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Abstract: - In many network communications it is crucial to be able to authenticate both the contents and the 

origin of a message. Digital signatures based on public key schemas are used for such authentication. In order 

to provide message authentication the signature must depend on the contents of the message being signed. 

Since the public key-based signature schemes take too much time to compute, hash functions that map  

messages to short digests h(M) are used.  Among other desirable properties of hash functions, an interesting one 

is that it should be collision-resistant, that is it should be difficult to find two messages with the same hash 

value. To find a collision the birthday attack is used, which shows that attacker may not need to examine too 

many messages before he finds a collision. Even worse, in estimates of attack successfulness it is always 

assumed that the hash function is regular, meaning that all points in the range have the same number of pre-

images under h. If h is not regular, fewer trials are required to find a collision. In this paper we first compute 

tighter upper and lower bounds for the number of birthday attack trials when the hash function is regular. Then 

we examine different types of irregularity of the hash function and the quantitative changes in the required 

number of trials to find a collision which then compromises the digital signature system. 
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1 Introduction 
Computer networks are used today for many 

applications (like banking, e-government etc.) 

where security is an absolute necessary. Changing 

or stealing data stored in electronic form is so 

widely spread that not having cryptographic tools to 

preserve the safety of information would make 

pointless any serious communication or data 

exchange. In general, the functions of security 

system are confidentiality, authentication, integrity 

and non-repudiation [1]. The last three functions are 

usually facilitated by digital signatures. In order to 

provide message authentication the signature must 

depend on the contents of the message being signed. 

The problem with the public key based signature 

schemes which are used for authentication is that for 

long messages  the signature would take a long time 

to compute. To overcome that problem hash 

functions that map a  message to a small digest h(M) 

are used. Such hash function has to be collision-

resistant - it should be difficult to find two messages 

with the same hash value. Otherwise, the signature 

system is compromised. 

     Collision-resistance of a hash function is almost 

always estimated assuming that the hash function is 

regular, meaning that all points in the hash range 

have the same number of pre-images. This is not 

necessarily the case for all the hash functions that 

are used. It is interesting to estimate how the 

security becomes compromised when the hash 

function deviates from regularity. The basic idea 

behind this paper, as a deviation from widely spread 

methods, is to examine the irregular hash functions 

that are not dependent on any particular algorithm. 

This method is universal, because the principles it is 

based on are applicable to various algorithms, 

independently of the mechanism they use. 

 

 

1.1 Digital Signature 
To prove the authenticity of legal, financial or other 

important documents in electronic form, a 

mechanism analog to handwritten signature is 

needed [2]. Such method first and foremost has to 

be resistant to forgeries. 

     A digital signature or digital signature scheme is 

a type of asymmetric cryptography used to simulate 

the security properties of a handwritten signature on 

the paper. Digital signature schemes consist of at 

least three algorithms [3]: 
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 a key generation algorithm, 

 a signature algorithm, and  

 a verification algorithm. 
 

     A digital signature mainly provides 

authentication of a basic message. In theory, it can 

also provide non-repudiation, meaning that the 

authenticity of signed messages can be publicly 

verified, not only by the intended recipient. 

Messages may be anything, from electronic mail to 

a contract, or even a key for a message sent in a 

more complicated cryptographic protocol. 

     By encoding the basic message, sender does not 

ensure its integrity even if the key has not been 

compromised. In order to provide message 

authentication the signature must depend on the 

contents of the message being signed. 

     The other problem with the public key-based 

signature schemes is that if the message is long then 

the signature will take a long time to compute. To 

overcome both of these problems hash functions 

that map a (possibly lengthy) message to a small 

digest h(M) are used. 
 

 

1.2 Hash Function 
A hash function h should map strings of bits of 

variable length to fix-length strings of bits, called 

the hash value of the message {0,1}
m
  {0,1}

t
, 

where m > t  [4], [5]. Ideally it has the following 

properties [6], [7], [8]: 
 

 The length of h(M) should be small so that 

messages can be signed efficiently. 

 The function h should be a publicly known 

one-way function – it should be hard to find 

a message that hashes to a pre-specified 

value. 

 It should destroy algebraic relationships 

between messages and signatures. 

