
Complex Scheduling Problems Using An Optimization Methodology

JORGE MAGALHÃES-MENDES
Department of Civil Engineering

School of Engineering – Polytechnic of Porto
Rua Dr. António Bernardino de Almeida, 431 – 4200-072 Porto

PORTUGAL
jjm@isep.ipp.pt

Abstract: - Scheduling operations problems arise in diverse areas such as flexible manufacturing, production
planning and scheduling, logistics, supply chain problem, etc. A common feature of many of these problems is
that no efficient solution algorithms are known that solve each instance to optimality in a time bounded
polynomially in the size of the problem, Dorndorf and Pesch [22]. Discrete optimization can help to overcome
these difficulties. This paper presents an optimization approach to solve the complex scheduling problem in a job
shop environment. This problem is also known as the Job Shop Scheduling Problem (JSSP). The JSSP is a
difficult problem in combinatorial optimization for which extensive investigation has been devoted to the
development of efficient algorithms. The proposed approach is based on a genetic algorithm technique. Genetic
algorithms are an optimization methodology based on a direct analogy to Darwinian natural selection and
mutations in biological reproduction. The scheduling rules such as SPT and MWKR are integrated into the
process of genetic evolution. The chromosome representation of the problem is based on random keys. The
schedules are constructed using a priority rule in which the priorities and delay times of the operations are
defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized
active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The
approach is tested on a set of standard instances taken from the literature and compared with other approaches.
The computation results validate the effectiveness of the proposed approach.

Key-Words: - Scheduling, manufacturing, heuristics, genetic algorithm, optimization, local search, JSSP.

1 Introduction
A job shop consists of a set of different machines
(e.g., lathes, milling machines, drills, etc.) that
perform operations on jobs. Each job consists of a
sequence of operations, each of which uses one of the
machines for a fixed duration. Once started, the
operation cannot be interrupted. Each machine can
process at most one operation at a time. A schedule is
an assignment of operations to time intervals on the
machines. The problem is to find a schedule of
minimal time to complete all jobs, French [37].

The job shop scheduling problem (JSSP) is one
of the most difficult combinatorial optimization
problems. The problem finds numerous applications
in manufacturing and is central to many supply chain
problems that integrate production planning and
scheduling. For an extensive treatment of planning
and scheduling models and applications in various
supply chain settings, see Pinedo [36].

To make the right decision, the manager must
have reliable and complete information and adequate
scheduling models. Single and small scale productions
are characterized by many work orders. So, the
application of new tools based on discrete optimization

not only in production process but also in determination
of priority of technological operations will be
appropriate.

There are two categories for job shop scheduling;
static and dynamic. In dynamic scheduling, schedules
are created during run time and no knowledge of
operations is in hand until it arrives. While in static
scheduling, schedules are created before run time and
can not change. Similarly, operations must all be
known in advance. In other words a static job shop
scheduling algorithm schedules a set of operations
with known processing on machines to optimize
some performance metric, such as makespan,
communication cost and CPU utilization. In this
paper we focus on static scheduling.

The JSSP may be described as follows: n jobs are
to be scheduled on m machines. Each job i represents
ni ordered operations. The execution of each
operation j of job i (noted as oij) requires one machine
m selected from a set of machines for a fixed
duration, see Figure 1. Each machine can process at
most one operation at a time and once an operation
initiates processing on a given machine it must
complete processing on that machine without

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 220 Issue 2, Volume 7, February 2010

interruption. The operations of a given job have to be
processed in a given order. The problem consists in
finding a schedule of the operations on the machines,
taking into account the precedence constraints, that
minimizes the makespan (Cmax), that is, the finish
time of the last operation completed in the schedule.

Fig. 1 – A Job shop system.

Let J = {0, 1, …, N, N+1} denote the set of all

operations to be scheduled and M = {1,..., m} the set
of machines. The operations 0 and N+1 are dummy,
have no duration and represent the initial and final
operations. The operations are interrelated by two
kinds of constraints. First, the precedence constraints,
which force each operation j to be scheduled after all
predecessor operations, Pj, are completed. Second,
operation j can only be scheduled if the machine it
requires is idle. Further, let dj denote the (fixed)
duration (processing time) of operation j.

Let Fj represent the finish time of operation j. A
schedule, see Fig. 2, can be represented by a vector of
finish times (F1, …, Fm, ... , Fn+1). Let A(t) be the set of
operations being processed at time t, and let rj,m = 1 if
operation j requires machine m to be processed and
rj,m = 0 otherwise.

