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Abstract: - A novel supply chain operational transport planning model is developed in this paper. The goals of 
the model are to minimize the number of used trucks and the total inventory levels. Because of somewhat 
imprecise nature of vehicle capacities and decision makers’ aspiration levels for the goals, a fuzzy multi-
objective linear programming (FMOLP) modeling approach is adopted. Moreover, an interactive solution 
methodology is proposed to determine the preferred compromise solution. An industrial case from a real-world  
automobile supply chain demonstrates the feasibility of applying the proposed model and the solution 
methodology to a realistic operational transport planning problem. The computational results indicate that the 
proposed approach improves the results obtained by the heuristic decision-making procedure spreadsheet-based 
which is actually applied in the automobile supply chain under study. 
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1   Introduction 
Transport processes are essential parts of the supply 
chain. They perform the flow of materials that 
connects an enterprise with its suppliers and with its 
customers. The integrated view of transport, 
production and inventory holding processes is 
characteristic of the modern supply chain (SC) 
management concept [1]. Crainic and Laporte [2] 
classify transportation problems according to three 
planning levels. Some typical examples of decisions 
at the strategic level are the design of the physical 
network and its evolutions, the location of main 
facilities, resource acquisition, etc. Tactical decisions 
about the design of the service network, i.e., route 
choice and type of service to operate, general 
operating rules for each terminal and work allocation 
between terminal and traffic routing, are all 
necessary. At the operational level, important 
decisions include the scheduling of services, 
maintenance activities, routing and dispatching of 
vehicles and crews, and resource allocation.  

Nevertheless, the complex nature and dynamics of 
the relationships among the different actors in a SC 
implies an important degree of uncertainty in SC 
planning decisions. In such environments, where 
transport decisions involve resources and data that are 
owned by different entities within the SC, there are 
two main characteristics of the transport planning 
problems that a decision maker (DM) will be faced 
with: (1) conflicting objectives that may arise from 
the nature of operations (e.g., to minimize costs and 

at the same time to increase customer service) and the 
structure of the SC where it is often difficult to align 
the goals of the different parties within the SC; (2) 
lack of knowledge of data (e.g., cost and lead time 
data) and/or presence of fuzzy parameters (e.g., 
demand fuzziness). Thus, it’s important that models 
addressing problems in this area should be designed 
to handle the foregoing two complexities [3]. 

In the literature, several authors have analyzed 
supply chain operational transport planning from a 
deterministic point of view. Jansen et al. [4] describe 
the operational planning of a multimodal 
transportation system developed for a merger of 
Deutsche Post Transport. The objective of the 
planning is to provide a cost-efficient transportation 
plan for a given set of orders by taking a large 
number of constraints into account. Sarkar and 
Mohapatra [5] describe a case of an integrated steel 
plant where the plant engages a third-party 
transporter to bring a large number of items from its 
suppliers maximizing the utilization of vehicles 
capacity. Pan et al. [6] develop a mixed integer 
programming model to synchronize inventory and 
transportation planning in a distribution network with 
vehicles outsourced from a 3rd party logistic 
company. 

According to Peidro et al. [7] and [8], the literature 
provides several models defined for SC planning 
under uncertainty. Among them, the fuzzy 
programming approaches for transport planning are 
being increasingly applied. Chanas et al. [9] consider 
several assumptions on the supply and demand levels 
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for a given transportation problem in accordance with 
the kind of information the decision maker has. Liu 
and Kao [10] develop a procedure to derive the fuzzy 
objective value of the fuzzy transportation problem 
with fuzzy cost coefficients and fuzzy supply and 
demand quantities. Liang [11] and [12] develop an 
interactive multi-objective method for solving 
transportation planning problems using fuzzy linear 
programming and a piece-wise linear membership 
function in the second. 

Other authors have studied transport planning 
decisions as a part of supply chain production-
distribution planning or procurement-production-
distribution planning problems (see Peidro et al. [7] 
for a literature survey on supply chain planning under 
uncertainty conditions) 

Moreover, there are several methods in the 
literature for solving multi-objective linear 
programming models, by adopting fuzzy 
programming approaches. In this sense, Bit et al. [13] 
and [14], Bit [15], Jimenez and Verdegay [16], Li and 
Lai [17] and Lee and Li [18] presented the fuzzy 
mathematical programming approach to solve multi-
objective transportation problem corresponding to 
numerical examples. 

