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Abstract: In this work, we determine all possible angular momentum matrix elements arising in the variational 
treatment of the rovibrational molecular Hamiltonian. In addition, the logic of the associated computing process 
is organized in a series of decision tables. Using Shwayder´s approach, information theory is applied to obtain 
optimal computing codes from the decision tables. The needed decision rules apparition frequencies are 
computed as a function of the rotational quantum number J. Using these values, we show that the codes obtained 
are optimal for any value of J. In all cases, the optimal codes exhibit an efficiency of at least a 97% of the 
theoretical maximum. In addition, pessimal codes are obtained as a counterpart of the optimal ones. We find that 
the efficiency difference between the optimal and pessimal codes reaches quickly a limit for increasing values of 
the J quantum number.  
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1   Introduction 

The construction and resolution of the molecular 
Hamiltonian is an important topic in spectroscopy 
since the first times of quantum mechanics [1]. The 
simulation and interpretation of molecular rotational-
vibrational (rovibrational) spectra needs to solve the 
corresponding Hamiltonian. This rovibrational 
Hamiltonian is defined by the kinetic and potential 
energy operators for the nuclei motion [1-4]. For a 
complete description, the three components of the 
kinetic operator are needed, namely: the pure 
rotational, the pure vibrational, and the rotation-
vibration coupling. These three elements involve the 
effect of angular momentum operators. Within a 
variational framework [5, 6], the efficient 
computation of the different angular momentum 
matrix elements will allow to analyze molecules of 
arbitrary complexity. Therefore, we need a way to 
organize and optimize the logic of this process.   

A classical Decision Table (DT) is a tabular 
form displaying the full decision logic of a problem 
[7]. Thus, the associated DT describes the existing set 
of conditions, as well as the set of actions to take 
according to these conditions. The conditions define 
an upper block of rows (conditions matrix), whereas 
the actions define a lower block (actions matrix). The 
columns of the DT define the combination of 
conditions corresponding to the different actions 

(decision rules). DT´s are a tool dating back to the 
early 60´s of the 20th century [7-15]. However, in 
several formats, they are still used for the 
optimization of processes in different research areas 
[16-20]. 

DT’s can be used to generate an optimized 
computer code for solving the problem at hand. This 
optimization refers to a reduction of machine 
execution time, required machine memory, or number 
of decision rules. Along the years, several algorithms 
have been developed in order to reach these goals [7- 
15]. A key work dealing with the conversion of DT’s 
to computer code was presented by Pollack in 1965 
[9]. In this work, Pollack proposed two algorithms: 
one for reducing computer storage, and other for 
reducing total computer running time. Both 
algorithms are based on the localization of 
indifferences in decision rules [9]. Although this 
procedure is adequate for cases where indifferent 
conditions do exist, it can be ambiguous for problems 
with only independent cases (no indifferences). Here, 
a more general and formally sound method was 
developed by Shwayder [11]. The method applies an 
information theory approach [21, 22] relying in the 
concept of information entropy. Information theory is 
based in the seminal work of Shannon [21], and deals 
with the efficient coding of messages and 
communicating data [22]. Here, the information 
entropy (H) quantifies the number of bits needed for 
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representing the result of an uncertain event (i.e., the 
information contained in a message) [21, 22].  

In this work, we focus in the computation of the 
angular momentum matrix elements for overall 
rotation appearing in any variational treatment of the 
molecular rovibrational Hamiltonian. The calculation 
of these matrix elements is carried out relying in the 
use and code conversion of decision tables. A 
preliminary version of this work was presented in 
reference [23]. To generalize the variational treatment 
of rovibrational Hamiltonians, we develop in this 
work the optimal algorithms for computing angular 
momentum matrix elements. Thus, we calculate the 
value of the matrix elements, define the 
corresponding DT´s, and generate optimized codes 
from them. In addition, the efficiencies of the codes 
are quantified as proposed by Shwayder’s [11]. 
 
2   Theory 

The kinetic energy operator of the rovibrational 
molecular Hamiltonian [24, 25] can be expressed as a 
function of the angular momentum for overall 
rotation, J= (∂T/ω), and for the change on vibrational 
coordinates, p= (∂T/ ). Thus, q&
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for pure rotation, rovibrational coupling and pure 
vibration, respectively. U is the pseudopotential term 
usually included in the potential function. I, X and Y 
are the inertial tensor matrix, the rotation-vibration 
matrix and pure vibration matrix, respectively. 