 It should be collision-resistant, that is it 

should be difficult to find two messages 

with the same hash value, or more precisely: 

an attacker should not be able to find a pair 

of messages M≠ M' such that h(M)=h(M') 

with less than about 2
t/2

 work. 

 Preimage-resistance: An attacker given a 

possible output value for the hash Y should 

not be able to find an input X so that Y = 

h(X) with less than about 2
t
 work. 

 Second preimage-resistance: An attacker 

given one message M should not be able to 

find a second message, M' to satisfy h(M) = 

h(M') with less than about 2
t
 work. 

 

 
Fig. 1  Hash function 

 

 

1.3 Collision Birthday Attack 
In the probability theory, the birthday problem 

pertains to the probability that in a set of n randomly 

chosen people some pair of them will have the same 

birthday. Contrary to the naive intuition, the 

required number n of people that will make the 

probability of some pair having the common 

birthday  greater than 0.5  is not around 180, it is 

only 23. For 57 people, the probability of some pair 

having common birthday is more than 99%. 

     In real world circumstances, the basic goal of the 

attacker is the forgery of digital signatures for 

messages that the real sender does not want to send. 

For almost identical messages that differ in only a 

few bits, for example a space replaced with a tab, 

there is a major difference in accompanying digital 

signatures. To succeed, the attacker produces two 

lists of possible messages M1 and M2. The first list 

consists of messages obtained from M1 that the 

sender would be willing to sign, and that are 

seemingly the same, yet differ in a few bits. The 

second list consists of messages, obtained from M2 

by changing a few bits, and is all messages that the 

attacker wants to send. The essence of this method 

is to find appropriate pairs M’1  M1 and M’2  M2 

so that: 

h(M’1) = h(M’2) 
 

     With the previously stated facts in mind, we 

come to the conclusion that attacker's failure is 

guaranteed only in the case of truly collision-

resistant hash function h, while any other case is 

open to disastrous consequences for the security of a 

signature scheme.  

     Described results offer considering the method in 

which the attacker searches for collisions in 

randomly chosen hash function. The best known 

collision attack is the birthday attack. One-way 

hashing function h maps messages of random length 

into fixed size bit arrays, {0,1}
m
  {0,1}

t
, where 

m>t, or in short h: D  R. In the case of birthday 

attack, the attacker generates random messages x1, 

x2, ..., xq  D and computes their hash values 

yi=h(xi), for every  i = 1,....q. The attack is 

considered successful if for different values of i,j the 
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following is true h(xi) = h(xj), where q represents the 

number of attempts. 

     A collision attack on a t-bit hash function with 

less than 2
t/2

 work, or a preimage or second 

preimage attack with less than 2
t
 work, is formally a 

break of the hash function. Collision resistance is 

especially important for digital signature theft 

prevention. Otherwise, if a collision between two or 

more messages occurs, certain message's digital 

signature sent by some sender can be abused and 

added onto a randomly chosen message without that 

sender's consent or knowledge. 

     The time required to find a collision is one of the 

most important measures in evaluating a hash 

algorithm. This time is also called the search cost of 

the algorithm [9]. 

 

 

1.4 The Balance Measure of Hash Functions 
The most important properties of hash function, 

concerning a digital signature, is collision resistance 

- an attacker should not be able to find a pair of 

messages M ≠ M' such that h(M)=h(M'). The 

question is can we compute “irregularity amount” of 

hash function. The idea of “irregularity amount” or 

hash function's balance was introduced in [10]. 

Balance can be defined as a real number between 0 

and 1, where balance 1 indicates that the hash 

function is regular and balance 0 indicates that it is a 

constant function, meaning as irregular as can be.  

     Let h:D  R be a function whose domain D and 

range R={R1,....,Rr} have sizes d, r ≥ 2, respectively. 

For i  [r] let di = |h
-1

(Ri)| denote the size of the 

pre-image of Ri under h. The balance of  h, denoted 

µ(h), is defined as 
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is the probability that h(a) = h(b) if a,b are drawn 

independently at random from the domain D. 

     It is easy to see that a regular function has 

balance one and a constant function has balance 

zero.  

