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Abstract: - Scheduling operations problems arise in diverse areas such as flexible manufacturing, production 
planning and scheduling, logistics, supply chain problem, etc. A common feature of many of these problems is 
that no efficient solution algorithms are known that solve each instance to optimality in a time bounded 
polynomially in the size of the problem, Dorndorf and Pesch [22]. Discrete optimization can help to overcome 
these difficulties. This paper presents an optimization approach to solve the complex scheduling problem in a job 
shop environment. This problem is also known as the Job Shop Scheduling Problem (JSSP). The JSSP is a 
difficult problem in combinatorial optimization for which extensive investigation has been devoted to the 
development of efficient algorithms. The proposed approach is based on a genetic algorithm technique. Genetic 
algorithms are an optimization methodology based on a direct analogy to Darwinian natural selection and 
mutations in biological reproduction. The scheduling rules such as SPT and MWKR are integrated into the 
process of genetic evolution. The chromosome representation of the problem is based on random keys. The 
schedules are constructed using a priority rule in which the priorities and delay times of the operations are 
defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized 
active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The 
approach is tested on a set of standard instances taken from the literature and compared with other approaches. 
The computation results validate the effectiveness of the proposed approach. 
 
 
Key-Words: - Scheduling, manufacturing, heuristics, genetic algorithm, optimization, local search, JSSP. 
 
1   Introduction 
A job shop consists of a set of different machines 
(e.g., lathes, milling machines, drills, etc.) that 
perform operations on jobs. Each job consists of a 
sequence of operations, each of which uses one of the 
machines for a fixed duration. Once started, the 
operation cannot be interrupted. Each machine can 
process at most one operation at a time. A schedule is 
an assignment of operations to time intervals on the 
machines. The problem is to find a schedule of 
minimal time to complete all jobs, French [37]. 

The job shop scheduling problem (JSSP) is one 
of the most difficult combinatorial optimization 
problems. The problem finds numerous applications 
in manufacturing and is central to many supply chain 
problems that integrate production planning and 
scheduling. For an extensive treatment of planning 
and scheduling models and applications in various 
supply chain settings, see Pinedo [36].  

To make the right decision, the manager must 
have reliable and complete information and adequate 
scheduling models. Single and small scale productions 
are characterized by many work orders. So, the 
application of new tools based on discrete optimization 

not only in production process but also in determination 
of priority of technological operations will be 
appropriate. 

There are two categories for job shop scheduling; 
static and dynamic. In dynamic scheduling, schedules 
are created during run time and no knowledge of 
operations is in hand until it arrives. While in static 
scheduling, schedules are created before run time and 
can not change. Similarly, operations must all be 
known in advance. In other words a static job shop 
scheduling algorithm schedules a set of operations 
with known processing on machines to optimize 
some performance metric, such as makespan, 
communication cost and CPU utilization. In this 
paper we focus on static scheduling. 

The JSSP may be described as follows: n jobs are 
to be scheduled on m machines. Each job i represents 
ni ordered operations. The execution of each 
operation j of job i (noted as oij) requires one machine 
m selected from a set of machines for a fixed 
duration, see Figure 1. Each machine can process at 
most one operation at a time and once an operation 
initiates processing on a given machine it must 
complete processing on that machine without 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 220 Issue 2, Volume 7, February 2010



interruption. The operations of a given job have to be 
processed in a given order. The problem consists in 
finding a schedule of the operations on the machines, 
taking into account the precedence constraints, that 
minimizes the makespan (Cmax), that is, the finish 
time of the last operation completed in the schedule. 
 

 
Fig. 1 – A Job shop system. 

 
 
Let J = {0, 1, …, N, N+1} denote the set of all 

operations to be scheduled and M = {1,..., m} the set 
of machines. The operations 0 and N+1 are dummy, 
have no duration and represent the initial and final 
operations. The operations are interrelated by two 
kinds of constraints. First, the precedence constraints, 
which force each operation j to be scheduled after all 
predecessor operations, Pj, are completed. Second, 
operation j can only be scheduled if the machine it 
requires is idle. Further, let dj denote the (fixed) 
duration (processing time) of operation j.  

Let Fj represent the finish time of operation j. A 
schedule, see Fig. 2, can be represented by a vector of 
finish times (F1, …, Fm, ... , Fn+1). Let A(t) be the set of 
operations being processed at time t, and let rj,m = 1 if 
operation j requires machine m to be processed and 
rj,m = 0 otherwise. 
 