Considering the angular momentum operator, J, 
along the molecule-fixed axis (x, y, z), its components 
Jx, Jy, and Jz, satisfy the following commutation 
relation  [4]: 
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where: 

yx
m iJJJ ±=±       (4) 

are the ladder operators. 
Using equations (3) and (4), and a complete set 

of basis functions, we can obtain all the matrix 
elements arising in any variational treatment of the 

rovibrational Hamiltonian. These elements have the 
form:  

mk,J,mJ',k', Ô′     (5) 
Here, Ô represents any angular momentum operator 
and J, k, and m (and their primed counterparts) refer 
to the usual rotational quantum numbers: 

JJJJJJm
JJJJJJk

J
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Using symmetric rotor eigenfunctions, we can 
obtain the non-vanishing matrix elements applying 
the technique described in [3, 29, 30]. Due to the 
orthogonality of the rotational eigenfunctions all the 
elements with J´≠J disappear. For the rest, it is 
interesting to note that only three different cases can 
appear:  

1) Operators with the form Ja, where a indicates 
the x, y, or z component.  

2) Operators with the form (Ja)2.  
3) Operators with the form JaJb, where b= x, y 

or z component different to a. 
Case 1) corresponds to the rovibrational coupling, 
whereas cases 2) and 3) correspond to pure rotation. 
The results we obtain are collected in Table 1. 

 
3   Methods and Implementation 
 
3.1. Conversion to optimized code 

The results for the three cases shown in Table 1 
are transformed in three different DT’s, as shown in 
Tables 2, 3 and 4. In these DT’s the C’s are the 
conditions, the A’s are the actions, and the R’s 
represent the decision rules (i.e., the matrix elements 
collected in Table 1).  

To convert the DT’s in a computer code, 
optimizing the execution time, we use the Shwayder 
approach [11], which is based in Shannons’s 
noiseless coding theorem [21, 22]. In a noiseless 
channel the information (messages) are transmitted 
with no possibility of error. For transmitting the 
messages through the noiseless channel as fast as 
possible, it must be selected a sequence of code 
characters for each message (code word) so that the 
average length of code words is as small as possible 
[11, 21, 22]. 

Using the noiseless coding theorem of Shannon 
it is possible to establish a measure of efficiency as 
[21]: 
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In equation (7) the numerator is a measure of the 
variability of the set of messages, and is called 
information entropy, H. The pi are the relative 
frequencies of the messages. The unit of 
measurement of entropy is bits, with log2 2=1 bit. The 
average word length in the denominator is obtained 

as the sum of the products of the code-word length 
times the frequency of each message. Applying this 
reasoning to the decision logic problem in a computer 
code, we can use the similarity between the coding 
problem and the decision table construction.  

 
Table 1. All possible non-vanishing (J′=J ) matrix elements for angular momentum operators. 

 
Operator (Ô) k′ Matrix element Label 
Jx k−1 ħ/2[(J+k)(J−k+1)]1/2 x1 
 k+1 ħ/2[(J−k)(J+k+1)]1/2 x2 
Jy k−1 −iħ/2[(J+k)(J−k+1)]1/2 y1 
 k+1 iħ/2[(J−k)(J+k+1)]1/2 y2 
Jz k ħ k z1 
Jx

2 k ħ2/2[J2+J−k2] xx1 
 k−2 ħ2/4[J2+J−k2−k]1/2[J2+J−k2−3k−2]1/2 xx2 
 k+2 ħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 xx3 
Jy

2 k ħ2/2[J2+J−k2] yy1 
 k−2 −ħ2/4[J2+J−k2−k]1/2[J2+J−k2−3k−2]1/2 yy2 
 k+2 −ħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 yy3 
Jz