However, in most of the aforementioned works, 
(especially those with fuzzy multi-objective 
programming models), the authors have applied their 
approaches to case studies and not in real cases. 

In this paper we propose a novel fuzzy multi-
objective operational transport planning model 
applied in a real SC of the automobile industry. The 
SC transport planning (SCTP) problem at the 
operational level, considered here, deals with  
optimizing the use of transport resources and the 
inventory levels determining the amount of each 
product to procure under certain warehousing and 
transport constraints (see Section 3 for a detailed 
definition). An interactive solution methodology to 
solve the fuzzy multi-objective SCTP problem for the 
purpose of finding a preferred compromise solution 
has been applied. We compared the results obtained 
by this approach with a heuristic decision-making 
procedure which is actually applied in the automobile 
SC being analyzed.  

We arranged the rest of the paper as follows. 
Section 2 describes the SCTP problem at the 
operational level and also presents the heuristic 
decision-making procedure that the SC under study 
currently uses. We propose the FMOLP model for the 
SCTP problem in section 3 and in section 4 we 
describe its solution methodology. Next, we evaluate 
the behavior of the proposed model in a real-world 
automobile SC in section 5. Finally, we provide 
conclusions and directions for further research. 

 
2   Problem Description 
The SCTP problem considered herein refers to a 
dyadic-type SC [19] belonging to the automobile 
sector. This SC is made up of an assembler and a 
first-tier supplier whose replenishment process of 
materials is the full truck load (FTL) pick-up method 
[20]. 

Transport planning is usually the responsibility of 
the supplier. But there are important exceptions, e. g. 
in the automobile industry, where the manufacturer 
controls the transports from his suppliers. In this case, 
transport planning occurs on the procurement side as 
well [1]. 

Thus we state the SCTP problem at the 
operational level, in the automobile SC considered, as 
follows: 

Given: (1) product data, such as unitary 
dimensions, the number of units which composes the 
lot of each order; (2) transportation data, such as 
transport capacity, the number of trucks available in 
each period, the minimum percentage of truck 
occupation to complete, etc.; (3) warehouse 
information: the maximum number of stored 
containers of each product; (4) initial inventory; and 
(5) assembler demand over the entire planning 
periods. 

To determine: (1) the amount of each product to 
order; (2) the inventory level of each product; and (3) 
the number of trucks required in each period and their 
occupation. 

The main goals of this work are: (1) to
 minimize the number of trucks; and (2) to minimize 
the necessary inventory levels to satisfy the 
assembler’s demand without incurring delays in 
demand. 

Moreover, the following assumptions have been 
made: (1) Assembler demand is considered to be firm 
along the entire planning horizon. As this is an 
operational level problem, planning horizons are 
short (only lasting a few days); therefore, in this case, 
demand does not tend to vary; and (2) this problem 
does not consider the supplier’s transportation times; 
it merely indicates the period to receive the amounts 
to transport irrespectively of when they must be 
ordered.  

 
2.1 Heuristic procedure 
In the SC studied, the current decision-making 
procedure for the previously presented SCTP 
problem is a heuristic procedure based on the use of a 
Microsoft Excel sheet with an associated macro VBA 
with which the staff in charge of the first-tier 
supplier’s replenishments may calculate short-term 
net requirements to satisfy the assembler’s demand, 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS David Peidro, Manuel Diaz-Madronero, Josefa Mula

ISSN: 1790-0832 284 Issue 2, Volume 7, February 2010



minimize the inventory level and improve the 
utilization of the transport resources without allowing 
for a delay in demand. 