 

 

2 Bounds for Collision Probability 
Let Ph(q) be the probability of the birthday attack on 

hash function h:D  R succeeding in q attempts. To 

have the probability Ph(q)  0.5 the number of 

necessary attempts is ||2 R , where |R| is the total 

number of possible hash values for the hash function 

in question [3]. To ensure the hash function’s 

collision-resistance we must ensure that it maps 

messages to hash values consisting of t-bits where 
 

||2
2/)1(

2 R
t




 
 

is sufficiently large that generating 2
(t+1)/2

 random 

messages and corresponding hash values is 

infeasible for the attacker. 

     It is a known result that: 

     If h: {0,1}
m
  {0,1}

t
 , 3 ≤ t < m,   n = 






 

2

1

2

t

  

and M1, . . . , Mn  {0,1}
m
 are chosen independently 

at random then P [collision exists] > 
2

1  

 

     It is also known that 

     If h:{0,1}
m
   {0,1}

t  
is regular, 3  t m,            

n = 22
kt 

, and M1,.......Mn  {0,1}
m
 are chosen 

independently at random then                               

 P[ collision exists] < 
1

2
1
k

 

 

Proof: Since h is regular we know that for each     

y {0,1}
t
  we have |h

-1
(y)| = 2

m-t
. Let Bi be the event 

that the i-th message has a hash value that is the 

same as one of the earlier messages. Then 
 

P [Bi]  
t

i

2

1
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     We will calculate more precisely the lower and 

the upper bounds for the probability of complement 

event of no collision. 
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2.1 The Upper Bound 
Let us assume that the hash function h is regular. 

Thus for any fixed hash value y  {0, 1}
t
 and 

random message M we have  

Pr[h(M) = y] = 
t

2

1 .  

     For easier representation we introduce the 

following substitution 2
t
 = N. 

     If we choose n random messages independently 

from {0, 1}
m
  then the probability that they all have 

distinct hash values is  

P[no collision] = 
n

N

nNNNN )1)....(2)(1( 
 = 

    = )
)1(

1)...(
1

1(
N

n

N


   =  )

2

1(
1

1







n

i
t

i  

 

     We can use approximations 
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1

2

)1(






t

nn

e  

 

where (n-1)n= 
4

1
4

2

2
t

 for t odd and (n-1)n = 
24

2

2
tt 

 
for t even. 

     This result we use to calculate more precisely the 

estimate that was mentioned before that 
 

P [collision exists] > 
2

1  

 

     To calculate the exact value of this probability 

we have to examine two cases depending on 

whether variable t is odd or even. 

     The first case presumes that variable t is always 

an odd number, so the probability of no-collision is 

calculated according to the following formula: 

P[no collision] ≤ 
1

2

)1(






t

nn

e  (and n = 
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t
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t
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P[no collision] ≤ 
1e *

2

1

2

1

t

e  

 

Since fraction  

2

1

2

1

t
   0 when t  , 

the probability of no-collision can be estimated:  

 

P[no collision] ≤  e
-1

 = 0.368 

 

The probability of the complement event, event that 

collision exists, is then: 
 

P[collision exists] > 0.632 
 

The second analysis direction is when variable t is 

an even number, or n=
1

22
t

 (again, since n = 






 

2

1

2

t

 ), so the probability of no-collision is 

calculated in the following manner: 
 

P[no collision] ≤ 
1

2

2

2

2

1
2

2
2











t

t

t

t

e  
 

Since fraction  
1

2
2

2
2





t

t

  0 when t  , the 

probability of no-collision is: 
 

P[no collision] ≤ e
-2 

= 0.135 
 

Probability of the complement event, that collision 

exists, is:  
 

                P[collision-exists] > 0.865 

 

 

2.2 The Lower Bound 
Now, for the lower bound for the probality of 

collision we use the approximation 
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The probability of of the event that there is no 

collision can be estimated 
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After some detailed calculations we can proove that 

the difference of the third and the fourth addend is 

positive 
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so when we remove both the inequality will 

continue to hold. 