Fig. 2 – A schedule example.

Fig. 2 shows a schedule example with 7 jobs, 4

operations for job and 4 machines.
The conceptual model of the JSSP can be

described in the following way:

1 (1)+Min nF

subject to:

1,..., 1 ; (2)≤ − = + ∈k j j jF F d j N k P

()
, 1 ; 0 (3)

∈

≤ ∈ ≥∑ j m
j A t

r m M t

0 1,..., 1 (4)≥ = +jF j N

The objective function (1) minimizes the finish
time of operation N+1 (the last operation), and
therefore minimizes the makespan. Constraints (2)
impose the precedence relations between operations
and constraints (3) state that one machine can only
process one operation at a time. Finally (4) forces the
finish times to be non-negative.

Lenstra and Rinnooy Kan [14] demonstrated that
JSSP is NP-hard, so it cannot be exactly solved in a
reasonable computation time.

Exact methods (Giffler and Thompson [26],
Carlier and Pinson [27, 28], Brucker et al. [29],
Williamson et al. [30]) have been successful in
solving small instances, including the notorious
10×10 instance of Fisher and Thompson proposed in
1963 and only solved twenty years later. Problems of
dimension 15×15 are still considered to be beyond
the reach of today's exact methods.

Many approximate methods have been developed
in the last two decades to solve the JSSP, such as
simulated annealing (SA) (Lourenço [16]), tabu
search (TS) (Nowicki and Smutnicki [12], Pezzela
and Merelli [8], Zhang et al. [15]), genetic algorithms
(GA) (Aarts et al. [19], Croce et al. [21], Dorndorf et
al. [22], Gonçalves and Beirão [23], Wang and Zheng
[24], Zhou et al. [32], Essafi et al. [4], Gonçalves et
al. [5], Choi and Park [33], Chiu et al. [34, 35]),
particle swarm optimization (PSO) (Sha and Hsu
[7]), greedy randomized adaptive search procedure
(GRASP), Binato et al. [25], Aiex et al. [20]) and
Rego and Duarte [9] proposed a filter-and-fan
approach based on the shifting bottleneck procedure
(SBP).

In this paper, we present a new optimization
approach for the job shop scheduling problem. The
remainder of the paper is organized as follows: in
Section 2 the types of schedules, Section 3 the
approach, Section 4 the genetic algorithm, Section 5
the schedule generation and Section 6 the local

M1 6.1 2.3 1.2 3.1 4.3 5.3 7.4

M2 1.1 4.2 5.2 2.2 6.3 3.2 7.2

M3 5.1 6.2 7.3 3.4 2.4 1.4 4.4

M4 4.1 2.1 7.1 5.4 6.4 1.3 3.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 221 Issue 2, Volume 7, February 2010

search. In Section 7 we test the optimization approach
on Fisher and Thompson [17] and Lawrence [18] test
problems. Finally, conclusion and remarks for further
works are given in Section 8.

2 Types of schedules
Classifying schedules is the basic work to be done
before attacking scheduling problems [39].

Schedules can be classified into one of the
following three types of schedules:
i) Feasible schedules. A schedule is said to be

feasible if it is non-preemptive and if the
precedence and resource constraints are satisfied.

ii) Semi-active schedules. These are feasible
schedules obtained by scheduling operations as
early as possible. In a semi-active schedule the
start time of a particular operation is constrained
by the processing of a different operation on the
same resource or by the processing of the directly
preceding operation on a different resource.

iii) Active schedules. These are feasible schedules in
which no operation could be started earlier
without delaying some other operation or
breaking a precedence constraint. Active
schedules are also semi-active schedules. An
optimal schedule is always active.

iv) Non-delay schedules. These are feasible schedules
in which no resource is kept idle at a time when it
could begin processing some operation. Non-
delay schedules are active and hence are also
semi-active.

The set of active schedules is usually very large

and contains many schedules with poor quality. To
reduce the solution space we use the concept of
parameterized active schedules.

The concept of parameterized active schedules is
proposed in Gonçalves and Beirão [23], Mendes [10],
Gonçalves et al. [5] and Mendes et al. [6]. This type
of schedule consists of schedules in which no
resource is kept idle for more than a predefined
period if it could start processing some operation. If
the predefined period is set to zero, then we obtain a
non-delay schedule.

