
Evaluation of a Use-Case-Driven Requirements Analysis Tool

Employing Web UI Prototype Generation

SHINPEI OGATA
Course of Functional Control Systems,

Graduate School of Engineering
Shibaura Institute of Technology

307 Fukasaku, Minuma-ku Saitama-City,
Saitama 337-8570

JAPAN
m709101@sic.shibaura-it.ac.jp

http://www.sayo.se.shibaura-it.ac.jp/

SAEKO MATSUURA

Department of Electronic Information Systems,
College of System Engineering and Science

Shibaura Institute of Technology
307 Fukasaku, Minuma-ku Saitama-City,

Saitama 337-8570
JAPAN

matsuura@se.shibaura-it.ac.jp
http://www.sayo.se.shibaura-it.ac.jp/

Abstract: - It has been widely acknowledged that ambiguous or incomplete customer requirements are a major
reason for the failure of software development projects. A key example of this is the inconsistency between
implementation image and specifications provided in the early stages of software development. To address this,
we propose a method for automatic generation of user interface prototypes for developing Web-based business
applications, based on the requirements specifications defined in the Unified Modeling Language (UML). In
this study, we compare the proposed method with traditional use case modeling to evaluate the effectiveness of
the proposed method.

Key-Words: - Use Case, Prototyping, Web Application, Requirements Analysis, Unified Modeling Language

1 Introduction
It has been widely acknowledged that a major
reason for the failure of software development
projects is the ambiguity or incompleteness of
customer requirements. Furthermore, data structures
and data flows created while developing business
systems are often quite complex. As customers are
typically familiar with business rules such as data
format and calculation procedure, they are capable
of evaluating the adequacy of the requirements
specification, thus reducing the degree of ambiguity
and incompleteness associated with the
requirements.

A use-case-driven requirement analysis is a
typical, object-oriented approach for analysis of the
system specification, which defines how the system
should interact with users and other, external
systems. A use case model generally consists of a
use case diagram, created using Unified Modeling
Language (UML) [1], and several use case
templates [2, 4].

There are two advantages of employing use-case-
driven requirements analysis. Firstly, the use case
templates are written in natural language and tend to
avoid the use of technical jargon pertaining to the
implementation, so that customers are able to
understand the behavioral aspect of users and
system more easily. Secondly, a use case model is
required to focus on modeling of interactions, thus,
it contains a large number of core requirements,

which, in turn, are the basis of user interface (UI),
performance, data format, and business rule
requirements. As a result, researchers in a number of
fields, including requirements engineering,
requirements elicitation, and requirements analysis,
validation, and verification, acknowledge the
effectiveness of the use case approach [5–9, 13, 14].

If a UML model precisely defines the customers’
requirements, it can be treated as a requirements
specification. However, there are three primary
problems associated with precisely defining the
interaction specifications in the form of
requirements.

Firstly, although customers are capable of
understanding non-technical terms, it is difficult for
the customers to precisely understand the image of
manipulating the system from these terms. For
example, it is difficult for them to understand the
means of input, or the concrete input/output data.
Secondly, the use of natural language for describing
the system leads to varied interpretation of the
actual system image by the developers and
customers; natural language is likely to create
misunderstandings between the developers and
customers. Thirdly, classes are generally derived
from the natural language terms that are used in the
use case templates; thus, it is often difficult for the
developers to derive these classes because these
terms can refer to various instances of a single
concept.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 273 Issue 2, Volume 7, February 2010

To address these issues, we propose a method to
automatically generate the UI prototype from a
requirements analysis model (RA model) that has
been defined in UML for Web-based business
applications development [10, 16]. An RA model
typically consists of activity diagrams, a class
diagram, and object diagrams. The UI prototyping is
a requirements analysis technique that allows one to
easily understand a system image and to implement
specific aspects the system, such as the UI [11].

In our proposed method, the first and second
problems, identified above, are resolved by
clarifying the correspondence between the RA
model and the implementation image via a UI
prototype. In addition, the third problem is resolved
by explicitly relating a classifier of object nodes
within the activity diagram, a class within the class
diagram, and a classifier of instance specifications
in the object diagram.