Firstly, the procedure begins by obtaining the 
initial stock of each product at the beginning of the 
planning period by using the data stored in the 
corporate ERP, along with the daily demand of each 
given reference. The stock and demand values for 
each part in each time period determine the decision 
as to requesting a new full truck load. As we cannot 
allow a delay in demand, should the inventory of any 
part at the end of the first period be lower than its 
demand level in the next period, then the planner will 
execute the macro VBA to automatically calculate the 
inclusion of loading a new truck in period 1. 
     Trucks load in accordance with both the space 
available (approximately 13 meters with a FTL) and 
the coverage value of each product along the 
planning horizon. The coverage value corresponds to 
the number of days that the available stock may cover 
the demand in the following periods. In this way, the 
loading process begins by calculating the coverage of 
all the parts in the corresponding period. The 
coverage calculation works according to the products 
availability in accordance with the product 
spreadsheet. Having selected the item with less 
coverage, the procedure then calculates the space 
occupied by a lot of the given product. Next, we 
check whether there is enough space available in the 
truck to load the selected item by finalizing the 
loading procedure should there be no space available. 
If there is enough space on the truck to load the 
selected product lot, we then update the inventory 
value of this product in the corresponding period by 
calculating its new coverage and by restarting the 
described loading process to load the truck as much 
as possible by incorporating the lots of those products 
with less coverage. 

Once we have updated the stock values in terms 
of the amounts to be ordered for the new truck, and 
should the inventory of a certain part be, once again, 
lower than the demand level of the next period, we 
will then repeat this process by adding the number of 
trucks required until the stock values of all the parts 
are higher than the demand levels of the subsequent 
period. Subsequently, we will run this process for all 
the periods until we come to the end of the planning 
horizon. Figure 1 is a graphical representation of the 
heuristic procedure. 

The spreadsheet used to conduct this heuristic 
procedure is that shown in Figure 2. The Order 
parameter corresponds to the amounts to be ordered 
on each truck. We calculate the space occupied by the 
amounts to be ordered in the lower part of Daily 
(which corresponds to the demand values) and Order 

using an orange color when we execute the macro 
VBA. Then we update the Stock columns for the 
amounts to be ordered and in accordance with the 
daily demand. We repeat this structure in accordance 
with the length of the desired planning horizon. 

The staff in charge of replenishments review the 
results obtained by this heuristic procedure, and 
occasionally modify the amounts obtained to meet the 
set objectives. According to Allen and Liu [21] and 
Evans et al. [22], in real practice, logistics managers 
often rely entirely on their personal judgment and 
experience to choose the transportation mode, to 
consolidate shipments and to select the carrier. Thus, 
sub-optimal choices may result. 
 
3   Model formulation 
In order to improve the results obtained by the 
heuristic procedure, we propose a new fuzzy multi-
objective linear programming (FMOLP) model for 
the SCTP at the operational level. The proposed 
model considers the fuzzy goals and the fuzzy data 
related to the transport capacity levels. The 
nomenclature defines the sets of indices, parameters 
and decision variables for the FMOLP model (Table 
1). 
 

Sets of indices 
I: Set of products (i =1,2,…,I). 
J: Set of trucks (j =1,2,…,J). 
T: Set of planning periods (days) (t =1, 2…T). 
Decision variables 
Qijt: Units transported of i by j in period t (units). 
Iit: Inventory amount of i at the end of period t (uni
Kijt: Number of lots to order of  i by j in period t. 

Yjt: 
Binary variable indicating whether a truck j 
has been used in period t. 

Objective functions 
z1: Total number of trucks utilized. 
z2: Total inventory amount generated. 
Parameters 
ui: Dimensions of product i (meters/unit).  

li: 
Number of units that make up each product 
lot i (units). 

Wi: 
Maximum warehouse space available for 
product i (units). 

Dit: Demand of product i in t (units).  

M~ : Maximum length of the available truck (in 
linear meters) 

m: Minimum truck occupation (in linear meters). 
I0i: Inventory amount of I in period 0. 

Table 1. Nomenclature (a tilde ~ denotes the 
fuzzy parameters) 
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Figure 1. Heuristic procedure
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Figure 2. The spreadsheet used in the heuristic procedure 

 
 

 
3.1 Objective functions 
 
The formulation of FMOLP is as follows: 
 
Minimize the total number of trucks utilized 

∑∑
= =

≅
J

j

T

t
jtYz

1 1
1Min    (1) 

Minimize the total inventory amount generated. 

