar, and it is 
possible to calculate their fractal dimension using the 
box-counting  method.  As  we  saw,  this  method 
consists in covering the entire set, the network in this 
case, with the minimum number of boxes NB of linear 
size (diameter) lB. For a given network G and box size 
lB,  a  box  is  a  set  of  nodes  where  all  distances  lij 
between any two nodes i and j in the box are smaller 

than lB. If the number of boxes scales with the linear 
size lB following a  power law (see eq. (1)), then dB is 
the fractal dimension, or box dimension, of the graph 
[5]:

(1)

The computation of the fractal coefficient  of a 
network is thus a two-step one. First, an assessment of 
the self-similarity of the network has to be done, com-
puting  the  minimum number  of  boxes  covering  the 
network,  varying  lB from  one  to  a  given  number, 
usually  10  or  20.  This  is  the  most  computational 
intensive step. Then, one has to check whether NB(lB) 
is  linear  in  a  log-log  plot,  showing  a  power-law 
behavior. This check is somewhat subjective, though 
it is possible to compute confidence intervals to this 
purpose. Eventually, an estimate of dB is made fitting 
the plot with an LMS algorithm.

It  has  been  already reported that  OO software 
networks related to classes of large Smalltalk and Java 
systems show a patent self-similar behavior, with frac-
tal  dimension between 3.7 and 5.1 [6].  So,  for  OO 
software networks it is important to have efficient and 
reliable  algorithms able  to  compute  their  fractal  di-
mension.

Fig. 3. Log-log  plot of NB vs. lB for JDK 1.5.0.

Fig.  3  shows  the  box  counting  analysis  of  the 
software network related to JDK 1.5.0 Java system. 
The  log-log  plot  of  NB vs.  lB reveals  a  self-similar 
structure. The slope of the fit is 4.24; this value is the 
fractal dimension dB for JDK 1.5.0

N Bl B~lB
−d B

N ~
−log2 /log 3 

=
−K
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.Fig. 4. Log-log  plot of NB vs. lB  for Eclipse 2.1.3.

In fig. 4 we report the box counting result  for 
Eclipse 2.1.3, whose software graph has partially been 
shown in the first figure. Also for this system the log-
log plot of  NB vs.  lB is clearly linear, and the system 
exhibits  the  power-law  scaling.  The  slope  provides 
4.31  for  the  box-counting  fractal  dimension  of  this 
software network.

Fig. 5. Log-log  plot of NB vs. lB for VWorks 7.3.

In  fig.  5  we  show the  same  plot  for  another 
software system, VWorks 7.3. Once again it shows a 
self-similar  structure  and  a  power-law  relationship 
among  NB  and  lB.  Here  the  value provided by the 
box-counting method for the fractal dimension is 4.54. 

2.3 Computing the Fractal Dimension
Song et. al. in their first paper [5] do not give details 
about how they actually computed the fractal dimen-
sion. Subsequently, Concas et al. shortly presented a 
simple algorithm for computing dB [6]. Later, Song et 
al.  demonstrated  that  this  computational  problem is 
equivalent to the graph coloring problem, and conse-
quently  took  advantage  of  the  many  well-known 
greedy algorithms to perform this task [9].  Here we 
compare  three  algorithms  both  in  terms  of  perfor-
mance and  precision  – greedy coloring as  in  [9],  a 
merge algorithm similar  to that  reported in [6],  and 
simulated annealing, which is considered one of the 
best  approaches  to  find  the  global  minimum  of 
difficult, multi-modal problems.

2.3.1   Greedy Coloring (GC)
Song  et  al.  demonstrate  that  the  box  counting 

problem  can  be  mapped  to  the  graph  coloring 
problem, which is known to belong to the family of 
NP-hard problems.  Vertex coloring is  a well-known 
procedure, where colors are assigned to each vertex of 
a  network,  so  that  no edge connects  two identically 
colored vertexes [10].  We used the greedy algorithm 
described  by Song et al. For this implementation we 
need a two-dimensional matrix  cil of size  N ×  lB

max, 
whose values represent the color of node i for a given 
box size l = lB. The algorithm works in the following 
way [9]:

(1) Assign a unique id from 1 to  N to 
all  network  nodes,  without  assigning  any 
colors yet.