In this study, we evaluate the effectiveness of a
requirements analysis method that uses our
automatic prototype generation tool by comparing
with traditional use case modeling. In the evaluation,
we measure the execution time of each method and
the resulting consistency between the RA model and
implementation image.

Section 2 provides an overview of traditional use
case modeling and its limitations, and section 3
provides an overview of the proposed method,
comparing it with the traditional method. Section 4
describes the experiment used for the evaluation and
its results. Section 5 identifies a series of
considerations based upon the results obtained in
section 4, and section 6 provides a discussion of
related work. Finally, section 7 addresses
conclusions and suggests avenues of future work.

2 Traditional Use Case Modeling
In order to develop a system to satisfy customer
requirements, it is critical to first specify sufficient
and precise requirements. In particular, functional
requirements are core to implementation of the
system. According to a software requirement
specification standard [3], the set of possible
functional requirements includes the following:
� Validity checks on inputs
� Definition of an exact sequence of operations
� Responses to abnormal situations
� Effects of parameters
� Relationship of outputs to inputs

Most of these requirements pertain to
interactions between actors and a system because,
ultimately, customers are only capable of directly
viewing interactions via the system’s UI. In order to

execute functions correctly, interaction requirements
include the standard sequence of user operations,
data flows, and constraints on the data. The
constraints are represented as branch conditions. To
achieve the desired requirements, a use case is
developed [2]. A use case is a definition of the
interaction process, defined in terms of the system’s
behavior from the actor’s perspective. An actor is a
role within the system, and is classified as either an
authority or an external system. An authority is a
role of a user from system perspective.

2.1 Use Case Model
The use case model represents interactions between
actors and a system. It consists of a use case
diagram, depicted in UML, and a use case template
describing every possible use case. The typical
process employed in generating a use case model is
explained below.
Step 1. Definition of a use case diagram:
A use case diagram summarizes the system's
intended behavior by describing use cases, actors,
relationships between use cases and actors, and
relationships between use cases.
Step 2. Definition of use case templates:
A use case template describes the details of the
interactions that will take place for every use case.
There are two basic principles to be followed while
defining the templates. Firstly, the templates are not
focused upon how to implement the system, but
instead upon how to accomplish the business
workflows of each authority. Secondly, the contents
of the templates should be easily understood by the
customers, as these are often used as a common
point of reference for developers and customers to
develop an understanding of the requirements. To
achieve this, the contents of the templates must be
defined using non-technical terminology and
terminology that is employed by the customers
within their business workflows. A use case
template consists of a use case name, actors,
preconditions, a basic flow, alternative flows,
exceptional flows, and postconditions. The basic
and alternative flows (normal flow) are the flows
that accomplish the workflow under regular
scenarios. On the other hand, exceptional flows are
those used to recover from error conditions. The
basic, alternative, and exceptional flows are defined
as a sequence of steps and represent all interaction
flows. A step represents the behavior of an actor or
a system involved in the interactions. Though there
is no one standard use case template, a number of
methods such as Cockburn's template [4] or formal

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 274 Issue 2, Volume 7, February 2010

grammars [6, 7] to define the templates have been
proposed.
Step 3. Definition of a class diagram:
In the early stages of system formulation, the
development team generates a class diagram in
UML, based upon a set of data structures of
conceptual levels. A class, in this sense, refers to a
structured type having attributes, defined as data,
and operations, defined as behaviors. In traditional
use case modeling, classes are elicited based upon
the range of data that can appear within the
interaction flows, defined as part of the use case
template.

2.2 Limitations of Use Case Modeling
There are three common issues faced while defining,
sufficiently and unambiguously, the functional
requirements of the system in terms of use case
models.

Firstly, use case templates, targeted for
comprehension by the customer, are often very
ambiguous as a result of being simplified. The key
points that must be conveyed to the customer by
these templates, in our view, are the following:
(1) What customer business workflows do the

various use cases address?
(2) Through what sequence of operations can the

users execute the use cases?
(3) What alternative or exceptional flows the user

might encounter because of the different viable
inputs provided, either valid or erroneous?