     Similarly, the differences of the addends of the 

form of the last two addends in the previous 

inequality can also be shown to be positive and they 

can also be neglected and the inequality will hold: 
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By applying this we get: 
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The last inequality is the lower bound for the 

probability that there is no collision. Inclusion of the 

previously calculated upper bound gives: 
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or, for the complement event: 
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3 Examples of the Hash Function 

Irregularity 
So far, studies of the birthday attack and the 

conditions necessary for collision to occur presume 

that the hash function h is regular, meaning hash 

function is of uniform distribution. Although hash 

functions and their application in the digital 

signature field have been widely known to the 

public in the past years, literature in the field 

describes relatively small number of examples in 

which irregular hash functions are used and cover 

mostly theoretical, rather than actual, use cases. 

     Stinson [11] says that preimage resistance 

implies collision resistance under certain 

circumstances, such as, for example, when the hash 

function is "close to" uniform. Schneier [12] says 

that to prevent birthday attacks one should choose 

the output length t large enough that 2
t/2

 trials are 

infeasible. Buchmann's discussion of the attack says 

[13] that the distribution on the corresponding hash 

values is the uniform distribution. 

     Aforementioned proofs and assumptions depend 

on the regularity of the hash functions and its 
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uniform distribution, while no indications are made 

about irregular hash functions and the number of 

attempts that would be needed to establish collision 

in such case. Bellare [10] asks whether under such 

conditions the number of attempts to establish 

collision is considerably lower than ||2 R . 

     Testing in practice shows that with the rise of 

hash function's irregularity there is a rise in success 

of the birthday attack. Intuitively this statement is 

not a surprise. 

     The first step in testing the digital signature's 

sensitivity to birthday attacks is to construct 

irregular hash functions by disturbing uniform 

distribution and in that way gaining irregularity. 

 

Example 1. Irregular hash function with probability 

of mapping to one particular hash value equal to 

some constant. 

     Let hash function h maps h: {0,1}
m
  {0,1}

t
, 

where N = 2
t  

is the total number of hash values. Let 

us assume that a fixed proportion (constant ) of 

messages are being mapped to a single hash value 

m*. Such mapping may be due to some hash 

algorithm property, for example every millionth 

message maps to the same hash value. From the set 

of all messages {0,1}
m  

we observe n randomly 

chosen messages M1,.......,Mn that are mapped into 

different hash values m1,....,mn. The probability that 

the random message Mi is mapped into the 

mentioned hash value m*  is , while the probability 

of the message Mi not mapping into that particular 

hash value is 1-.  

 

 
 

We can now differentiate two cases: 
 

 Case I – when all n messages map into n 

different hash values, where none of the 

hash values is the aforementioned hash 

value m* with the probability of . The 

probability of this case is PI=(1-)
n
  

 Case II – when exactly one of the n 

messages maps into the aforementioned 

hash value m* with the probability of . 

The probability of this case can be written 

down as PII = n (1-)
n-1

 
 

The total probability of event A, no collision 

occurring, is a sum of probabilities PI and PII: Here 

we use assumption that if all n messages miss the 

particular hash value m*, there is no collision. 

Collision is possible in that case but since all other 

hash values have probability of being mapped to 

that approaches zero as t grows, probability of such 

collision is orders of magnitude smaller then hitting 

particular hash value m*. 
 

P[no-collision] = (1-)
n
 + n (1-)

n-1
  

= (1-)
n-1

 ((1-)+ n)   

= (1-)
n-1

 (1+ n - )  

= (1-)
n-1

 (1+ (n-1))   
 

Applying Bernoulli's inequality we get: 

 

P[no-collision] ≤ (1-)
n-1

 (1+ )
n-1

 

P[no-collision] ≤ (1-
2
)

n-1
 

 

When constant   1, the probability of the event 

A, (1-
2
)

n-1
  0, which makes the complement 

event B, that collision does exist: 
 

P[collision exists]  1 
 

     More important, for any constant  no matter 

how small, the probability of no-collision is very 

close to zero for any significant n, which is always 

the case. 

     This mathematical analysis shows that event B's 

probability, that collision exists, in the case of non-

uniform hash function distribution increases as the 

hash function tends to map into a constant, meaning 

its irregularity increases.  

 

Example 2. Irregular hash function where 

probabilities of mapping to different hash 

values are all different. 