(2) For all  lB values, assign a color 

value 0 to the node with id=1, i.e. cil = 0.
(3) Set the id value  i = 2. Repeat the 

following until i = N.
(a) Calculate the distance lij from i to 

all the nodes in the network with id j less 
than i.

(b) Set lB = 1.
(c) Select  one  of  the  unused  colors 

cjlij from all nodes j<i for which lij≥ lB.
This is the color  cjlB of node  i for the 

given lB value.
(d) Increase  lB by one and repeat (c) 

until lB = lBmax..
(e) Increase i by 1.
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This greedy algorithm is very efficient,  since it 
can cover the network with a sequence of box sizes lB 

performing only one network pass.
The main steps are illustrated in fig. 6, where the 

example  shows  the  case  lB  =  3.  Starting  from  the 
network G representing the software graph, we build 
the dual network G', obtained from  G connecting two 
nodes when their distance, calculated in the original 
graph G, is larger than, or equal to, lB. Next we use a 
greedy algorithm for vertex coloring in G'. Then we 
go back to the original network determining the box 
covering on G.

Fig. 6: Construction of the dual network G’ for a 
given box size (here lB = 3), where two nodes are 
connected if they are at a distance l ≥ lB. We use a  

greedy algorithm for vertex coloring in G’, which is  
then used to determine the box covering in G, as 

shown in the plot.

2.3.2   Merge Algorithm (MA)
This method is  based on the  union of  two or  more 
clusters into a third one. Two clusters are merged if 
the distance between them is less than lB. MA uses the 
configuration at  lB to obtain the starting point for the 
successive aggregation at lB+1  = lB + 1.

In  the  initial  configuration each cluster  ck con-
tains only a node, so each node is marked with a dif-
ferent  label.  Let  n be  the  number  of  nodes  of  the 

network, and lmax the maximum value for  lB. The al-
gorithm works in the following way:

lB = 2;
C ≡ {c1, c2 , c3 ,..., cn};

while lB  lmax;
D ≡  Φ;
repeat

get a random cluster ck from C;
C’ ≡ {cj  C| d(ck,cj) ≤ lB};
get a random cluster ci from C’;
ĉ = merge(ck,cj);
C = C - {ck,cj}; 
D = D  {ĉ};

until size(C) < 2 or C’= Φ  c C;
D = D  C;
NB = size(D);
lB := lB +1;
C = D;

end while;

In  order  to  find the  set  C’ we  use  an efficient 
burning  algorithm to  determine  in  a  single  step  all 
clusters belonging to C’.

2.3.3   Simulated Annealing(SA)
The MA described  above  is  an  efficient  method to 
estimate  the  fractal  dimension,  and  the  base  for 
Simulated  Annealing  algorithm.  SA  is  a  class  of 
algorithms  inspired  by  the  annealing  process  in 
metallurgy  [11].  In  the  SA context,  a  box  partition 
(box covering) is the state  S of  the physical system 
and the number of boxes NB is the “internal energy” in 
that state.

In  order  to  consider  a  neighbor  state  S’  of  the 
current  state  S we  compute  three  fundamental 
operations:

• movement of nodes;
• creation of new clusters;
• union of clusters.

If  S’  is  a  solution  worse  that  S,  there  is  a 
probability  to  accept  the  state  S’  even if  it  has  the 
energy E(S’) > E(S). 