 

 
 
 
 
 
 
 

 
Fig. 2 – A schedule example. 

 

 
Fig. 2 shows a schedule example with 7 jobs, 4 

operations for job and 4 machines. 
The conceptual model of the JSSP can be 

described in the following way: 
 

1 (1)+Min nF  
 
subject to: 

 
1,..., 1 ; (2)≤ − = + ∈k j j jF F d j N k P  

 

( )
, 1 ; 0 (3)

∈

≤ ∈ ≥∑ j m
j A t

r m M t  

0 1,..., 1 (4)≥ = +jF j N
 

The objective function (1) minimizes the finish 
time of operation N+1 (the last operation), and 
therefore minimizes the makespan. Constraints (2) 
impose the precedence relations between operations 
and constraints (3) state that one machine can only 
process one operation at a time. Finally (4) forces the 
finish times to be non-negative. 

Lenstra and Rinnooy Kan [14] demonstrated that 
JSSP is NP-hard, so it cannot be exactly solved in a 
reasonable computation time. 

Exact methods (Giffler and Thompson [26], 
Carlier and Pinson [27, 28], Brucker et al. [29], 
Williamson et al. [30]) have been successful in 
solving small instances, including the notorious 
10×10 instance of Fisher and Thompson proposed in 
1963 and only solved twenty years later. Problems of 
dimension 15×15 are still considered to be beyond 
the reach of today's exact methods. 

Many approximate methods have been developed 
in the last two decades to solve the JSSP, such as 
simulated annealing (SA) (Lourenço [16]), tabu 
search (TS) (Nowicki and Smutnicki [12], Pezzela 
and Merelli [8], Zhang et al. [15]), genetic algorithms 
(GA) (Aarts et al. [19], Croce et al. [21], Dorndorf et 
al. [22], Gonçalves and Beirão [23], Wang and Zheng 
[24], Zhou et al. [32], Essafi et al. [4], Gonçalves et 
al. [5], Choi and Park [33], Chiu et al. [34, 35]),  
particle swarm optimization (PSO) (Sha and Hsu 
[7]), greedy randomized adaptive search procedure 
(GRASP), Binato et al. [25], Aiex et al. [20]) and 
Rego and Duarte [9] proposed a filter-and-fan 
approach based on the shifting bottleneck procedure 
(SBP). 

In this paper, we present a new optimization 
approach for the job shop scheduling problem. The 
remainder of the paper is organized as follows: in 
Section 2 the types of schedules, Section 3 the 
approach, Section 4 the genetic algorithm, Section 5 
the schedule generation and Section 6 the local 

M1 6.1 2.3 1.2 3.1 4.3 5.3 7.4

M2 1.1 4.2 5.2 2.2 6.3 3.2 7.2

M3 5.1 6.2 7.3 3.4 2.4 1.4 4.4

M4 4.1 2.1 7.1 5.4 6.4 1.3 3.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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search. In Section 7 we test the optimization approach 
on Fisher and Thompson [17] and Lawrence [18] test 
problems. Finally, conclusion and remarks for further 
works are given in Section 8. 
 
2   Types of schedules 
Classifying schedules is the basic work to be done 
before attacking scheduling problems [39].  

Schedules can be classified into one of the 
following three types of schedules: 
i) Feasible schedules. A schedule is said to be 

feasible if it is non-preemptive and if the 
precedence and resource constraints are satisfied. 

ii) Semi-active schedules. These are feasible 
schedules obtained by scheduling operations as 
early as possible. In a semi-active schedule the 
start time of a particular operation is constrained 
by the processing of a different operation on the 
same resource or by the processing of the directly 
preceding operation on a different resource. 

iii) Active schedules. These are feasible schedules in 
which no operation could be started earlier 
without delaying some other operation or 
breaking a precedence constraint. Active 
schedules are also semi-active schedules. An 
optimal schedule is always active. 

iv) Non-delay schedules. These are feasible schedules 
in which no resource is kept idle at a time when it 
could begin processing some operation. Non-
delay schedules are active and hence are also 
semi-active. 

 
The set of active schedules is usually very large 

and contains many schedules with poor quality. To 
reduce the solution space we use the concept of 
parameterized active schedules. 

The concept of parameterized active schedules is 
proposed in Gonçalves and Beirão [23], Mendes [10], 
Gonçalves et al. [5] and Mendes et al. [6]. This type 
of schedule consists of schedules in which no 
resource is kept idle for more than a predefined 
period if it could start processing some operation. If 
the predefined period is set to zero, then we obtain a 
non-delay schedule.  
 