     Let hash function h maps h: {0,1}
m
  {0,1}

t
, 

where N = 2
t 
is the total number of hash values. Let 

us assume that the probability of any message M  
being mapped to some hash value is different from 

such probability for some other hash value. The 

probability that the random message M is mapped 

into random hash value mi is pi, where 

p1+p2+....+pN = 1 and pi  ≥  0 for 1 ≤ i ≤ N. From 

the set of all messages {0,1}
m 

we observe n 

randomly chosen messages M1,.......,Mn that are 

mapped into different hash values m1,....,mn. We will 

show that probability of event A, no collision 

occurring, is less in the case of non-uniform hash 

function distribution: 


nii

niii ppp

,...1

21 .....  ≤  






 N
n

n
N

n!  

 

where the sum is over all choices of distinct  i1,i2,..in, 

satisfying 1 ≤  ij ≤ N, for 1 ≤  j ≤ n. 
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     The probability of event A, no collision 

occurring, in the case of uniform hash function 

distribution has a form 

P
U

[no-collision] = 
n

N

nNNNN )1)....(2)(1( 
 

 = 
n

N

nNNNN )1)....(2)(1(   
 !

!

nN

nN



  

 = 
 !

!

nNN

N
n

 !

!

n

n  

P
U

[no-collision] = 






 N
n  

n
N

n!  

Let L = 
n

n

ii

iii ppp

,...1

21
..... represents the sum of all 

probabilities. We consider L as a function of 

variables p1,.....,pn, where, L = L(p1,.....,pn) and 

ij{1.2……N}. Function L(p1...pn) is a continuous 

function,  polynomial, consists of N variables. This 

function is defined on the compact set 
 

D: p1≥0, p2≥0... pN≥0, p1+p2+....+pN = 1. 
 

For arbitrary i, j  {1,2,….,N}, where i ≠ j the 

following addends can be distinguished:   
 

1. The addends in which appear both pi, pj.  

2. The addends in which appear pi or pj  

3. The remaining addends that do not contain 

pi or pj  

Since pi*pj ≤ 2
)

2
(

ji pp   the following 

approximation can be done: 
 

 

nii
njjii ppppppp

,...1

1121 .............   ≤ 

 



nii
nj

ji
i

ji
pp

pp
p

pp
pp

,...1

1121 .....
2

.....
2

...

 

     In case when an addend contains one of the 

numbers pi or jp , the addends can be grouped in 

pairs so that the sum of such addends will not 

change if instead of pi or pj 
2

ji pp   is 

substituted. 

     The function L reaches a maximum when all 

probabilities p1, p2,....,pN are mutually equal, 

p1=p2=....= pN=
N
1 . As the number of addends is 

equal  N
n  n!, and the value of each addend equals 

n

N

1 , follows that 


nii

niii ppp

,...1

21 .....  ≤ 






 N
n  

n
N

n!  

  

     The equality is achieved in the case of uniform 

hash function distribution p1 = p2 = .... = pN = 
N
1 . 

From the above follows that probability of event A, 

no collision occurring, is less in the case of non-

uniform hash function distribution 
 

 P[no-collision] ≤  P
U

[no-collision] 
 

The results of this mathematical analysis confirms 

that the probability in the case of non-uniform hash 

function distribution decreases as hash function's 

irregularity increases.  

 

Example 3. Irregular hash function where 

probability of mapping to one particular hash value 

is greater than such probability for  any other hash 

value. 

     Let hash function h maps h: {0,1}
m
  {0,1}

t
, 

where N = 2
t 
is the total number of hash values. Let 

us assume that the probability of a single random 

message Mi being mapped to one particular hash 

value is  which is greater than the probability β of 

being mapped to any other hash value. From the set 

of all messages {0,1}
m  

we observe n randomly 

chosen messages M1,.......,Mn that are mapped into 

different hash values m1,....,mn.  