A new state or partition with boxes of size  lB is 
obtained from the current  state by moving nodes and 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Mario Locci, Giulio Concas, Roberto Tonelli, Ivana Turnu

ISSN: 1790-0832 376 Issue 3, Volume 7, March 2010



merging clusters. Let A and B be two generic clusters of 
the current partition. We define the following operations:

• movement: a node is moved from A to B if B 
diameter doesn’t exceed  lB, and  A includes at 
least two nodes;

• creation:  a  node  is  taken  from cluster  A to 
form a new cluster;

• merge:  all  clusters  are  merged  by  using  the 
merge algorithm described in section 2.3.2..

At each “temperature” we perform k1 movements 
and  k2 creations of nodes, and a single merge of all 
clusters by using MA. We always accept a better or 
equal solution, while we accept  a solution  S’ worse 
than S with probability:

(2)

At each step the system is cooled down to a lower 
temperature  T0   = cT ,  where  c < 1 is  the  cooling 
constant. The typical starting temperature  T is about 
0.6 and the typical values of k1 and k2 are 5000 and 5, 
respectively. Similar values are used by Zhou et al. in 
their  implementation  of  the  SA  algorithm  [12].  In 
deeper  detail,  the  algorithm works  in  the  following 
way:

create first configuration S using MA
for j (j = 1, 2, ....,k3) do

move k1 nodes;
create k2 new clusters;
if E(S’) ≤ E(S) then

S := S’
else

get a random number RND;
if RND < exp(−(E(S’)−E(S))/T) then

S := S’
endif;

endif;
merge clusters using MA algorithm;
T := cT;

endFor;

We  perform  about  5000  steps  at  each 
temperature, and then reduce T. The number of outer 
cycles (temperature reductions) is  k3, and it is set to 

20, with cooling constant c set to 0.995 [12].

3 Results

We  implemented  in  Java  the  three  algorithms  and 
compared  their  performance  in  terms  of  speed  and 
quality of the result. In fact, being the box partitioning 
problem  NP-complete,  on  large  networks  its  exact 
solution is not feasible. Consequently, it is not enough 
to  have  a  fast  algorithm  to  compute  the  box 
partitioning,  but  the  results  must  be  trusted,  in  the 
sense  that  the  partitioning  found  should  be  close 
enough  to  the  global  minimum  to  guarantee  the 
consistency of the results. We tested the goodness of 
the results by repeatedly running the same algorithm, 
selecting randomly the initial configuration. We then 
checked  the  variance  of  the  resulting  estimate  of 
NB(lB) for various values of lB, which in turn depends 
on the number of boxes found in each partitioning.

We used for the tests the software network related 
to Java JDK 1.5 system, which includes the standard 
Java  libraries  and  development  tools.  The  JDK 
network has 8499 nodes and 42048 edges, so it can be 
considered a quite large network.

3. Execution speed

We  computed  the  execution  speed  on  the  whole 
computation  of  dB,  which  is  what  actually  matters, 
running  the  three  algorithms  starting  from  random 
configurations  of  the  initial  box  partitioning  and 
performing 100 times the computation. The results for 
a PC with Windows XP and a processor Intel Core
1.4 GHz are reported in Table 1and Table 2.

Table 1. Average execution times for dB computation 
on JDK 1.5 class graph (8499 nodes and 

42048 links).

Algorithm Time (s) dB

GC 410 3.96
MA 289 4.24
SA 8807 4.06

p=e
−

E S '− E S 
T
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Table 1I. Average execution times for dB computation 
on the E. Coli protein interaction network graph 

(2859 nodes and 6890 links).

Algorithm Time (s) dB

GC 13 3.44
MA 21 3.57
SA 1177 3.47

As you can see,  the most  efficient  algorithm is 
MA, and this is confirmed also by other test runs on 
other  networks,  not  reported  here  for  the  sake  of 
brevity. GC is  still very efficient, while SA is much 
worse as regards execution speed, being at least one 
order of magnitude slower.

It  has  to  be  pointed out  that  these  results  may 
depend not only from the system analyzed, but also 
from  the  particular  release.  In  fact,  changes  of  the 
software  structure  among  various  releases  are 
reflected  in  changes  of  their  fractal  dimension. 
Depending on the system, these changes may be more 
or less pronounced. 