(4) At each step in the flow, what data is a user
able to input or confirm in the system? Data, in
this case, includes the name, values, format,
and structure.

(5) By what input means can the users input data
into the system? For example, in a Web page,
viable means of input include text fields, check
boxes, radio buttons, etc.

These five aspects are inevitably required to
ensure that the customers are provided with the
correct support for executing their business
workflows. Although the use case templates appear
to address points (1), (2), and (3), they do not
convincingly address points (4) and (5). In addition,
if the templates define the details of their associated
items, their contents become more complex. As a
result, at the least, it becomes more difficult for the
customers to interpret the templates.

Secondly, as mentioned previously, the gap that
exists between the customer and the development
team is one of the major causes of failure in
software development projects. Moreover, the gap is
largely the result of the specification being formed

purely in terms of natural language. Each individual
customer and developer independently formulates
an arbitrary image of the ultimate goal for the
implementation, based upon the natural language
specification; this further widens the gap. Therefore,
it is important that each of the above parties employ
an implementation image to foster a precise
understanding of the requirements specification.

Thirdly, whether developers can ensure the
consistency between a use case model and a class
diagram depends on their ability and experience.
Generally, as described in section 2.1, classes are
derived from terms, which represent data in use case
templates. However, the developers often have a
difficult time eliciting the optimal class definition
because some of the terms in the use case templates
may present various instances of the same class. As
a result, it is a complex task to sufficiently and
correctly derive the appropriate classes from these
terms.

3 Use Case Modeling with Automatic

Prototype Generation
3.1 Modeling Cycle in Requirements

Analysis
In the proposed method [10, 16], a requirements
analysis modeling cycle (RA model) is employed, as
shown as Fig. 1. As the developers iterate through
this cycle, they refine the RA model.

Fig. 1 Modeling Cycle to Define the RA Model

Step 1. Defining the RA model:
Developers define the RA model, which addresses
the functional requirements of the system, using
Astah* [13], a UML modeling tool. The RA model
includes activity diagrams, a class diagram, and
object diagrams. The model represents both
behavior and structure, which addresses the
interaction as well as traditional use case modeling.
Astah* can precisely delineate relationships among

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 275 Issue 2, Volume 7, February 2010

a class (within a class diagram), the classifier of
object nodes within an activity diagram, and the
classifier of instance specifications within an object
diagram. The details of the RA model are provided
in section 3.2. The output of this process is the
formulated RA model. Non-functional requirements,
such as response time and reliability, are
incorporated into the RA model as notes.
Step 2. Generation of a UI prototype:
In the proposed method, we provide a UI prototype
generation tool, which accepts the RA model as an
input source. A UI prototype generated using this
tool is just one component of the set of
implementation views comprising the RA model.
The purpose of the UI prototype is not to confirm
the layout of the UI, but to validate the
aforementioned five points that the customer must
understand, discussed in section 2.2. The output of
this process is a set of Hyper Text Markup
Language (HTML) pages that do not perform any
true functions.
Step 3. Validation of the RA model through the UI

prototype:
There are two ways of validating the RA model via
the generated UI prototype. One method entails the
developers’ validation and checking of the RA
model, in an effort to determine whether the model
is missing any data types or if there are any
inconsistencies in the data between the behavioral
model and structural model. The second method
requires that the customers validate the RA model in
an effort to determine whether the business
workflows can be achieved using the expected
sequence of operations, input/output data, and
means of input, for the data identified in the
generated UI prototype. A number of errors of the
RA model, including mistakes in the definition and
changes to requirements, may clarify after this step.
Step 4. Refinement of the RA model:
The developers correct the RA model on the basis of
the errors discovered during the validation
performed in step 3. The output of this process is the
refined RA model.

The developers perform steps 2 through 4,
iteratively, until the customer is satisfied with the
generated UI prototype representing the RA model.

There are two key benefits to using the proposed
method:

Firstly, a UI prototype can be generated at each
stage of the cycle that incorporates the definition of
diagrams following Fig. 2. The details of this
definition process are provided in section 3.2. This
enables the developers to clearly and easily

understand the contents of the UI prototypes
represented by each type of diagram.