∑∑
= =

≅
I

i

T

t
itIz

1 1
2Min    (2) 

The symbol “≅” is the fuzzified version of “=” and 
refers to the fuzzification of the aspiration levels. In 
practical situations, most of the parameters 
considered in a SCTP problem are frequently fuzzy 
in nature because of the incompleteness and/or 
unavailability of the data required over the planning 
horizon which we may obtain subjectively [23]. For 
each objective function of the original FMOLP 
model, this work assumes that the DM has imprecise 
objectives, such as “objective functions should be 
essentially equal to some value”. By considering the 
uncertain property of human thinking, it is quite 
intuitive to assume that the DM has a fuzzy goal 

)( 21 zz  with an acceptable interval [ )( ll zz 21 , )( uu zz 21 ]. 
This would be quite satisfactory as the objective 
value is less than )( ll zz 21 , but unacceptable as the 
value is greater than )( uu zz 21 [24]. Accordingly, Eq. 

(1) and (2) are fuzzy and incorporate the variations 
in the DM’s judgments regarding the solutions of the 
multi-objective SCTP optimization problem in a 
fuzzy environment. Moreover, it is necessary for the 
DM to simultaneously optimize these conflicting 
objectives in the framework of imprecise aspiration 
levels [11]. 

 
3.2 Constraints 

∑
=

− +−=
J

j
ijtittiit QDII

1
1)(          ti,∀        (3) 

iijtijt lKQ ⋅=        tji ,,∀   (4) 
 iit WI ≤          ti,∀   (5) 

 ∑
=

⋅≤⋅
I

i
jtiijt YMuQ

1

~         tj,∀   (6) 

 ∑
=

⋅≥⋅
I

i
jtiijt YmuQ

1

        tj,∀   (7) 

 1+≥ itit DI          ti,∀   (8) 
 0≥ijtitit QKI ,,           (9) 

Eq. (3) represents the inventory balance 
constraint. Eq. (4) represents the amount of each 
product to request in each truck for each period as a 
multiple integer of the packing units. Eq. (5) limits 
the capacity of the inventory per product and day in 
accordance with the maximum warehouse 
dimensions. Eq. (6) guarantees the approximately 13 
linear meters per truck used, and not more, while Eq. 
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(7) ensures that the occupied space on each truck is 
over a specified minimum, thus avoiding trucks not 
making full use of any possible excess space. Next 
Eq. (8) ensures one day of coverage for the 
inventories at the end of each period. In this way, the 
model does not create delays in demand. Finally, Eq. 
(9) establishes the non negative conditions of the 
decision variables. 

In real-world SCTP problems, Eq. (6) is fuzzy in 
nature. To a great extent, one truck’s storage capacity 
(in occupied meters) depends on the exact 
combination of the loaded products, in such a way 
that, although we know the theoretical meters 
occupied by a single product on the truck when 
combined with other products, the total occupied 
truck capacity does not exactly match the arithmetical 
sum of what each loaded product occupies. We take 
the remaining constraints to be certain because the 
related information is complete and obtainable over 
the planning horizon. We also consider the demand 
data to be certain because we take demand to be firm 
since such data are part of this operational decision-
kind problem with short (a few days) planning 
horizons. 

 
4 Solution Methodology 
In this section, we define an approach to transform 
the fuzzy multi-objective linear programming model 
(FMOLP) into an equivalent auxiliary crisp 
mathematical programming model for the SCTP 
problem. This approach adopts linear membership 
functions to represent all the fuzzy objective 
functions and the pattern of triangular fuzzy number 
to represent the fuzzy parameter, together with the 
Torabi and Hassini‘s fuzzy programming solution 
method [3]. 
 
4.1 Treating the soft constraint 
To resolve the imprecise maximum truck load in the 
right-hand side of the constraint (6) the weighted 
average method [12,25,26] is used for the 
defuzzification process and converting this fuzzy 
parameter into a crisp number. So, if the minimum 
acceptable degree of feasibility (β) is given, then the 
equivalent auxiliary crisp constraint can be 
represented as follows: 

 ∑
=

⋅++≤⋅
I

i
jt

omp
iijt YMwMwMwuQ

1
321 )( βββ   tj,∀   (10) 

where w1+w2+w3=1, and w1, w2 and w3 denote the 
weights of the most pessimistic, the most possible 
and the most optimistic value of the fuzzy maximum 
truck load, respectively. The suitable values for these 
weights as well as β usually are determined 
subjectively by the experience and knowledge of the 

DM. However, based on the concept of the most 
likely values proposed by Lai and Hwang [26] and 
considering several relevant works [12,25], we set 
these parameters as: w2=4/6, w1=w3=1/6 and β = 0.5. 
 