2 k ħ2 k2 zz1 
JxJy k −iħ2/2 k xy1 
 k−2 −iħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 xy2 
 k+2 iħ2/4[J2+J−k2−k]1/2[J2+J−k2−3k−2]1/2 xy3 
JyJx k iħ2/2 k yx1 
 k−2 −iħ2/4[J2+J−k2+k]1/2[J2+J−k2+3k−2]1/2 yx2 
 k+2 iħ2/4[J2+J−k2−k]1/2[J2+J−k2−3k−2]1/2 yx3 
JxJz k−1 ħ2/2(k)[J2+J−k2+k]1/2 xz1 
 k+1 ħ2/2(k)[J2+J−k2−k]1/2 xz2 
JzJx k−1 ħ2/2(k−1)[J2+J−k2+k]1/2 zx1 
 k+1 ħ2/2(k+1)[J2+J−k2−k]1/2 zx2 
JyJz k−1 −iħ2/2(k)[J2+J−k2+k]1/2 yz1 
 k+1 iħ2/2(k)[J2+J−k2−k]1/2 yz2 
JzJy k−1 −iħ2/2(k−1)[J2+J−k2+k]1/2 zy1 
 k+1 iħ2/2(k+1)[J2+J−k2−k]1/2 zy2 

 
 
Table 2. DT for the Ja angular momentum operators. 
 

 Ja R1 R2 R3 R4 R5 
C1 a=x 1 1 0 0 0 
C2 a=y 0 0 1 1 0 
C3 k′=k−1 1 0 1 0 0 
 f (J=50) 0.199 0.199 0.199 0.199 0.201
A1 x1  X - - - - 
A2 x2 - X - - - 
A3 y1 - - X - - 
A4 y2 - - - X - 
A5 z1 - - - - X 

 
 
 

Table 3. DT for the (Ja)2
 angular momentum 

operators. 
 
 (Ja)2 R1 R2 R3 R4 R5 R6 R7 
C1 a=x 1 1 1 0 0 0 0 
C2 a=y 0 0 0 1 1 1 0 
C3 k′=k 1 0 0 1 0 0 1 
C4 k′=k−2 0 1 0 0 1 0 0 
 f (J=50) 0.144 0.141 0.141 0.144 0.141 0.141 0.144

A1 xx1 X - - X - - - 
A2 xx2 - X - - - - - 
A3 xx3 - - X - - - - 
A4 yy2 - - - - X - - 
A5 yy3 - - - - - X - 
A6 zz1 - - - - - - X 
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Table 4. DT for the JaJb angular momentum operators. 
 

 JaJb R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

C1 a=x 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
C2 a=y 0 0 0 0 0 1 1 1 1 1 0 0 0 0 
C3 b=x 0 0 0 0 0 1 1 1 0 0 1 1 0 0 
C4 b=y 1 1 1 0 0 0 0 0 0 0 0 0 1 1 
C5 k′=k 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
C6 k′=k−1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 
C7 k′=k−2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 
 f(J=50) 0.072 0.070 0.070 0.071 0.071 0.072 0.070 0.070 0.071 0.071 0.071 0.071 0.071 0.071

A1 xy1 X - - - - - - - - - - - - - 
A2 xy2 - X - - - - X - - - - - - - 
A3 xy3 - - X - - - - X - - - - - - 
A4 xz1 - - - X - - - - - - - - - - 
A5 xz2 - - - - X - - - - - - - - - 
A6 yx1 - - - - - X - - - - - - - - 
A7 yz1 - - - - - - - - X - - - - - 
A8 yz2 - - - - - - - - - X - - - - 
A9 zx1 - - - - - - - - - - X - - - 
A10 zx2 - - - - - - - - - - - X - - 
A11 zy1 - - - - - - - - - - - - X - 
A12 zy2 - - - - - - - - - - - - - X 

 
So, the Schwayder´s approach [11] establishes that 
the optimal code is obtained by maximizing the 
associated information entropy (H). Therefore, we 
start with a given DT, selecting the condition with the 
highest entropy. Then, for each branch of the 
condition, we have two sub-DT’s. One of the sub-
DT’s corresponds to the rules with the initial 
condition set to true (or 1), and the other to the rules 
with the condition set to false (or 0). For each sub-DT 
we select again the condition with the highest 
entropy, and the process is applied recursively until 
no conditions left. In this form, we obtain the optimal 
testing order of the conditions. Considering that we 
have no indifferences and that we use two coding 
characters (1-0 or true-false), the maximum 
information entropy for a given condition is obtained 
as [11]: 
H= − ( P(1) log2 P(1) + P(0) log2 P(0) )  (8) 
In equation (8), P(1) represents the probability of the 
condition being true (or 1), and P(0) the probability 
of being false (or 0). For computing P(0) and P(1) we 
need the frequency of apparition (f ) of each decision 
rule (columns of the DT). Therefore, 
P(1)= Σ fi (with condition equal 1)  (9) 
P(0) = 1− P(1) 

To determine the frequencies for the different 
decision rules in Tables 2, 3 and 4, we consider that 
for each J rotational quantum number we have 2J+1 k 
and m quantum number values, see equation (6). 
Therefore, we obtain: 
f(k´=k) = (2J+1)/T  
f(k´=k±1) = 2J/T     (10) 

f(k´=k±2) = (2J-1)/T 
where T  is the total number of the integrals evaluated 
for a given J rotational quantum number for the 
possible values of k, i.e., 6J.  