Secondly, to specify concrete data that is
expected to appear in a given scenario, a group of
object diagrams is used to represent a specific
situation in a workflow. In this study, a scenario is
defined as the depiction of a traversal path over a
series of interaction flows, including concrete
input/output data.

Fig. 2 Definition Process of the RA Model

3.2 Definition and Validation of the RA

Model
An overview of the definition process of the RA
model is shown in Fig. 2. As initial input to the
proposed method, a number of requirements
documents are obtained from the customer and used
by the development team to derive actors and initial
use cases. The method by which each model is
described is as follows:
Definition of Interaction Activity Diagrams:
An interaction activity diagram defines interactions
between actors and a system. This is done using a
UML activity diagram and a use case template. Note
that the presented model does not extend the
notation of the original UML activity diagram. We
simply refer to this model as the interaction activity
diagram in order to distinguish it from a navigation
model of the RA model, which is also defined in the
form of a UML activity diagram. An interaction
activity diagram is defined for every service
instance, which is typically more granular than a use
case.

The interaction activity diagram follows the two
aforementioned principles of use case template
design: its definition focuses upon accomplishing
business workflows, and it only employs non-
technical terminology.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 276 Issue 2, Volume 7, February 2010

Fig. 3 Interaction Activity Diagram of “Add New

Student” Service

Fig. 3 depicts an interaction activity diagram that
implements the “Add New Student” service of a
class management system. This service enables the
registration of a new student by providing
confirmation of registration status. The system
checks for the presence of duplicate data between
new and existing students. Student data consists of
an ID, last name, first name, college, department,
grade, and contact address. We now define the five
items discussed in section 2.2.

The sequence of operations that users can
employ to execute services is represented as a series
of actions, conducted by the actors or system, which
are represented by partitions. In Fig. 3, the
“Administrator” partition represents the authority.
Other partitions represent different roles of the
system. An initial node maintains pre-conditions to
initiate the service, as a note. Final activity nodes
maintain postconditions, satisfied immediately after
termination of the service, again, as a note.

The alternative or exceptional flows that a user is
capable of traversing are represented as conditional
branches, using decision nodes. The conditions are
defined at control flows as guard conditions,
immediately following a decision node. To identify
normal or exceptional flows, each control flow
defines a stereotype that is <<normal>> or
<<exceptional>>.

The data that a user is able to input or confirm is
represented as an object node, which is directed
toward an authority partition. For example, the
“inputNewStudent” object node corresponds to data
that is made visible for a user. The data structure is
specified by defining a classifier of the object nodes.

The means by which users are able to input data
are represented by the verb of actions at an authority
partition. Fig. 4 depicts a page of a UI prototype that

has been generated from the interaction activity
diagrams, a class diagram, and object diagrams of
the previously mentioned class management system.
This diagram corresponds to the flow from the “read
all registered students” action to the “check
inputNewStudent” action, depicted in Fig. 3. For
example, the “input lastName” action converts data
into a text format. The “single-select-from-list
grade” action converts data into a list box format.
Lastly, the “execute add” action converts data into a
button format.

Fig. 4 A Page of Generated UI Prototype

We have realized both the definition of the use

case in the form of a UML-based RA model, as well
as validation of the UI prototype, which clearly
corresponds with the RA model. Thus, in spite of
defining technically detailed interaction flows, the
customers can easily validate the RA model via a
generated UI prototype. The gap between the
understanding of the customers and the developers
is thus reduced by the generation of a UI prototype
that presents an implementation image of the system.
The consistency between the behavioral model and
structural model are guaranteed by the delineation
of relationships between UML diagrams and a class,
a classifier of an object node, and a classifier of an
instance specification.
Definition of a Class Diagram:
A class diagram defines the structure of data in
terms of a class at the conceptual level. An
understanding of the extreme ranges of data,
presenting the boundary of a system, is ultimately
necessary to implement a business workflow. As
such, classes are defined as the structure of object
nodes within an interaction activity diagram. These
classes may be categorized into one of two types:
boundary candidates, a structure that is only
required at the boundary between an authority and a
system, or an entity candidate, a structure required
for permanent system data. Fig. 5 depicts the classes
involved in an interaction activity diagram, such as
Fig. 3. The “Student” class is an entity candidate,
while the other classes are boundary candidates.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 277 Issue 2, Volume 7, February 2010