3 The Approach
The approach combines a genetic algorithm, a
schedule generation scheme that generates
parameterized active schedules and a local search
procedure. The genetic algorithm is responsible for
evolving the chromosomes which represent the
priorities of the operations.

For each chromosome the following three phases
are applied:

1. Schedule parameters - this phase is
responsible for transforming the chromosome
supplied by the genetic algorithm into the
priorities of the operations and delay time;

2. Schedule generation - this phase makes use
of the priorities and the delay time and
constructs active schedules;

3. Schedule improvement - this phase makes
use of a local search procedure to improve
the solution obtained in the schedule
generation phase.

After a schedule is obtained, the quality is

feedback to the genetic algorithm. Figure 3 illustrates
the sequence of steps applied to each chromosome.
Details about each of these phases will be presented
in the next sections.

Fig. 3 - Phases of the proposed approach.

4 Application of genetic algorithm
The approach presented in this paper is based on a
genetic algorithm to perform its optimization process.

Genetic algorithms (GAs) are search algorithms
based on the mechanics of natural selection and
natural genetics. They combine survival of the fittest
among string structures with a structured yet
randomized information exchange to form a search

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 222 Issue 2, Volume 7, February 2010

algorithm with some of the innovative flair of human
search [1, 2].

One fundamental advantaged of GAs from
traditional methods is described by Goldberg [1]: in
many optimization methods, we move gingerly from
a single solution in the decision space to the next
using some transition rule to determine the next
solution. This solution-to-solution method is
dangerous because it is a perfect prescription for
locating false peaks in multimodal search spaces. By
contrast, GAs work from a rich database of solutions
simultaneously (a population of chromosomes),
climbing many peaks in parallel; thus the probability
of finding a false peak is reduced over methods that
go solution to solution.

The general schema of GA may be illustrated as
follows (Fig. 4).

procedure GENETIC-ALGORITHM

Generate initial population P0;
 Evaluate population P0;
 Initialize generation counter g 0;

 While stopping criteria not satisfied repeat
 Select some elements from Pg to copy into Pg+1;
 Crossover some elements of Pg and put into Pg+1;
 Mutate some elements of Pg and put into Pg+1;
 Evaluate some elements of Pg and put into Pg+1;
 Increment generation counter: g g+1;
 End while

End GENETIC-ALGORITHM;

Fig.4 - Pseudo-code of a genetic algorithm.

First of all, an initial population of potential

solutions (individuals) is generated randomly. A
selection procedure based on a fitness function
enables to choose the individuals candidate for
reproduction. The reproduction consists in
recombining two individuals by the crossover
operator, possibly followed by a mutation of the
offspring. Therefore, from the initial population a
new generation is obtained. From this new
generation, a second new generation is produced by
the same process and so on. The stop criterion is
normally based on the number of generations.

4.1 Decoding
The genetic algorithm uses a random key alphabet
which is comprised of real random numbers between
0 and 1.

A chromosome represents a solution to the
problem and is encoded as a vector of random keys
(random numbers). Each solution chromosome is

made of 2n genes where n is the number of
operations (excluding 0 and n+1):

Chromosome = (genel , .., genen , gene n+1 , ... , gene 2n)

4.1.1 Decoding the priorities of operations
The priority decoding expression used the following
expression

1,..., .= =j jPRIORITY gene j n

4.1.2 Decoding the delay times

The genes between n+1 and 2n are used to
determine the delay times used when scheduling an
operation. The delay time used by each scheduling
iteration g, Delayg, is given by the following
expression:

 Delayg = genen+g × 1.5 × MaxDur

where MaxDur is the maximum duration of all
operations. The factor 1.5 was obtained after some
experimental tuning.

4.2 Evolutionary strategy
To breed good solutions, the random key vector
population is operated upon by a genetic algorithm.

There are many variations of genetic algorithms
obtained by altering the reproduction, crossover, and
mutation operators.

Reproduction is a process in which individual
(chromosome) is copied according to their fitness
values (makespan).

Reproduction is accomplished by first copying
some of the best individuals from one generation to
the next, in what is called an elitist strategy.

In this paper the fitness proportionate selection,
also known as roulette-wheel selection, is the genetic
operator for selecting potentially useful solutions for
reproduction. The characteristic of the roulette wheel
selection is stochastic sampling.