5.2 Torabi and Hassini’s fuzzy programming 
solution method 
There are several methods in the literature for solving 
multi-objective linear programming (MOLP) models, 
among which fuzzy programming approaches are 
being increasingly applied. The main advantage of 
fuzzy approaches is that they are capable of 
measuring the satisfaction degree of each objective 
function explicitly. This issue can help the DM to 
make his/her final decision by choosing a preferred 
efficient solution in accordance with the satisfaction 
degree and preference (relative importance) of each 
objective function.  

In conventional goal programming models, the 
DM is required to specify a precise aspiration level 
for each objective which is generally a difficult task 
for him/her. As mentioned before, fuzzy 
programming offers the advantage of the DM being 
able to specify imprecise aspirations levels that can 
be treated as fuzzy goals. In fuzzy goal programming, 
a membership function (linear o nonlinear) for each 
solution X should be specified. This membership 
function for goal kth, which considers solution X, is 
named )(x

kzμ and denotes the satisfaction degree of 
this goal. 

Zimmermann developed the first fuzzy approach 
for solving a MOLP called the max-min approach 
[27]. It is true that the solution yielded by a max-min 
operator may neither be unique nor efficient 
[29,30,31], so several methods have been 
subsequently proposed to eliminate this deficiency. 
Lai and Hwang [29] developed the augmented max-
min approach, Selim and Ozkarahan [31] presented a 
modified version of Werners’ approach [32], while Li 
et al. [30] proposed a two-phase fuzzy approach. A 
brief discussion of these three approaches is found in 
Torabi and Hassini [3]. 

Torabi and Hassini [3] proposed a new single-
phase fuzzy approach as a hybridization of the 
previous methods of Lai and Hwang [29] and Selim 
and Ozkarahan [31]. According to Torabi and Hassini 
[3], a multi-objective model could be transformed in 
a single objective model as follows: 
Max )()()( xx

k
zk k∑−+= μθγγλλ 10  

s.t.    nkx
kz ,...,)( 10 =≤ μλ   

  )(xFx∈  
        ],[, 100 ∈γλ       (11) 
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where 
kzμ  and )}(min{ x

kzμλ =0  denote the 
satisfaction degree of the kth objective function and 
the minimum satisfaction degree of the objectives, 
respectively. Moreover, θk and γ indicate the relative 
importance of the kth objective function and the 
coefficient of compensation, respectively. The θk 
parameters are determined by the decision maker 
based on her/his preferences so that ., 01 >=∑ kk k θθ    

Besides, γ not only controls the minimum satisfaction 
level of the objectives, but also controls the 
compromise degree among the objectives implicitly. 
That is, the proposed formulation is capable of 
yielding both unbalanced and balanced compromised 
solutions for a given problem based on the decision 
maker’s preferences by adjusting the value of 
parameter γ [3]. 
 
5.3 Solution Procedure 
Here the interactive solution procedure proposed by 
Liang [11] is adapted for solving the SCTP problem. 
This procedure provides a systematic framework that 
facilitates the fuzzy decision-making process, 
enabling the DM to interactively adjust the search 
direction during the solution procedure to obtain the 
DM’s preferred satisfactory solution [11]. 

In summary, our proposed interactive solution 
procedure is as follows: 
Step 1.  Formulate the original FMOLP model for the 
SCTP problems according to Eq. (1) to (9). 
Step 2. Determine the appropriate triangular fuzzy 
number for the imprecise parameter M~ and specify 
the corresponding non-increasing continuous linear 
membership functions for all the fuzzy objective 
functions as follows. 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

<<
−
−

<

=

u
kk

u
kk

l
kl

k
u
k

k
u
k

l
kk

z

zz

zzz
zz
zz

zz

x
k

0

1

)(μ   (12) 

where )(x
kzμ  is the satisfaction degree and  ),( u

k
l
k zz  

are the lower and upper bounds of the kth objective 
function . 
Step 3. Determine the minimum acceptable degree of 
feasibility (β) for the fuzzy constraint and specify the 
corresponding relative importance of the objective 
functions (θk) and the coefficient of compensation (γ).  
Step 4. Transform the original FMOLP problem into 
an equivalent single-objective MILP form using the 
solution methodology presented before. 
Step 5. Solve the proposed auxiliary crisp single-
objective model by the MIP solver and obtain the 
initial compromise solution for the SCTP problem. 