Fig. 5 Class Diagram for “Add a New Student”

Service

When a UI prototype is generated from the RA
model at this point, the classes of object nodes
appearing at the boundary of the system are
converted into tables that depict the data structure
shown in Fig. 4.
Definition of Object Diagrams:
The system information that is most easily
understood by customers is concrete data. As such,
concrete data should be used to validate the
requirements effectively. The object diagram
defines a set of instance specifications of classes,
under a specific system usage scenario. The instance
specifications define concrete input/output data on
the boundary of the system. Fig. 6 represents the
object diagram pertaining to the registration of the
student having the ID “SIT0003.” If multiple values
are defined in one slot, the developer inserts
commas between each value. Moreover, if a class
instance value is defined within a slot, this implies
that it indicates the name of the target instance
specification.

When a UI prototype is generated from the
interaction activity diagrams, the class diagram, and
the object diagrams, the instance specifications are
converted into concrete data for the corresponding
class depicted in Fig. 4.

Fig. 6 Object Diagram for “Add a New Student”

Service

Definition of Scenarios:
The developers must be able to provide the
customer with a guarantee of complete, proper
functionality under specific scenarios, with respect
to business workflows. To achieve this, the
developers can define scenarios as follows: A
scenario is a path of traversal over a series of
interaction flows, defined in an interaction activity
diagram. The scenario also defines concrete data
that corresponds to the object nodes that lie on the
path. The customers can confirm the scenario
formulation using Selenium IDE [17] to the UI
prototype automatically generated.
Definition of a Navigation Model:
Finally, the interaction flows, defined in each
interaction activity diagram, are integrated. To do
this, the services should be validated from a service
integration perspective. A navigation model defines
the necessary sequence to invoke a service. It is
defined accordingly in the form of a UML activity
diagram. In the navigation model, an action
corresponds to a service and a partition corresponds
to an authority. When a UI prototype is generated,
integrating services according to the navigation
model, the actions, representing before and after
states, are integrated if postconditions of the
previous action equate to the preconditions of the
next action.

4 An Experiment for Evaluation of the

Proposed Method
4.1 Purpose of Experiment
To evaluate the effectiveness of the proposed
method, we compared the model it produces with
the model produced using use case modeling. In this
experiment, two perspectives are taken with respect
to evaluation: the time taken to complete
requirements analysis until customer satisfaction has
been attained, and the quality of the RA model in
terms of its consistency with the implementation
image.

4.2 Target Applications and the Development

Process
The developers for this project are three students
completing four-year undergraduate degrees at our
university, having basic UML knowledge and
experience in developing Web-based business
applications using the traditional use case method.
The developers are hereafter referred to as A, B, and
C. The customers are two, second year graduate
students at our university. The customers are

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 278 Issue 2, Volume 7, February 2010

hereafter referred to as D and E. One of target
applications is a library management system
required by D, hereafter referred to as LMS. The
other is a schedule sharing system required by E,
hereafter referred to as SSS.

The developers first analyze the requirements
individually, having been given instructions not to
share the information obtained from their
independent analyses. They then formulate an RA
model and implementation image as part of their
analysis. Those developers applying the traditional
method must create the use case model, the class
diagram, and the implementation image, which is
formulated in an arbitrary manner. In contrast, those
developers applying the proposed method must
create the interaction activity diagrams, the class
diagram, and implementation image, in order to
adapt the different model types to the traditional
method. The proposed method allows the
developers to substitute the UI prototype, generated
from the RA model, for implementation image, and
to create the remainder of the abovementioned
model arbitrarily.

When the customer and the developer validate
the RA model, they discuss it using only the
implementation image, as a customer will typically
not be capable of interpreting the model directly.
Moreover, the analysis is deemed to be complete
only when the implementation image meets with the
customer’s approval.

We retain two forms of data from the
experiment: the time required to complete the
modeling, prototyping, and validation process with
the customer, and the sets of RA models and
implementation images, captured at each stage of
the process used in identifying definitions that
require correction.