The fitness value is used to associate a
probability of selection with each individual
chromosome. If fi is the fitness of individual i in the
population, its probability of being selected is,

1

, 1,..., (5)

=

= =

∑
i

i N

i
i

fp i n
f

An example is presented in Table 1.
A roulette wheel model is established to represent

the survival probabilities for all the individuals in the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 223 Issue 2, Volume 7, February 2010

population. Then the roulette wheel is rotated for
several times [1], see Fig. 5.

After selection the mating population consists of
the chromosomes (individuals): 1, 2, 3, 4, 5 and 6.

Number of
chromosome

Fitness
value

Selection
probability

1 14 0,20
2 12 0,17
3 10 0,14
4 9 0,13
5 8 0,11
6 7 0,10
7 4 0,06
8 3 0,04
9 2 0,03
10 1 0,01

Table 1: Selection probability and
fitness value.

20%

17%

14%13%

12%

10%

6%
4%3%1%

1

2

3

4

5

6

7

8

9

10

trial2

trial1
trial6

trial3

trial5

trial4

Fig. 5 - Roulette-wheel selection.

After selecting, crossover may proceed in two

steps. First, members of the newly selected
(reproduced) chromosomes in the mating pool are
mated at random. Second, each pair of chromosomes
undergoes crossover as follows: an integer position k
along the chromosome is selected uniformly at
random between 1 and the chromosome length l. Two
new chromosomes are created swapping all the genes
between k+1 and l [1], see Fig. 6.

Chromosome 1 0.32 0.22 0.34 0.89 0.23 0.76 0.78 0.45
Chromosome 2 0.12 0.65 0.38 0.47 0.31 0.56 0.88 0.95

Offspring 1 0.32 0.22 0.34 0.47 0.31 0.56 0.88 0.95
Offspring 2 0.12 0.65 0.38 0.89 0.23 0.76 0.78 0.45

Random position k = 3 Chromosome length l = 8

swapping all the
genes between 4
and 8

Fig.6 – Crossover operator example.

The mutation operator preserves diversification

in the search. This operator is applied to each
offspring in the population with a predetermined
probability. We assume that the probability of the
mutation in this paper is 0.001. With 60 genes
positions we should expect 60 x 0.001 = 0.06 genes
to undergo mutation for this probability value.

This evolutionary strategy was applied to the
resource constrained project scheduling problem with
a good performance, see Mendes [3, 31].

Fig. 7 shows this evolutionary strategy with the
operators selection, recombination (or crossover) and
mutation.

Fig.7 – Evolutionary strategy.

4.3 Initial population
Through the initialization process the initial
population will be generated usually randomly from
the range of possible solutions (chromosomes). The
quality of this population is initially poor and one
way to improve is to incorporate some chromosomes
generated by selected priority rules.

In this work are selected the priority rules
MWKR (the job with the most work remaining would
be scheduled first) and SPT (the job with the shortest

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 224 Issue 2, Volume 7, February 2010

processing time has the highest priority for
processing) to improve some chromosomes of the
initial population.

5 Schedule Generation
Schedule generation schemes (SGS) are the core of
most heuristic solution procedures for the JSSP. SGS
start from scratch and build a feasible schedule by
stepwise extension of a partial schedule. A partial
schedule is a schedule where only a subset of the n+2
operations have been scheduled. There are two
different classics methods SGS available. They can
be distinguished into operation and time
incrementation. The so called serial SGS performs
operation-incrementation and the so called parallel
SGS performs time-incrementation [38].

The constructive heuristic used to construct
active schedules is based on a scheduling generation
scheme that does time incrementing, called parallel
modified.

This heuristic makes use of the priorities and the
delay times defined by the genetic algorithm and
constructs active schedules. This heuristic is
described by Mendes [3], Gonçalves et al. [5] and
Mendes et al. [6].

Fig. 8 illustrates where the set of parameterized
active schedules is located relative to the class of
semi-active, active, and non-delay schedules.

Fig. 8 – Parameterized active schedules.

The heuristic used to construct parameterized
active schedules is based on a scheduling generation
scheme that does time incrementing. For each
iteration g, there is a scheduling time tg. The active
set comprises all operations which are active at tg, i.e.

{ }|g j j g jA j J F d t F= ∈ − ≤ <
.