Step 6. If the DM is satisfied with this current 
efficient compromise solution, stop. Otherwise, go 
back to Step 2 and provide another efficient solution 
by changing the value of the controllable parameters 
(β, θk , γ, ),( u

k
l
k zz and M~ ). 

 
5 Application to an automobile supply 
chain 
The proposed model has been evaluated with data 
from a real SC in the automotive industry with a 
dyadic structure which comprises a first-tier seat 
supplier and an automobile assembler. In this section, 
we validate the proposed model as a tool for making 
decisions related to operational transport planning in 
an automobile supply chain under uncertainty. 
 
5.1 Implementation and resolution 
The proposed model has been developed with the 
modeling language GAMS, and has been solved by 
the SCIP Solver. The model has been executed for a 
10-day planning time horizon with 34 different 
products which belong to a unique FTL supplier with 
a minimum truck occupation of 12’85 meters. 

Furthermore, the DM provided the relative 
importance of objectives linguistically as: θ2 >> θ1, 
and based on this relationships we set the objectives 
weight vector as: θ = (0.2, 0.8). In this case, for the 
DM is more important to minimize inventory levels 
even if it means more trucks used for the 
procurement. Thus an unbalanced compromise 
solution with highest satisfaction degree for z2 is of 
particular interest. 

Table 2 lists the basic item data for the SC 
considered. Besides, Table 3 shows the item demand 
from the automobile assembler in each period. 

 
Item  

number
ui  

(meters)
li  

(units) 
Wi  

(units) 
I0i  

(units)
Item 1 0.0023 72 7200 69  
Item 2 0.0023 72 7200 45  
Item 3 0.0018 90 9000 142  
Item 4 0.0018 90 9000 286  
Item 5 0.0018 90 9000 70  
Item 6 0.0018 90 9000 150  
Item 7 0.0023 72 7200 104  
Item 8 0.0023 72 7200 108  
Item 9 0.0023 72 7200 72  

Item 10 0.0023 72 7200 349  
Item 11 0.0018 90 9000 360  
Item 12 0.0018 90 9000 71  
Item 13 0.0018 90 9000 255  
Item 14 0.0013 120 12000 772  
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Item 15 0.0013 120 12000 162  
Item 16 0.0013 120 12000 389  
Item 17 0.0023 72 7200 1164 
Item 18 0.0023 72 7200 65  
Item 19 0.0023 72 7200 715  
Item 20 0.0023 72 7200 147  
Item 21 0.0023 72 7200 393  
Item 22 0.0023 72 7200 69  
Item 23 0.0023 72 7200 2630 
Item 24 0.0013 128 12800 153  
Item 25 0.0013 128 12800 1602 
Item 26 0.0018 90 9000 1029 
Item 27 0.0013 120 12000 1467 
Item 28 0.0023 72 7200 139  
Item 29 0.0023 72 7200 88  
Item 30 0.0023 72 7200 89  
Item 31 0.0013 128 12800 171  
Item 32 0.0013 128 12800 65  
Item 33 0.0013 128 12800 128  
Item 34 0.0013 128 12800 35  

Table 2. Basic item data 
 
 

5.2 Evaluation of the results 
This section analyzes the results obtained by the 

heuristic procedure and the FMOLP solution 
methodology proposed in this work. On the one hand, 
Table 4 shows the results obtained by the heuristic 
procedure which details the number of trucks used to 
meet the demand requirements, as well as the total 
inventory generated throughout the planning horizon. 

Besides, the table also indicates the average 
occupation of the trucks used. On the other hand, 
Table 4 shows the results obtained by the proposed 
method which adds the minimum satisfaction degree 
of the objectives (λ0), the satisfaction degree of the 
objectives functions, the objective value of the 
equivalent crisp model (λ(x)) along with the upper 
and lower limits specified by the DM in relation to 
the objectives and the parameters used to resolve the 
imprecise maximum truck load in the right-hand side 
of the constraint (6). 