4.3 Evaluation Viewpoints of the RA model
There are two aspects that are measured in assessing
the consistency between the RA model and
implementation image: the consistency between the
two with respect to the name of the visible data, and
with respect to the sequence of operations. In the
proposed method, these consistencies are
fundamentally guaranteed as a result of the process
itself. Usually, we only measure these
inconsistencies for the results of the traditional
method.

4.4 Experiment Result
Table 1 represents the time required to complete the
modeling and prototyping, individually. For the

proposed method, although the prototyping takes
negligible time, the analysis of system SSS by
developer C takes a significant amount of time,
because of bugs in the UI prototype generation tool.
It should also be noted that, with the proposed
method, the time required to complete the modeling
also incorporates the time required to learn how to
define the RA model.

Table 1 Time Taken to Model and Prototype
A B C

M P M P M P
Subtracted
time [Hour]

19.4 0 20.6 0 15.4 14.1
LMS

Total time
[Hour]

19.4 20.6 29.5

Subtracted
time [Hour]

15.4 23.8 24.0 33.4 86.3 1.1
SSS

Total time
[Hour]

39.2 57.4 87.4

M: Modeling, P: Prototyping,
 : Proposed method, : Traditional method

Table 2 shows the rate of inconsistency in the
results of the traditional method. The number of
pages is measured, targeting all use cases. The
volume of data having inconsistency refers to
variation between the implementation image and the
use case templates.

Table 2 Rate of Inconsistency in Traditional method

Table 3 shows the number of classes and

attributes in each method.

Table 3 Number of Classes and Attributes
A B C

LMS SSS LMS SSS LMS SSS

Amount of
classes

13 4 18 5 4 98

Amount of
attributes

61 35 89 37 9 383

Table 4 shows the number of the pages created

manually or generated automatically. The pace of
manual page creation is estimated on the basis of the
number of pages and the time required to create the
prototype.

Table 5 shows the number of validations, and the
time required to conduct each validation.

 A-SSS B-SSS C-LMS
(a)Amount of pages 117 190 74
(b)Volume of data in all pages 1202 1740 379
(c)Volume of data in the use case
model

438 1018 189

(d)Volume of inconsistent data
between pages and the model

764 722 190

(e)Rate of inconsistency (d) / (b)
[%]

63.5 41.4 50.1

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 279 Issue 2, Volume 7, February 2010

Table 4 Number of Pages and Pace of Page Creation
 A B C
(f)Number of pages created
manually

117
(SSS)

190
(SSS)

74
(LMS)

(g)Amount of time taken by manual
creation of the pages [Hour]

23.8
(SSS)

33.4
(SSS)

14.1
(LMS)

(h)Pace of one page creation
(g) / (f) [Minute / Page]

9.5
(SSS)

10.5
(SSS)

10
(LMS)

(i)Number of pages generated
automatically

60
(LMS)

119
(LMS)

558
(SSS)

Table 5 Number of Validations and Time Required

 A B C
Validation times [times] 2 3 4

LMS
Total time [minute] 67 55 105
Validation times [times] 4 6 7

SSS
Total time [minute] 315 539 514

5 Considerations
5.1 Effectiveness of the Proposed Method
Referring to Table 1, the total time taken to perform
the requirements analysis using the proposed
method is less than with the traditional method, on
the whole, in spite of the developers’ having to learn
how to define the RA model. Referring to individual
data, the total time taken by C-SSS is greater than
that taken by A-SSS and B-SSS. The primary reason
for this was that developer C defined the RA model
in detail. The number of classes and attributes,
presented in Table 3, and the number of pages
generated automatically, presented in Table 4, prove
this fact. C-SSS produced approximately five times
more than A-SSS, and about three times more than
B-SSS. The time taken to conduct manual
prototyping, on the scale of C-SSS, can be estimated
at approximately 90 hours, simply by multiplying
the pace of page creation by the number of pages
generated automatically for C-SSS. Therefore, it
appears that the proposed method decreases the total
time required for requirements analysis, when
compared with the traditional method, when the
scale of the system is taken into consideration.