3   The Approach 
The approach combines a genetic algorithm, a 
schedule generation scheme that generates 
parameterized active schedules and a local search 
procedure. The genetic algorithm is responsible for 
evolving the chromosomes which represent the 
priorities of the operations.  
 

For each chromosome the following three phases 
are applied: 
 

1. Schedule parameters - this phase is 
responsible for transforming the chromosome 
supplied by the genetic algorithm into the 
priorities of the operations and delay time; 

2. Schedule generation - this phase makes use 
of the priorities and the delay time and 
constructs active schedules; 

3. Schedule improvement - this phase makes 
use of a local search procedure to improve 
the solution obtained in the schedule 
generation phase. 

 
After a schedule is obtained, the quality is 

feedback to the genetic algorithm. Figure 3 illustrates 
the sequence of steps applied to each chromosome. 
Details about each of these phases will be presented 
in the next sections. 

 
 

 
 

Fig. 3 - Phases of the proposed approach. 
 
 
 

4   Application of genetic algorithm 
The approach presented in this paper is based on a 
genetic algorithm to perform its optimization process. 

Genetic algorithms (GAs) are search algorithms 
based on the mechanics of natural selection and 
natural genetics. They combine survival of the fittest 
among string structures with a structured yet 
randomized information exchange to form a search 
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algorithm with some of the innovative flair of human 
search [1, 2].  

One fundamental advantaged of GAs from 
traditional methods is described by Goldberg [1]: in 
many optimization methods, we move gingerly from 
a single solution in the decision space to the next 
using some transition rule to determine the next 
solution. This solution-to-solution method is 
dangerous because it is a perfect prescription for 
locating false peaks in multimodal search spaces. By 
contrast, GAs work from a rich database of solutions 
simultaneously (a population of chromosomes), 
climbing many peaks in parallel; thus the probability 
of finding a false peak is reduced over methods that 
go solution to solution.  

The general schema of GA may be illustrated as 
follows (Fig. 4).  
    
procedure GENETIC-ALGORITHM 
   
Generate initial population P0; 
  Evaluate population P0; 
  Initialize generation counter g 0; 
 
  While stopping criteria not satisfied repeat 
       Select some elements from Pg to copy into Pg+1; 
      Crossover some elements of Pg and put into Pg+1; 
      Mutate some elements of Pg and put into Pg+1; 
      Evaluate some elements of Pg and put into Pg+1; 
      Increment generation counter: g  g+1; 
   End while 
 
End GENETIC-ALGORITHM; 

Fig.4 - Pseudo-code of a genetic algorithm. 
 
First of all, an initial population of potential 

solutions (individuals) is generated randomly. A 
selection procedure based on a fitness function 
enables to choose the individuals candidate for 
reproduction. The reproduction consists in 
recombining two individuals by the crossover 
operator, possibly followed by a mutation of the 
offspring. Therefore, from the initial population a 
new generation is obtained. From this new 
generation, a second new generation is produced by 
the same process and so on. The stop criterion is 
normally based on the number of generations. 

 
 

4.1 Decoding 
The genetic algorithm uses a random key alphabet 
which is comprised of real random numbers between 
0 and 1.  

A chromosome represents a solution to the 
problem and is encoded as a vector of random keys 
(random numbers). Each solution chromosome is 

made of 2n genes where n is the number of 
operations (excluding 0 and n+1): 
 

Chromosome = (genel , .., genen ,  gene n+1 , ... , gene 2n ) 
 

4.1.1   Decoding the priorities of operations  
The priority decoding expression used the following 
expression  

1,..., .= =j jPRIORITY gene j n  
 
4.1.2   Decoding the delay times  

The genes between n+1 and 2n are used to 
determine the delay times used when scheduling an 
operation. The delay time used by each scheduling 
iteration g, Delayg, is given by the following 
expression: 

 
  Delayg = genen+g  × 1.5 × MaxDur 

 
where MaxDur is the maximum duration of all 
operations. The factor 1.5 was obtained after some 
experimental tuning. 
 
 
4.2 Evolutionary strategy 
To breed good solutions, the random key vector 
population is operated upon by a genetic algorithm. 

There are many variations of genetic algorithms 
obtained by altering the reproduction, crossover, and 
mutation operators.  

Reproduction is a process in which individual 
(chromosome) is copied according to their fitness 
values (makespan).  

Reproduction is accomplished by first copying 
some of the best individuals from one generation to 
the next, in what is called an elitist strategy.  