As shown in Table 4 the proposed method is 
clearly superior to the heuristic procedure. The 
proposed method, for the different γ values analyzed, 
generates lower inventories and uses a lower number 
of trucks to meet demand and minimum stock 
requirements. The best results are obtained when the 
γ value is lower (unbalanced solution). As mentioned 
before, a low γ value means that the model attempts 
to find a solution by focusing more on obtaining a 
better satisfaction degree for the most weighted 

objective and by paying less attention to achieving a 
higher minimum satisfaction level of objectives. 

A high γ value of means that the model attributes 
more importance to maximizing the minimum 
satisfaction degree of objectives independently of the 
weights assigned to the objective functions. For this 
reason, when γ decreases the satisfaction degree of 
the objective function z2 (whose assigned weight is 
higher) increases. On the other hand, when γ 
increases the inventory levels are higher and hence 
the satisfaction degree 

2zμ is lower. Moreover, when 
the values of the coefficient of compensation γ 
increase the distance between 

1zμ (setting the 
minimum satisfaction degree of objectives) and 

2zμ is 
lower. Finally, the value of the objective function 
λ(x) is decreasing when γ increases. This is because 
the weight of the minimum satisfaction degree of the 
objectives, whose value is always λ0=0.9, is higher in 
Eq. (11). For this reason, when γ=0.9 λ(x) is 
practically equal to λ0. 

Figure 3 shows the total stock evaluation 
throughout the planning horizon. We can see how the 
inventory levels of the different solutions tend to be 
above the requested amounts. As we have already 
explained, this is because the result of the stock for 
each period must ensure the coverage of the demand 
of the following period. As shown in Figure 1 the 
total amount of inventory generated by the proposed 
model (for γ=0.1 and γ=0.3) is, generally speaking, 
similar than that generated by the heuristic procedure 
for t ≤ 9. However, in the last period there are major 
differences between the two approaches. The 
heuristic procedure (for t=10) generates higher 
inventory levels because it uses two trucks to meet 
the minimum stock requirements. The proposed 
method offers a better selection of truck loads which, 
in turn, allows a lower stock without the need for 
more trucks because the stock composition fulfills the 
aforementioned coverage requirements. This last case 
is one of the best advantages that the mathematical 
model offers as opposed to the heuristic procedure; 
whereas the heuristic procedure makes period-to-
period truck load-type decisions, the considered 
mathematical model makes decisions by jointly 
contemplating all the planning periods and, therefore, 
obtains better results. 
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Item number Demand 
   T=1 t=2 t=3 t=4 T=5 t=6 t=7 t=8 t=9 t=10 

Item 1 14 16 16 16 14 14 18 18 18 14 
Item 2 0 0 0 0 2 2 0 0 0 10 
Item 3 96 16 6 18 16 10 2 70 40 8 
Item 4 230 146 164 122 134 144 154 72 112 118 
Item 5 48 8 3 9 8 5 1 35 20 4 
Item 6 115 73 82 61 67 72 77 36 56 59 
Item 7 28 14 8 22 74 18 50 30 4 32 
Item 8 0 0 0 4 2 4 2 4 2 4 
Item 9 96 16 6 18 16 10 2 70 40 8 
Item 10 230 146 164 122 134 144 154 72 112 118 
Item 11 241 199 206 198 209 207 222 208 247 213 
Item 12 1 6 5 4 12 3 8 4 4 6 
Item 13 164 145 141 141 142 147 136 152 134 115 
Item 14 482 398 412 396 418 414 444 416 494 426 
Item 15 2 12 10 8 24 6 16 8 8 12 
Item 16 328 290 282 282 284 294 272 304 268 230 
Item 17 396 570 426 498 444 450 624 556 608 694 
Item 18 20 10 2 0 4 6 4 12 22 56 
Item 19 482 398 412 396 418 414 444 416 494 426 
Item 20 2 12 10 8 24 6 16 8 8 12 
Item 21 328 290 282 282 284 294 272 304 268 230 
Item 22 38 14 12 2 0 56 8 0 0 28 
Item 23 2470 2117 2278 2007 2110 2175 2001 2101 2141 1876 
Item 24 38 14 12 2 0 56 8 0 0 28 
Item 25 1738 1461 1496 1335 1390 1413 1389 1453 1539 1356 
Item 26 574 618 605 585 584 609 620 608 616 635 
Item 27 1148 1236 1210 1170 1168 1218 1240 1216 1232 1270 
Item 28 10 30 20 6 20 12 18 14 22 10 
Item 29 16 8 10 22 4 22 22 28 24 40 
Item 30 4 2 14 12 2 6 6 2 6 0 
Item 31 14 16 17 16 14 16 18 18 18 16 
Item 32 0 0 0 0 2 2 0 0 0 11 
Item 33 40 21 12 29 83 22 73 45 6 48 
Item 34 0 0 0 6 3 6 3 6 3 4 