The UI prototype, containing concrete data or
representing integrated services, was generated
using the proposed method.

Although the UI prototype created manually, via
the traditional method, is represented as an
electronic document, in Excel or Word, it has no
specification that clarifies the flow of UI transitions.
In the proposed method, the flow of UI transition is
specified by way of the interaction activity diagrams
and the navigation model. In addition, the traditional
method resulted in significant inconsistencies
between the UI prototype and the RA model, as
shown in Table 2.

Furthermore, although the UI prototype created
via the traditional method contains concrete data,

the RA model defines no specification of concrete
data. In general, with respect to the defining of
concrete data, the proposed method, which specifies
concrete data quite clearly, is of greater use to the
developer.

Referring to Table 5, there is no measurable
difference between the two approaches, in terms of
achieving customer approval during the validation
process. As such, we suggest that the proposed
method is at least equivalent to the traditional
method in this regard.

5.2 Problems with the Proposed Method
There are two major problems with the proposed
method.

Firstly, there are too many classes, as shown in
Table 3. This problem is a result of a scattered set of
data structures, which require integration.

Fig. 7 Classes Including the Same Data Structure

Fig. 7 depicts examples of classes that should be

integrated. According to the data captured
pertaining to the RA model, the
“ScheduleOverview” class was defined first,
followed by the “SearchResult” class, which has a
different structure. However, a subsequent
modification to the classes, post validation, resulted
in their having a common structure. These
redundant classes should therefore be integrated at
some point in the future.

Secondly, it is difficult for the developer to
precisely specify the branch conditions that are
required in the alternative and exceptional flows, in
both the proposed and traditional method. For
example, developer A defined “There is no
incorrectness for all input” as a branch condition.
Thus, it is not possible to precisely interpret several
of the branch conditions. Conversely, however, if all
conditions of the RA model are completely and
precisely defined, the model becomes too
complicated to read.

In order to resolve these issues, a method is
required that allows the developer to clearly and
correctly define data properties that are necessary
for the deliver of a service. In order to address the
issue of redundancy, as a policy, these properties

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 280 Issue 2, Volume 7, February 2010

would become a baseline from which to derive the
set of data requiring integration.

Therefore, we suggest resolving these problems
by introducing the use of the Object Constraint
Language (OCL), which is a formal language for
object-oriented development. This will allow a
developer to define data properties clearly and
precisely.

6 Related Work
Somé [5, 6] has proposed a formal grammar of use
case templates, in order to support requirements
engineering with respect to requirements elicitation,
clarification, composition, and simulation.
Employing this grammar results in an improved
consistency between a behavioral model, such as a
use case model, and a structural model, such as a
class diagram. In addition, this grammar can
simulate use cases, employing the use case model,
and the classes employing a domain model. A key
characteristic of a use case simulation is the
implementation- independent simulation, using only
those steps that are defined in the model. The
developer simulates the use cases by selecting
actor's behaviors defined in the use case templates
and by selecting the system's conditions, ultimately
deciding the path of branched flows. In this
simulation, no concrete data and no means of input
are represented. Jayaraman [9] proposes a
simulation of use cases using a use case chart for the
validation of use cases.

We have proposed a method to define concrete
data, which is then reflected by the generated UI
prototype so that customers are able to easily
understand the RA model. Moreover, we have
proposed how to generate a UI prototype that
represents the concrete means of input. For example,
with regard to a service delivering search refinement,
information regarding the dynamic change of data
between page transitions is critical to developing an
understanding of the behavior. Also, concrete means
of input are quite important, as described in section
2.2.

Lin et al. [7] have proposed a formal grammar
for use case templates and a method of converting
use case templates into activity diagrams. This
method represents a trend in the field toward
defining interaction flows as activity diagrams.

Störrle [13] has proposed a method to convert
activity diagrams into color petrinets in order to
perform validation of the data flows in the activity
diagrams. In addition, Eshuis [14] has proposed a
method to validate the workflows defined in the
activity diagrams. This method is particularly suited

to dealing with event driven behavior, data, loop,
and real time.