Initialization: { } { } { } ()1 0 01, 0, 0 , 0 , 0 , 0 ()= = = Γ = = = ∈o k kg t A S RD R k K

while 2< +gS n repeat

{
Update gE

 while Eg ≠ {} repeat
{
 Select operation with highest priority

Calculate earliest finish time (in terms of precedence only)

{ }* *max
ji P ij j

EF F d∈= +

Calculate the earliest finish time (in terms of precedence and capacity)

{

}

* * * *

* * *

,

,

min , | () ,

| 0 , ,

τ

τ

⎡ ⎡= ∈ − ∞ ∩ Γ ≤⎣ ⎣
⎡ ⎤∈ > ∈ + +⎣ ⎦

g kj j j j k

j k j j

F t FMC d r RD

k K r t t d d

Update { }*

1g gS S j−= ∪ , { }*Γ = Γ ∪g g-1 j
F

Iteration increment: g = g+1

Update * * * *,

, , () | , , | 0g g k j j j j k
A E RD t t F d F k K r⎡ ⎤∈ − ∈ >⎣ ⎦

}
Determine the time associated with operation g

{ }1 1min |− −= ∈Γ >g g gt t t t

 }

{ }* argmax
g

j
j E

j PRIORITY
∈

=

 Fig. 9 - Pseudo-code to construct parameterized active
schedules, Mendes [10]

The remaining resource capacity of resource k at
instant time tg is given by

() () ,

g

j k
j A

r
∈

= − ∑k g k gRD t R t

Sg comprises all operations which have been

scheduled up to iteration g, and Fg comprises the
finish times of the operations in Sg. Let Delayg be the
delay time associated with iteration g, and let Eg
comprise all operations which are precedence feasible
in the interval [tg , tg + Delayg], i.e.

{ }1\ | ()g g i g g jE j J S F t Delay i P−= ∈ ≤ + ∈
.

The set Eg is responsible for forcing the selection

to be made only amongst operations which will have
a delay smaller or equal to the maximum allowed
delay.

Parameterized Actives

Non - Delay

Active

Semi - active

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 225 Issue 2, Volume 7, February 2010

The parameters PRIORITYj and Delayg (priority
of operation j and delays) are supplied by the genetic
algorithm.

The algorithmic description of the scheduling
generation scheme used to create parameterized
active schedules is given by the pseudo-code shown
in Figure 9.

6 Local Search
Since there is no guarantee that the schedule obtained
in the construction phase is locally optimal with
respect to the local neighborhood being adopted,
local search may be applied to improve the solution
quality.

In this work is applied the two exchange local
search, based on the disjunctive graph model of Roy
and Sussmann [11] and the neighborhood of Nowicki
and Smutnicki [12], see Gonçalves et al. [5] and
Mendes [10].

7 Computational results

The experiments were performed on an Intel
Core 2 Duo CPU T7250 @2.00 GHz. The algorithm
was coded in Visual Basic 6.0. The performance of
the GA-RKV-JSP (Genetic Algorithm - Random Key
Variant) was evaluated on a standard set of 43
benchmark instances belonging to two classical sets
known as FT06, FT10, FT20 from Fisher and
Thompson [17] and LA01-LA40 from Lawrence
[18]. The problem size varies between 6 and 30 jobs
and between 5 and 15 machines.

7.1 Genetic algorithm configuration
Though there is no straightforward way to configure
the parameters of a genetic algorithm, we obtained
good results with values: population size of 2 ×
number of operations in the problem; mutation
probability of 0.001; top (best) 1% from the
previous population chromosomes are copied to the
next generation; stopping criterion of 400
generations; initial population: 1% chromosomes
calculated by priority rules MWKR and SPT.

7.2 Experimental results
Table 2 summarizes the experimental results. It lists
problem name, problem dimension (number of jobs x
number of operations), best known solution and the
solution obtained by the approach proposed max i

C

(makespan).