Table 3: Item demand per period 
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Heuristic 
Procedure 

Proposed 
method  
(γ=0.1) 

Proposed 
method  
(γ=0.3) 

Proposed 
method  
(γ=0.5) 

Proposed 
method  
(γ=0.7) 

Proposed 
method  
(γ=0.9) 

Number of 
trucks 

(z1) 
12 11 11 11 11 11 

Inventory level  
(z2) 

132,797 
units 

124,773 
units 

125,431 
Units 

125,475 
units 126,411 units 127,101 

Units 

Truck 
occupation 
(Average) 

12,9150 m 13,0767 m 13.0792 m 13.0792 m 13,0759 13.0792 m 

λ0 

Not 
applicable 

0.9000 0.9000 0.9000 0.9000 0.9000 

1zμ  0.9000 0.9000 0.9000 0.9000 0.9000 

2zμ  0.9855 0.9835 0.9834 0.9806 0.9785 
λ(v) 0.9616 0.9468 0.9334 0.9193 0.9063 

[ ul zz 11 , ] 
lz1 = 10 
uz1 = 20 

[ ul zz 22 , ] 
lz2 = 120,000 
uz2 = 450,000 

M~  

15

13

12.85

=

=

=

o

m

p

M

M

M

β

β

β

 

Table 4: A comparison of the heuristic and proposed method solutions. 
 
 

 
Figure 3: Total stock evolution (units) 
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6 Conclusions 
This work proposes a new fuzzy multi-objective 
linear programming model for the SCTP problem at 
the operational level. This model considers fuzzy 
goals associated with the minimization of both the 
number of trucks used and the total inventory 
generated, as well as the fuzzy data related to the 
transport capacity levels. For the purpose of solving 
the FMOLP model, we propose an interactive 
solution methodology. This approach adopts linear 
membership functions to represent all the fuzzy 
objective functions and provides a systematic 
framework that facilitates the decision-making 
process. This approach has been tested in a real 
automobile supply chain. The interactive solution 
methodology yields an efficient compromise solution 
and presents the overall DM satisfaction with the 
determined goal values in a multi-objective SCTP 
problem. This approach provides solutions that are 
consistent with the decision maker’s preferences (i.e., 
the consistency between weight vector θk and the 
satisfaction vector), because it is able to find different 
efficient solutions for a specific problem with a given 
weight vector θk by changing the γ value. Moreover, 
this approach has proven its efficiency by obtaining 
clearly much superior results than those obtained by 
the heuristic procedure which the SC under study is 
currently applying. 

Although the linear membership function has 
been proved to provide qualified solutions for many 
applications [33], the main limitation of the proposed 
interactive approach is the assumption of the linearity 
of the membership function to represent the 
imprecise. This work assumes that the linear 
membership functions for related imprecise numbers 
are reasonably given. In real-world situations, 
however, the DM should generate suitable 
membership functions based on subjective judgment 
and/or historical resources. Future studies may apply 
related non linear membership functions to solve the 
multi-objective SCTP problems in fuzzy 
environments. Besides, the resolution times of the 
FMOLP model may be quite long in large-scale 
SCTP problems. For this reason, future studies may 
apply the use of evolutionary computation to solve 
fuzzy multi-objective SCTP problems more 
efficiently. Further future studies may apply the 
solution methodology to different problems related to 
supply chain planning: inventory management, 
vendor selection, production-distribution planning, 
procurement-production-distribution planning. 
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