In this paper the fitness proportionate selection, 
also known as roulette-wheel selection, is the genetic 
operator for selecting potentially useful solutions for 
reproduction. The characteristic of the roulette wheel 
selection is stochastic sampling. 

The fitness value is used to associate a 
probability of selection with each individual 
chromosome. If fi is the fitness of individual i in the 
population, its probability of being selected is,    

 

1

, 1,..., (5)

=

= =

∑
i

i N

i
i

fp i n
f

  

 
An example is presented in Table 1. 
A roulette wheel model is established to represent 

the survival probabilities for all the individuals in the 
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population. Then the roulette wheel is rotated for 
several times [1], see Fig. 5. 

After selection the mating population consists of 
the chromosomes (individuals): 1, 2, 3, 4, 5 and 6.  

 
 
 

Number of 
chromosome 

Fitness 
value 

Selection 
probability

1 14 0,20
2 12 0,17
3 10 0,14
4 9 0,13
5 8 0,11
6 7 0,10
7 4 0,06
8 3 0,04
9 2 0,03
10 1 0,01  

Table 1: Selection probability and 
fitness value. 
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Fig. 5 - Roulette-wheel selection. 
 
 
After selecting, crossover may proceed in two 

steps. First, members of the newly selected 
(reproduced) chromosomes in the mating pool are 
mated at random. Second, each pair of chromosomes 
undergoes crossover as follows: an integer position k 
along the chromosome is selected uniformly at 
random between 1 and the chromosome length l. Two 
new chromosomes are created swapping all the genes 
between k+1 and l [1], see Fig. 6. 

 
 

Chromosome 1 0.32 0.22 0.34 0.89 0.23 0.76 0.78 0.45
Chromosome 2 0.12 0.65 0.38 0.47 0.31 0.56 0.88 0.95

Offspring 1 0.32 0.22 0.34 0.47 0.31 0.56 0.88 0.95
Offspring 2 0.12 0.65 0.38 0.89 0.23 0.76 0.78 0.45

Random position k = 3 Chromosome length l = 8

swapping all the 
genes between 4
and 8

 
Fig.6 – Crossover operator example. 

 
 
The mutation operator preserves diversification 

in the search.  This operator is applied to each 
offspring in the population with a predetermined 
probability. We assume that the probability of the 
mutation in this paper is 0.001. With 60 genes 
positions we should expect 60 x 0.001 = 0.06 genes 
to undergo mutation for this probability value. 

This evolutionary strategy was applied to the 
resource constrained project scheduling problem with 
a good performance, see Mendes [3, 31]. 

Fig. 7 shows this evolutionary strategy with the 
operators selection, recombination (or crossover) and 
mutation. 

 

 
 

Fig.7 – Evolutionary strategy. 
 

 
4.3 Initial population 
Through the initialization process the initial 
population will be generated usually randomly from 
the range of possible solutions (chromosomes). The 
quality of this population is initially poor and one 
way to improve is to incorporate some chromosomes 
generated by selected priority rules. 

In this work are selected the priority rules 
MWKR (the job with the most work remaining would 
be scheduled first) and SPT (the job with the shortest 
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processing time has the highest priority for 
processing) to improve some chromosomes of the 
initial population. 

 
 

5   Schedule Generation 
Schedule generation schemes (SGS) are the core of 
most heuristic solution procedures for the JSSP. SGS 
start from scratch and build a feasible schedule by 
stepwise extension of a partial schedule. A partial 
schedule is a schedule where only a subset of the n+2 
operations have been scheduled. There are two 
different classics methods SGS available. They can 
be distinguished into operation and time 
incrementation. The so called serial SGS performs 
operation-incrementation and the so called parallel 
SGS performs time-incrementation [38]. 

The constructive heuristic used to construct 
active schedules is based on a scheduling generation 
scheme that does time incrementing, called parallel 
modified.  

This heuristic makes use of the priorities and the 
delay times defined by the genetic algorithm and 
constructs active schedules. This heuristic is 
described by Mendes [3], Gonçalves et al. [5] and 
Mendes et al. [6]. 

Fig. 8 illustrates where the set of parameterized 
active schedules is located relative to the class of 
semi-active, active, and non-delay schedules. 
 

 
 

Fig. 8 – Parameterized active schedules. 
 

The heuristic used to construct parameterized 
active schedules is based on a scheduling generation 
scheme that does time incrementing. For each 
iteration g, there is a scheduling time tg. The active 
set comprises all operations which are active at tg, i.e.  