Instance Size BKS Makespan

FT06 6x6 55 55
FT10 10x10 930 930
FT20 20x5 1165 1165
LA01 10x5 666 666
LA02 10x5 655 655
LA03 10x5 597 597
LA04 10x5 590 590
LA05 10x5 593 593
LA06 15x5 926 926
LA07 15x5 890 890
LA08 15x5 863 863
 LA09 15x5 951 951
LA10 15x5 958 958
LA11 20x5 1222 1222
LA12 20x5 1039 1039
LA13 20x5 1150 1150
LA14 20x5 1292 1292
LA15 20x5 1207 1207
LA16 10x10 945 945
LA17 10x10 784 784
LA18 10x10 848 848
LA19 10x10 842 842
LA20 10x10 902 907
LA21 15x10 1046 1056
LA22 15x10 927 937
LA23 15x10 1032 1032
LA24 15x10 935 949
LA25 15x10 977 984
LA26 20x10 1218 1218
LA27 20x10 1235 1256
LA28 20x10 1216 1231
LA29 20x10 1157 1194
LA30 20x10 1355 1355
LA31 30x10 1784 1784
LA32 30x10 1850 1850
LA33 30x10 1719 1719
LA34 30x10 1721 1721
LA35 30x10 1888 1888
LA36 15x15 1268 1278
LA37 15x15 1397 1408
LA38 15x15 1196 1213
LA39 15x15 1233 1248
LA40 15x15 1222 1237

Table 2: Experimental results.

Table 3 shows the number of instances solved

(NIS) and the average relative deviation (ARD) with
respect to the best known solution (BKS).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 226 Issue 2, Volume 7, February 2010

For comparison to other methods, we have used
one measure, namely the average relative deviation
(ARD):

max

1
(6)

=

−
= ∑ i

NIS
i

i i

C BKS
RE

BKS

(7)=
REARD
NIS

Table 3, column 4, shows the ranking of the best

ten approaches that solved the test problems used in
this computational study.

The computational time dispended is in the range
[7, 3200] seconds.

 Algorithm NIS ARD

RANK

 Genetic Algorithms
 Aarts et al. [19] - GLS1 42 1.97% -
 Aarts et al. [19] - GLS2 42 1.71% -
 Croce et al. [21] 12 2.37% -
 Dorndorf et al. [22] - PGA 37 4.61% -
 Dorndorf et al. [22] - SBGA (40) 35 1.42% -
 Dorndorf et al. [22] - SBGA (60) 20 1.94% -
 Gonçalves and Beirão [23] 43 0.90% 10
 Gonçalves et al. [5] 43 0.39% 8
 This paper 43 0.38% 7
 GRASP
 Binato et al. [25] 43 1.77% -
 Aiex et al. [20] 43 0.43% 9
 Tabu Search
 Nowicki and Smutnicki [12] 43 0.05% 3
 F. Pezella and E. Merelli [8] 43 0.10% 4
 Zhang et al. [15] 43 0.00% 1
 PSO
 Sha and Hsu [7] - HPSO 43 0.02% 2
 Sha and Hsu [7] - PSO 43 0.37% 6
 SBP & LNS
 Rego and Duarte [9] 43 0.29% 5

Table 3: Top-ten computational
results for FT and LA test problems.

8 Conclusion and further work
This paper presents a discrete optimization approach
for the JSSP. This approach is based on a genetic
algorithm. The chromosome representation of the
problem is based on random keys. Reproduction,
crossover and mutation are applied to successive
chromosome populations to create new chromosome

populations. These operators are simplicity itself,
involving random number generation, chromosome
copying and partial chromosome exchanging. The
scheduling rules such as SPT and MWKR are
integrated into the process of genetic evolution.

The schedules are constructed using a priority
rule in which the priorities for each operation are
defined by the genetic algorithm. Schedules are
constructed using a constructive heuristic. After a
schedule is obtained, a local search heuristic is
applied to improve the solution.

The approach was tested on a set of 43 standard
instances taken from the literature and compared with
the best state-of-the-art approaches. The algorithm
produced good results when compared with other
approaches.

Further work could be conducted to explore the
possibility of genetically correct the chromosomes
supplied by the genetic algorithm to reflect the
solutions obtained by the local search heuristic.

Acknowledgements
This work has been partially supported by the

FCT – Portuguese Foundation for the Science and
Technology.

References:
[1]D. E. Goldberg. Genetic Algorithms in Search,

Optimization & Machine Learning, Addison-
Wesley, 1989.

[2] D. Beasley, D.R. Bull and R.R. Martin, An
Overview of Genetic Algorithms: Part 1,
Fundamentals, University Computing,
Department of Computing Mathematics,
University of Cardiff, UK, Vol. 15(2), 1993, pp.
58-69.

[3] J. Magalhães-Mendes, Project scheduling under
multiple resources constraints using a genetic
algorithm, WSEAS TRANSACTIONS on
BUSINESS and ECONOMICS, Issue 11, Volume
5, November 2008, pp. 487-496.