Fig. 7. Fractal dimension for different versions of the 
analyzed systems, as a function of the release version,  

according to the number of classes of each version.

In  fig.  7  we  report  the  results  of  the  fractal 
dimension for various versions of  different  software 
systems. It can be noted that, for Glass Fish, Eclipse 
Birt,  Netbeans,  the  fractal  dimension is  quite  stable 
among releases, while for JDK and Eclipse, it shows 
major variations. This is an index of major topological 
changes  in  the  structure  of  the  graph  associated  to 
these  systems,  and,  consequently,  of  major 
modifications applied onto the software.

Regarding the quality of results, they look similar 

but not exactly the same. This is discussed in detail in 
the next section.

3.2 Result Quality

We  computed  the  reliability  of  the  three  tested 
algorithms by testing for  their  repeatability  in  1000 
runs on a smaller network than the whole JDK 1.5 

Fig. 8. Empirical distributions of the values of NB for six  

values of lB, for GC algorithm run 1000 times.

software  graph,  the  E.  Coli  protein  interaction 
network [5]. This network has 2859 nodes and 6890 
edges. We varied lB, from 2 to 7. Figs. 8, 9 and 10 
show the empirical distributions of the values of NB 

for  each  value  of  lB,  and  for  GC,  MA  and  SA 
algorithms, respectively.

As you can see, GC and SA algorithms show a 
very small  dispersion of the resulting values of  NB, 
showing that  both  are  highly reliable.  On the  other 
hand,  the  results of  Fig. 8  regarding  MA  algorithm
show a much higher dispersion. Consequently, despite 
its high performances, we deem that MS algorithm is 
not suitable for the computation of software networks 
fractal dimension.

We report in Fig. 11 the standard deviation of 
the computed NB for the three algorithms,  for  eight 
values  of  lB,  from  2  to  9.  Fig.  11  confirms  the 
previous  results  on  the  reliability  of  the  three 
algorithms. 
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Fig. 9. Empirical distributions of the values of NB for  

six values of lB, for MA algorithm run 1000 times.

The  standard  deviation  of  MA  results  is 
consistently higher than that of GC and SA. The latter
algorithms  are  quite  similar,  with  a  slightly  better 
average performance of SA over GC on the eight test 
values of lB. 

Fig. 10. Empirical distributions of NB for six values of lB,  
for SA algorithm run 50 times.

Fig. 11. Standard deviations  of the values of NB for eight  

values of lB, for MA algorithm run 1000 times.

4 Conclusion
The fractal  dimension of software networks  has the 
potential  to  be  a  significant,  synthetic  metric 
describing the regularity of the structure of a software 
system,  and  moreover  it  has  been  proven  to  be 
correlated  to  source  code  quality  metrics  of  OO 
systems. It is therefore important to have efficient and 
reliable algorithms to compute it. 

In this  paper we presented three different  algo-
rithms to compute the fractal dimension of networks, 
which  to  our  knowledge  cover  all  the  approaches 
proposed  in  literature.  These  algorithms  –  Greedy 
Coloring,  Merge  Algorithm,  and  Simulated 
Annealing, have been described and compared using 
the  software  network  related to  Java JDK 1.5 open 
source system and,  for  the purpose of assessing the 
algorithm  reliability,  also  using  a  smaller  protein 
interaction network.

We found that SA is the best algorithm in terms 
of  precision,  but  it  is  by  far  the  worst  in  terms  of 
speed. The time performance of MA is better than GC 
for large networks but the greedy coloring produces 
more  precise  solutions.  In  conclusion,  the  Greedy 
Coloring algorithm, based on the equivalence of the 
box  counting  problem  with  the  graph  coloring 
problem,  looks  the  best  compromise,  having  speed 
comparable  to  MA,  and  accuracy  comparable  with 
SA.
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