 

{ }|g j j g jA j J F d t F= ∈ − ≤ <
. 

 
Initialization: { } { } { } ( )1 0 01, 0, 0 , 0 , 0 , 0 ( )= = = Γ = = = ∈o k kg t A S RD R k K  
 
while 2< +gS n   repeat 

{ 
Update gE  
 
 while Eg ≠ {} repeat 
{ 
             Select operation with highest priority 
 

 

 
Calculate earliest finish time (in terms of precedence only) 

{ }* *max
ji P ij j

EF F d∈= +  

 
Calculate the earliest finish time (in terms of precedence and capacity) 

{

}

* * * *

* * *

,

,

min , | ( ) ,

| 0 , ,

τ

τ

⎡ ⎡= ∈ − ∞ ∩ Γ ≤⎣ ⎣
⎡ ⎤∈ > ∈ + +⎣ ⎦

g kj j j j k

j k j j

F t FMC d r RD

k K r t t d d
 

 
Update { }*

1g gS S j−= ∪   ,  { }*Γ = Γ ∪g g-1 j
F   

 
Iteration increment: g = g+1 

 
Update * * * *,

, , ( ) | , , | 0g g k j j j j k
A E RD t t F d F k K r⎡ ⎤∈ − ∈ >⎣ ⎦  

} 
Determine the time associated with operation g  
 

{ }1 1min |− −= ∈Γ >g g gt t t t  
 

       } 

{ }* argmax
g

j
j E

j PRIORITY
∈

=

 Fig. 9 - Pseudo-code to construct parameterized active 
schedules, Mendes [10] 

 
 

The remaining resource capacity of resource k at 
instant time tg is given by 

 
( ) ( ) ,

g

j k
j A

r
∈

= − ∑k g k gRD t R t
 

 
Sg comprises all operations which have been 

scheduled up to iteration g, and Fg comprises the 
finish times of the operations in Sg. Let Delayg  be the 
delay time associated with iteration g, and let Eg 
comprise all operations which are precedence feasible 
in the interval [tg , tg  + Delayg  ],  i.e. 

 
 

{ }1\ | ( )g g i g g jE j J S F t Delay i P−= ∈ ≤ + ∈
. 

 
The set Eg is responsible for forcing the selection 

to be made only amongst operations which will have 
a delay smaller or equal to the maximum allowed 
delay. 

Parameterized Actives

Non - Delay 

Active 

Semi - active
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The parameters PRIORITYj and Delayg  (priority 
of operation j and delays) are supplied by the genetic 
algorithm. 

The algorithmic description of the scheduling 
generation scheme used to create parameterized 
active schedules is given by the pseudo-code shown 
in Figure 9. 
 
 
6   Local Search 
Since there is no guarantee that the schedule obtained 
in the construction phase is locally optimal with 
respect to the local neighborhood being adopted, 
local search may be applied to improve the solution 
quality.  

In this work is applied the two exchange local 
search, based on the disjunctive graph model of Roy 
and Sussmann [11] and the neighborhood of Nowicki 
and Smutnicki [12], see Gonçalves et al. [5] and 
Mendes [10]. 
 
 
7   Computational results 

The experiments were performed on an Intel 
Core 2 Duo CPU T7250 @2.00 GHz. The algorithm 
was coded in Visual Basic 6.0. The performance of 
the GA-RKV-JSP (Genetic Algorithm - Random Key 
Variant) was evaluated on a standard set of 43 
benchmark instances belonging to two classical sets 
known as FT06, FT10, FT20 from Fisher and 
Thompson [17] and LA01-LA40 from Lawrence 
[18]. The problem size varies between 6 and 30 jobs 
and between 5 and 15 machines. 

 
 

7.1 Genetic algorithm configuration 
Though there is no straightforward way to configure 
the parameters of a genetic algorithm, we obtained 
good results with values: population size of 2 × 
number of operations in the problem; mutation 
probability of 0.001; top (best) 1% from the 
previous population chromosomes are copied to the 
next generation; stopping criterion of 400 
generations; initial population: 1% chromosomes 
calculated by priority rules MWKR and SPT. 
 
 
7.2 Experimental results 
Table 2 summarizes the experimental results. It lists 
problem name, problem dimension (number of jobs x 
number of operations), best known solution and the 
solution obtained by the approach proposed max i

C  

(makespan). 
 