[4] I. Essafi, Y. Mati and S.D. Pérès, A genetic local
search algorithm for minimizing total weighted
tardiness in the job-shop scheduling problem,
Computers & Operations Research,
Vol. 35, Issue 8, 2008, pp. 2599-2616.

[5] J.F. Gonçalves, J.M. Mendes, and M.C.G.
Resende. A hybrid genetic algorithm for the job
shop scheduling problem. European Journal of
Operational Research, Vol. 167, 2005, pp. 77-95.

[6] J.J.M. Mendes, J.F. Gonçalves and M.G.C.
Resende, A random key based genetic algorithm
for the resource constrained project scheduling

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 227 Issue 2, Volume 7, February 2010

problem, Computers & Operations Research, Vol.
36, 2009, pp. 92-109.

[7] D. Y. Sha and C. Hsu, A hybrid particle swarm
optimization for job shop scheduling problem.
Computers & Industrial Engineering, 51, 4, 2006,
pp. 791-808.

[8] F. Pezzela and E. Merelli, A tabu search method
guided by shifting bottleneck for the job shop
scheduling problem, European Journal of
Operational Research, Vol. 120, 2000, pp. 297-
310.

[9] C. Rego and R. Duarte, A filter-and-fan approach
to the job shop scheduling problem, European
Journal of Operational Research, Vol. 194, 2009,
pp. 650–662.

[10] J.J.M. Mendes, Sistema de Apoio à Decisão
para Planeamento de Sistemas de Produção do
Tipo Projecto, Ph.D. Thesis, Departamento de
Engenharia Mecânica e Gestão Industrial,
Faculdade de Engenharia da Universidade do
Porto, Portugal, 2003. (In portuguese)

[11]B.Roy and Sussmann, Les Problèmes
d’ordonnancement avec contraintes dijonctives,
Note DS 9 bis, SEMA, Montrouge, 1964.

[12] E. Nowicki and C. Smutnicki, A Fast Taboo
Search Algorithm for the Job-Shop Problem,
Management Science, Vol. 42, No. 6, 1996, pp.
797-813.

[13]S. Binato, W.J. Hery, D.M. Loewenstern and
M.G.C. Resende, A GRASP for Job Shop
Scheduling. In: Essays and Surveys in
Metaheuristics, Ribeiro, Celso C., Hansen, Pierre
(Eds.), Kluwer Academic Publishers, 2002.

[14]J.K. Lenstra and A.H.G. Rinnoy Kan,
Computational complexity of discrete
optimisation problems, Annals of Discrete
Mathematics, Vol. 4, 2002, pp. 121-140.

[15] C. Y. Zhang, P. Li and Z. Guan, A very fast
TS/SA algorithm for the job shop scheduling
problem, Computers & Operations Research, Vol.
35, 2008, pp. 282-294.

[16]H.R. Lourenço, Local optimization and the job-
shop scheduling problem, European Journal of
Operational Research, Vol. 83, 1995, pp. 347-
364.

[17]H. Fisher and G.L. Thompson, Probabilistic
Learning Combinations of Local Job-Shop
Scheduling Rules, in: Industrial Scheduling, J.F.
Muth and G.L. Thompson (eds.), Prentice-Hall,
Englewood Cliffs, NJ, 1963, pp. 225-251.

[18]S. Lawrence, Resource Constrained Project
Scheduling: An Experimental Investigation of
Heuristic Scheduling Techniques, GSIA, Carnegie
Mellon University, Pittsburgh, PA, 1984.

[19]E.H.L.Aarts, P.J.M.Van Laarhoven, J.K. Lenstra
and N.L.J.Ulder, A computational study of local
search algorithms for job shop scheduling, ORSA
Journal on Computing, 6, 1994, pp. 118-125.

[20]R.M.Aiex, S.Binato and M.G.C. Resende,
Parallel GRASP with Path-Relinking for Job Shop
Scheduling, Parallel Computing, Vol. 29, Issue 4,
2003, pp. 393 - 430.

[21]F. Croce, R. Tadei, and G. Volta, A Genetic
Algorithm for the Job Shop Problem, Computers
and Operations Research, Vol. 22(1), 1995, pp.
15-24.

[22]U. Dorndorf, and E. Pesch, Evolution Based
Learning in a Job Shop Environment, Computers
and Operations Research, Vol. 22, 1995, pp. 25-
40.