The frequency of each decision rule is computed 
as a function of J, for values ranging from 0 to 50. 
The results for the three DT’s considered are shown 
in Figure 1. Here, we observe that when J increases 
the decision rules frequencies converge to a similar 
value. The frequencies differ at most in the second 
decimal place. In addition, for the entire J interval, 
the relative position of the different decision rules is 
maintained. These facts indicate that the optimal code 
resulting from the DT’s should be the same 
independently of J. Tables 2, 3, and 4 collect the 
results for J=50. 

With the frequencies values, we can apply the 
described procedure to transform the three DT’s in 
the corresponding optimized code. 
 
Case 1.  

The DT in Table 2 is the simplest one. Three 
conditions (C) are evaluated to generate the five 
decision rules (R). In the conditions, values of a= x, 
and y are taken into account. The a= z component, is 
implicitly taken into account. In the same form, only 
a condition for k’= k+1 or k-1 is needed to generate 
all the remaining decision rules. Five decision rules 
(R) are evaluated corresponding to the five different 
matrix elements (the actions, A), see Table 1. Chart1 
shows the resulting code that maximizes information 
entropy. On the other hand, for the sake of 
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comparison, we have obtained the worst, pessimal, 
code. To such an end, we have used the inverse 
process, i. e., we select first the conditions with 
smaller entropy in the decision process. Chart 2 
shows the resulting code. 
 
Case 1. 
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Case 2. 
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Case 3. 
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Figure 1. Variation of the decision rules frequencies 
as a function of the rotational J quantum number. The 
rules appearing in the same set have the same 
frequency. 

if C1 then 
  if C3 then 
    <R1> 
  else <R2> 
  end_if 
else 
  if C2 then 
    if C3 then 
      <R3> 
    else <R4> 
    end_if 
  else <R5> 
  end_if 
end_if 

 
Chart 1. Optimal pseudocode for the DT in Table 2. 
 
if C1 then 
  if C3 then 
    <R1> 
  else <R2> 
  end_if 
else 
  if C3 then 
    <R3> 
  else 
    if C2 then 
      <R4> 
    else <R5> 
    end_if 
  end_if 
end_if 

 
Chart 2. Pessimal pseudocode for the DT in Table 2. 
 
Case 2.  

Here, the DT for the double application of the Ja 
operator is presented. This case corresponds to the 
pure rotational terms, the only terms appearing when 
using a principal axes coordinate system. As shown 
in Table 3, we have now four different conditions and 
seven different decision rules. Applying the 
maximization of the information entropy we obtain 
the code presented in Chart 3. The worst 
approximation obtained by the inverse process is 
shown in Chart 4. 
 
if C1 then 
  if C3 then 
    <R1> 
  else  
    if C4 then 
      <R2> 
    else <R3> 
    end_if 
  end_if 
else 
  if C3 then 
    if C2 then 
      <R4> 
    else <R7> 
    end_if 
  else  
    if C4 then 
      <R5> 
    else <R6> 
    end_if 
  end_if 
end_if 

Chart 3. Optimal pseudocode for the DT in Table 3. 
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if C1 then 
  if C4 then 
    <R2> 
  else  
    if C3 then 
      <R1> 
    else <R3> 
    end_if 
  end_if 
else 
  if C4 then 
    <R5> 
  else 
    if C3 then 
      if C2 then 
        <R4> 
      else <R7> 
      end_if 
    else <R6> 
    end_if 
  end_if 
end_if 

 
Chart 4. Pessimal pseudocode for the DT in Table 3. 
 
Case 3.  