 
Instance Size BKS Makespan

 
FT06 6x6 55 55 
FT10 10x10 930 930 
FT20 20x5 1165 1165 
LA01 10x5 666 666 
LA02 10x5 655 655 
LA03 10x5 597 597 
LA04 10x5 590 590 
LA05 10x5 593 593 
LA06 15x5 926 926 
LA07 15x5 890 890 
LA08 15x5 863 863 
 LA09 15x5 951 951 
LA10 15x5 958 958 
LA11 20x5 1222 1222 
LA12 20x5 1039 1039 
LA13 20x5 1150 1150 
LA14 20x5 1292 1292 
LA15 20x5 1207 1207 
LA16 10x10 945 945 
LA17 10x10 784 784 
LA18 10x10 848 848 
LA19 10x10 842 842 
LA20 10x10 902 907 
LA21 15x10 1046 1056 
LA22 15x10 927 937 
LA23 15x10 1032 1032 
LA24 15x10 935 949 
LA25 15x10 977 984 
LA26 20x10 1218 1218 
LA27 20x10 1235 1256 
LA28 20x10 1216 1231 
LA29 20x10 1157 1194 
LA30 20x10 1355 1355 
LA31 30x10 1784 1784 
LA32 30x10 1850 1850 
LA33 30x10 1719 1719 
LA34 30x10 1721 1721 
LA35 30x10 1888 1888 
LA36 15x15 1268 1278 
LA37 15x15 1397 1408 
LA38 15x15 1196 1213 
LA39 15x15 1233 1248 
LA40 15x15 1222 1237 

Table 2: Experimental results. 

 
Table 3 shows the number of instances solved 

(NIS) and the average relative deviation (ARD) with 
respect to the best known solution (BKS). 
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For comparison to other methods, we have used 
one measure, namely the average relative deviation 
(ARD): 

 

max

1
(6)

=

−
= ∑ i

NIS
i

i i

C BKS
RE

BKS
 

 

(7)=
REARD
NIS

 

 
Table 3, column 4, shows the ranking of the best 

ten approaches that solved the test problems used in 
this computational study.  

The computational time dispended is in the range 
[7, 3200] seconds. 
 
 

  Algorithm NIS ARD 
 

RANK 
 

  Genetic Algorithms    
     Aarts et al. [19] - GLS1 42 1.97% - 
     Aarts et al. [19] - GLS2 42 1.71% - 
     Croce et al. [21] 12 2.37% - 
     Dorndorf et al. [22] - PGA 37 4.61% - 
     Dorndorf et al. [22] - SBGA (40) 35 1.42% - 
     Dorndorf et al. [22] - SBGA (60) 20 1.94% - 
     Gonçalves and Beirão [23] 43 0.90% 10 
     Gonçalves et al. [5] 43 0.39% 8 
     This paper 43 0.38% 7 
  GRASP    
     Binato et al. [25] 43 1.77% - 
     Aiex et al. [20] 43 0.43% 9 
  Tabu Search    
     Nowicki and Smutnicki [12] 43 0.05% 3 
     F. Pezella and E. Merelli [8] 43 0.10% 4 
     Zhang et al. [15] 43 0.00% 1 
  PSO    
     Sha and Hsu [7] - HPSO 43 0.02% 2 
     Sha and Hsu [7] - PSO 43 0.37% 6 
  SBP & LNS    
     Rego and Duarte [9] 43 0.29% 5 

Table 3: Top-ten computational 
results for FT and LA test problems. 

 
8   Conclusion and further work 
This paper presents a discrete optimization approach 
for the JSSP. This approach is based on a genetic 
algorithm. The chromosome representation of the 
problem is based on random keys. Reproduction, 
crossover and mutation are applied to successive 
chromosome populations to create new chromosome 

populations. These operators are simplicity itself, 
involving random number generation, chromosome 
copying and partial chromosome exchanging. The 
scheduling rules such as SPT and MWKR are 
integrated into the process of genetic evolution. 

The schedules are constructed using a priority 
rule in which the priorities for each operation are 
defined by the genetic algorithm. Schedules are 
constructed using a constructive heuristic. After a 
schedule is obtained, a local search heuristic is 
applied to improve the solution. 

The approach was tested on a set of 43 standard 
instances taken from the literature and compared with 
the best state-of-the-art approaches. The algorithm 
produced good results when compared with other 
approaches. 

Further work could be conducted to explore the 
possibility of genetically correct the chromosomes 
supplied by the genetic algorithm to reflect the 
solutions obtained by the local search heuristic. 
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