These methods [13, 14] focus on the validation
of the reachability of flows defined in the activity
diagrams, under specific scenarios. In contrast, our
proposed method focuses on validation of the
operational flows defined in the RA model with the
intent of determining what data the users are capable
of entering and confirming on the boundaries of the
system (extreme cases). As such, our proposed
method does not directly challenge the effectiveness
of the methods described in [13, 14]. There remains
the possibility of integrating these methods through
the appropriate combination of the concrete syntax
of natural language, with respect to conditions and
states of data. This is a direct benefit of having
selected UML activity diagram as our approach to
notation.

7 Conclusion
The major contributions of our proposed method,
validated through experiments, may be summarized
in three points. Firstly, concrete data is needed to
easily formulate an understanding of the customer
requirements and, as such, is specified clearly using
the proposed method. Secondly, our method can
decrease the time required to conduct requirements
analysis, regardless of the additional learning time
that is required. Thirdly, unlike usage of the
traditional method, where it is difficult to guarantee
consistency of the data and flow between the RA
model and the prototype, usage of the proposed
method does guarantee such consistency.

In terms of future work, we believe that more
consideration can be given to defining the
conditions representing business rules, using a
formal language such as OCL. Moreover, we
suggest that additional consideration should be paid
to defining a methodology for prevention and
elimination of duplicate classes.

References:

[1] UML: http://www.uml.org/
[2] Jacobson, I., Christerson, M., Jonsson, P., and

Övergaard. G., Object-oriented software
engineering: A usecase driven approach,
Addison-Wesley Publishing, 1992.

[3] IEEE Computer Society, IEEE Recommended
Practice for Software Requirements
Specifications, IEEE Std 830–1998, 1998.

[4] Cockburn, A., Writing Effective Use Cases,
Addison-Wesley Publishing, 2000.

[5] Somé, S.S., Use Case based Requirements

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 281 Issue 2, Volume 7, February 2010

Validation with Scenarios, Proc. of the 13th
IEEE International Conference on
Requirements Engineering, 2005, pp.465–466.

[6] Somé, S.S., Supporting use case based
requirements engineering, Information and
Software Technology, Vol.48, No.1, 2006,
pp.43–58.

[7] Lin, X., Wang, C., Chu, W.C., and Shih, C., A
Use Case Model and its Transformation to
Activity Diagram, Proc. of the 18th
International Conference on Software
Engineering and Knowledge Engineering,
2006, pp.556–561.

[8] Elkoutbi, M., Khriss, I. and Keller, R.K.,
Automated Prototyping of User Interfaces
Based on UML Scenarios, Journal of
Automated Software Engineering, Vol.13,
No.1, 2006, pp.5–40.

[9] Jayaraman, P.K., Whittle, J., UCSIM: A Tool
for Simulating Use Case Scenarios, Companion
to the Proc. of the 29th International
Conference on Software Engineering, 2007,
pp.43–44.

[10] Ogata, S. and Matsuura, S., A UML-based

Requirements Analysis with Automatic
Prototype System Generation, Communication
of SIWN, Vol.3, 2008, pp.166–172.

[11] ACM SIGSOFT, Special Issue on Rapid
Prototyping, ACM SIGSOFT Software
Engineering Notes, Vol.7, No.5, 1982.

[12] Astah*: http://www.change-vision.com/
[13] Störrle, H., Semantics and Verification of Data

Flow in UML 2.0 Activities, Electronic Notes
in Theoretical Computer Science, Vol.127,
No.4, 2005, pp.35–52.

[14] Eshuis, R. and Wieringa, R., Tool support for
verifying UML activity diagrams, IEEE
Transaction on Software Engineering, Vol.30,
No.7, 2004, pp.437–447.

[15] Sommerville, P Sawyer, Requirements
Engineering: A Good Practice Guide, John
Wiley & Sons, 1997.

[16] Ogata, S. and Matsuura, S., Scenario-based
automatic prototype generation, The 32nd
Annual IEEE International COMPSAC, 2008,
pp.492–493.

[17] SeleniumIDE:
http://seleniumhq.org/projects/ide/

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Shinpei Ogata, Saeko Matsuura

ISSN: 1790-0832 282 Issue 2, Volume 7, February 2010