This is the most complex case. Here, we have 
seven different conditions and fourteen decision 
rules, see Table 4. Now the cases k′= k, k±2, and k±1 
are taken into account. After maximizing the 
information entropy the time optimal code shown in 
Chart 5 is obtained. Chart 6 present the pessimal 
pseudocode for the decision process. 
 
if C1 then 
  if C4 then 
    if C5 then 
      <R1> 
    else 
      if C7 then 
        <R2> 
      else <R3> 
      end_if 
    end_if 
  else  
    if C6 then 
      <R4> 
    else <R5> 
    end_if 
  end_if 
else 
  if C2 then 
    if C3 then  
      if C5 then  
        <R6> 
      else  
        if C7 then 
          <R7> 
        else <R8> 
        end_if 
      end_if 
   else  
     if C6 then 
       <R9> 
     else <R10> 
     end_if 
   end_if 
  else 
    if C4 then  
      if C6 then 
        <R13> 
      else <R14> 

    else 
      if C6 then  
        <R11> 
      else <R12> 
      end_if 
    end_if 
  end_if 
end_if 

 
Chart 5. Optimal pseudocode for the DT in Table 4. 
 
if C7 then 
  if C1 then 
    <R2> 
  else <R7> 
  end_if 
else  
  if C5 then 
    if C1 then 
      <R1> 
    else <R6> 
    end_if 
  else  
     if C1 then 
       if C4 then  
         <R3> 
       else  
         if C6 then  
           <R4> 
         else <R5> 
         end_if 
       end_if 
     else 
       if C4 then 
         if C6 then 
           <R3> 
         else <R14> 
         end_if 
       else 
         if C2 then 
           if C3 then 
             <R8> 
           else 
             if C6 then 
               <R9> 
             else <R10> 
             end_if 
           end_if 
         else 
           if C6 then 
             <R11> 
           else <R12> 
           end_if 
         end_if 
       end_if 
     end_if 
   end_if 
end_if 

 
Chart 6. Pessimal pseudocode for the DT in Table 4. 
 
3.2. Efficiency of the optimized code 

It is possible to quantify the efficiency of the 
codes as proposed by Shwayder [11]. The idea is to 
determine the average information entropy per 
comparison. 

Since the theoretical maximum is 1 bit of 
entropy per comparison, the average entropy directly 
gives how close we are to the maximum possible 
information entropy. This value, therefore, represents 
a measure of the efficiency of the code proposed. The 
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average entropy per comparison can be determined as 
follows. First we identify the conditions that appear 
in the code, some can appear more than once. For 
instance, in the pseudocode of Chart 1 we test four 
conditions, C1, C3, C2 and C3. For each condition 
we determine its frequency of evaluation (f) by 
adding the probabilities of all the decision rules than 
can be reached from it. In addition we compute the 
maximum information entropy (H) of each condition 
using equation (5). The P(1) and P(0) probabilities 
for each condition are obtained from the frequencies 
of the decision rules below it using equation (6). The 
weighted entropies (WH) are defined as the product 
f*H for each condition. The efficiency is obtained as 
the ratio of total WH to total f. Table 5 shows the 
results for the codes in Charts 1, 3 and 5 for the 
optimal pseudocodes. On the other hand Table 6 
shows the results for the worst cases in Charts 2, 4 
and 6. Table 5 shows that the three best 
implementations, Charts 1, 3, and 5, have efficiencies 
of 97%, 98%, and 97%, respectively. The worst 
implementations in Table 6 have efficiencies of 97%, 
93%, and 81%, respectively. 

The previous results were obtained for the 
limiting J=50 value. To analyze the evolution of the 
optimal versus the pessimal case, we have considered 
the efficiency as a function of the J quantum number. 
The results are shown in Figure 2. In all cases, we 
observe that the difference in efficiency converge to a 
limit as J increases. In addition, we find that in case 1 
the difference between efficiencies is the smallest in 
comparison with the other cases. This is a 
consequence of the small number of conditions taken 
into account in the decision process, see Table 2. In 
the large J limit, we found an efficiency difference of 
5% for the (Ja)2 case. The largest difference, 16%, is 
found in the most complex case, JaJb. 

 
4   Conclusions 

In this paper, we obtain the most efficient 
algorithms for computing all possible angular 
momentum matrix elements involving overall 
rotation. Using symmetric rotor eigenfunctions we 
determine all the matrix elements needed for any 
variational treatment of overall rotation and 
rovibrational coupling.  

The process logic is described using three 
decision tables (DT’s). Then, the optimal computer 
code corresponding to each DT is obtained by 
maximizing the information entropy (H) of the 
resulting algorithm. 