[23]J.F. Gonçalves and N.C. Beirão, Um Algoritmo
Genético Baseado em Chaves Aleatórias para
Sequenciamento de Operações, Revista
Associação Portuguesa de Desenvolvimento e
Investigação Operacional, Vol. 19, 1999, pp.
123-137, (in Portuguese).

[24]L. Wang, and D. Zheng, An effective hybrid
optimisation strategy for job-shop scheduling
problems, Computers & Operations Research,
Vol. 28, 2001, pp. 585-596.

[25]S. Binato, W.J.Hery, D.M. Loewenstern and
M.G.C.Resende, A GRASP for Job Shop
Scheduling. In: Essays and Surveys in
Metaheuristics, Ribeiro, Celso C., Hansen, Pierre
(Eds.), Kluwer Academic Publishers, 2002.

[26]B. Giffler and G.L. Thompson, Algorithms for
Solving Production Scheduling Problems,
Operations Research, Vol. 8(4), 1960, pp. 487-
503.

[27]J. Carlier and E. Pinson, An Algorithm for
Solving the Job Shop Problem. Management
Science, Feb, 35(29), 1989, pp.164-176.

[28]J. Carlier and E. Pinson, A practical use of
Jackson’s preemptive schedule for solving the
job-shop problem. Annals of Operations
Research, Vol. 26, 1990, pp. 269-287.

[29]P. Brucker, B. Jurisch and B. Sievers, A Branch
and Bound Algorithm for Job-Shop Scheduling
Problem, Discrete Applied Mathematics, Vol. 49,
1994, pp. 105-127.

[30]D. P.Williamson, L.A. Hall, J.A. Hoogeveen, , C.
A. J.Hurkens, J. K. Lenstra, S. V. Sevastjanov and
D. B. Shmoys, Short Shop Schedules, Operations
Research, 45(2), 1997, pp. 288-294.

[31]J. Magalhães-Mendes, Project scheduling using a
competitive genetic algorithm. In Proceedings of
the 8th Conference on Simulation, Modelling and
Optimization (Santander, Cantabria, Spain,
September 23 - 25, 2008). J. M. de la Maza and P.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 228 Issue 2, Volume 7, February 2010

L. Espí, Eds. Mathematics And Computers In
Science And Engineering. WSEAS, Stevens
Point, Wisconsin, 2008, pp. 39-42.

[32]H. Zhou, Y. Feng and L. Han, The hybrid
heuristic genetic algorithm for job shop
scheduling, Computers & Industrial Engineering,
Vol. 40, 2001, pp. 191-200.

[33]H.R. Choi and B.J. Park, Genetic Algorithm for
the Integration of Process Planning and
Scheduling in a Job Shop, WSEAS
TRANSACTIONS on INFORMATION SCIENCE
& APPLICATIONS, Issue 12, Volume 3,
December 2006, pp. 2498-2504.

[34]H. Chiu, K. Hsieh, Y.T. Tang and W. Chien,
Employing a Genetic Algorithm Based on
Knowledge to Address the Job Shop Scheduling
Problem, WSEAS TRANSACTIONS on
COMPUTER RESEARCH, Issue 2, Volume 2,
February 2007, pp. 327-333.

[35]H. Chiu, K. Hsieh, Y.T. Tang and C.Y. Wang, A
Novel Approach to Address the Job-Shop
Scheduling Problem by using a Tabu Genetic
Algorithm, WSEAS TRANSACTIONS on
COMPUTER RESEARCH, Issue 2, Volume 2,
February 2007, pp. 339-345.

[36]M.L. Pinedo, Planning and Scheduling in
Manufacturing and Services, Series in Operations
Research and Financial Engineering, Springer-
Verlag, 2006.

[37] S. French, Sequencing and Scheduling: An
Introduction to the Mathematics of the Job Shop,
Horwood, Chichester, UK, 1982.

[38]R.Kolisch and S.Hartmann, Heuristic Algorithms
for Solving the Resource-Constrained Project
Scheduling Problem: Classification and
Computational Analysis, J. Weglarz (editor),
Kluwer, Amsterdam, the Netherlands, 1999, pp.
147–178.

[39]R. Kolisch, Project Scheduling under Resource
Constraints, Physica-Verlag, Germany, 1995.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jorge Magalhaes-Mendes

ISSN: 1790-0832 229 Issue 2, Volume 7, February 2010