We find that the frequency of apparition of each 
matrix element is almost constant for different values 
of the rotational quantum number J. Since this 
frequency is the factor determining the resulting 

computer code, the codifications proposed are 
optimal for any J quantum number. 

The efficiency of each codification is quantified 
by comparison with the theoretical maximum value 
of H. We find efficiencies of 97%, 98% and 97% for 
the three considered DT’s. These results show that 
the codifications are extremely efficient.  

The pessimal code cases are also evaluated to 
compare the efficiencies obtained. The results are 
evaluated as a function of the rotational number J. 
The results show that the difference between the 
efficiencies of the optimal and the pessimal cases 
increases when the process logic is most complex, 
i.e., case 3. 
 
Table 5. Efficiencies of the algorithms corresponding 
to the codes in Charts 1, 3 and 5. 
 
Case 1. Code in Chart 1 
Decision 
node Condition H f WH 

1 C1 0.9704 1.0000 0.9704 
2 C3 1.0000 0.3992 0.3992 
3 C2 0.9204 0.6007 0.5528 
4 C3 1.0000 0.3992 0.3992 
Total   2.3992 2.3216 
Efficiency= 0.9677=97 % 
Case 2. Code in Chart 3. 
Decision 
node Condition H f WH 

1 C1 0.9848 1.0000 0.9848 
2 C3 0.9226 0.4277 0.3946 
3 C3 0.9999 0.5722 0.5722 
4 C4 1.0000 0.2832 0.2832 
5 C2 1.0000 0.2889 0.2889 
6 C4 1.0000 0.2832 0.2832 
Total   2.8555 2.8072 
Efficiency=0.9831= 98 % 
Case 3. Code in Chart 5. 
Decision 
node Condition H f WH 

1 C1 0.9401 1.0000 0.9401 
2 C4 0.9714 0.3569 0.3467 
3 C2 0.9912 0.6430 0.6374 
4 C5 0.9226 0.2138 0.1973 
5 C6 1.0000 0.1430 0.1430 
6 C3 0.9700 0.3569 0.2410 
7 C4 1.0000 0.2861 0.2861 
8 C7 1.0000 0.1416 0.1416 
9 C5 0.9226 0.2138 0.1973 
10 C6 1.0000 0.1430 0.1430 
11 C6 1.0000 0.1430 0.1430 
12 C6 1.0000 0.1430 0.1430 
13 C7 1.0000 0.1416 0.1416 
Total   3.9263 3.7016 
Efficiency=0.9696= 97 % 
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Table 6. Efficiencies of the algorithms corresponding 
to the codes in Charts 2, 4 and 6. 
 
Case 1. Code in Chart 2. 
Decision  
node Condition H f WH 

1 C1 0.9704 1.0000 0.9704 
2 C3 1.0000 0.3992 0.3992 
3 C2 0.9171 0.6007 0.5510 
4 C3 0.9999 0.4011 0.4011 
Total   2.4012 2.3219 
Efficiency=0.9669= 97 % 
Case 2. Code in Chart 4. 
Decision  
node Condition H f WH 

1 C1 0.9848 1.0000 0.9848 
2 C3 0.9160 0.4277 0.3918 
3 C3 0.8072 0.5722 0.4619 
4 C4 0.9999 0.2861 0.2861 
5 C2 0.9138 0.4306 0.3934 
6 C4 1.0000 0.2889 0.2889 
Total   3.0057 2.8072 
Efficiency=0.9339= 93 % 
Case 3. Code in Chart 6. 
Decision  
node Condition H f WH 

1 C7 0.5884 1.0000 0.5884 
2 C1 1.0000 0.1416 0.1416 
3 C5 0.6538 0.8583 0.5612 
4 C1 1.0000 0.1444 0.1444 
5 C1 0.8808 0.7138 0.6287 
6 C4 0.9160 0.2138 0.1959 
7 C4 0.8636 0.5000 0.4318 
8 C6 1.0000 0.1430 0.1430 
9 C6 1.0000 0.1430 0.1430 
10 C2 0.9714 0.3569 0.3467 
11 C3 0.9160 0.2138 0.1959 
12 C6 1.0000 0.1430 0.1430 
13 C6 1.0000 0.1430 0.1430 
Total   4.7153 3.8073 
Efficiency=0.8074=81 % 
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Figure 2. Variation of the efficiency as a function of 
the J rotational quantum number. The continuous line 
corresponds to the optimal code. The dashed line 
corresponds to the pessimal code. 
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