 

 
 

    

  We can now differentiate two cases: 
 

 Case I – when all n messages map into n 

different hash values, where none of the 

hash values is the aforementioned hash 

value with the probability of . The 

probability of this case is  

 PI=(N-1)(N-2)(N-3)*.....*(N-n) n
 

 Case II – when one of the n messages maps 

into the aforementioned hash value with the 

probability of . The probability of this case 

can be written down as  

 PII=n (N-1)(N-2)(N-3)*.....*(N-n+1) n-1
 

     In the case when regular hash function with 

uniform distribution maps h:{0,1}
m
  {0,1}

t
, the 

probabilities of all hash values are the same and 

equal 
N
1 , where N = 2

t
. In this example the hash 

function’s uniformity is violated by increasing the 

probability of one hash value.  We can assume that 
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   = 
N
1 -x,    

   = 
N
1 + (N-1)x 

  x = 
N
1 -    

  x < 
N
1  

 

     The total probability of event A, no collision 

occurring, is a sum of probabilities PI and PII: 
 

 

P[no-collision] = (N-1)(N-2)*.....*(N-n) n
 + 

+ n (N-1)(N-2)(N-3)*.....*(N-n+1) n-1
   

 

 

P[no-collision] = (N-1)(N-2)*.....* 

*(N-n+1)n-1
 [(N-n) + n]  

 

 

P[no-collision] = (N-1)(N-2)*.....* 

*(N-n+1)n-1
 [N + n(-)] 

 

 

P[no-collision] = (N-1)(N-2)*.....*  

         *(N-n+1)
1

1
)1(






n

n

N

Nx
[N + n(-)] 

 

 

P[no-collision] =  

1-n
N

1)n-(N*.....*2)-1)(N-(N  (1-Nx)
n-1

[N + n(-)] 

 

     The probability of event A, no collision 

occurring, in the case of uniform hash function 

distribution has a form:  
 

P
U

[no-collision] = 
1

)1)....(2)(1(



nN

nNNN
 

 

P[no-collision] =  

P
U

[no-collision] * (1-Nx)
n-1

[N + n(-)] 
 

 

P[no-collision] = P
U

[no-collision]* 

*(1-Nx)
n-1

[1-Nx+n(
N
1 +(N-1)x-

N
1 +x)] 

 

 

P[no-collision] = P
U

[no-collision]* 

*(1-Nx)
n-1

[1-Nx+nNx] 
 

 

P[no-collision] = P
U

[no-collision] * 

*(1-Nx)
n-1

[1+ (n-1) Nx] 
 

 

By applying Bernoulli's inequality we get: 
 

 

(1-Nx)
n-1

[1+ (n-1) Nx]  ≤  (1-Nx)
n-1

(1+ Nx)
n-1

 

 (1-Nx)
n-1

[1+ (n-1) Nx]  ≤  (1-N
2
x

2
)

n-1
 

 

Since (1-N
2
x

2
)

n-1 
< 1   it follows that 

 

                 P[no-collision] < P
U

[no-collision] 
 

 

which makes the complement event B, that collision 

does exist 
 

 

             P[collision exists] > P
U
[collision exists] 

 

 

     This mathematical analysis shows that event B's 

probability, that collision exists, is greater in the 

case of non-uniform hash function distribution 

     With analytical and experimental determination 

of the given hash function's balance we can establish 

how fast the attacker can succeed with the birthday 

attack. Examining the balance represents just one of 

the criteria we need to take into consideration when 

creating a hash function, but is not the only 

prerequisite to have the hash function be resistant to 

birthday attacks. 

     The ratio of probabilities of no collision for this 

third example and the uniform case is: 

 

U

collisionno

collisionno

P

P

][

][




=    nNxNxNx

n



11

1
 

 

Since variable x depends on N and n the substitution 

anNx   can be introduced: 
 

U
collisionno

collisionno

P

P

][

][




= 

1
1









 
n

n

a







  a
n

a1  

 
 

U
collisionno

collisionno

P

P

][

][




=  

)(1)(

11

a
n

n
a
n

a

n






















       








  a
n

a1  

 

When n   ratio 
n

n 1   1, while ratio  

n

a  0.  Since the natural logarithm can be 

defined as 
n

n
ne 







  1
1

lim  

the ratio of probabilities becomes: 

 

U
collisionno

collisionno

P

P

][

][




 = 

a
e

a1  

 

The expression 
U

collisionno

collisionno

P

P

][

][




 represents a real 

number from interval [0,1]. Maximum 1 is reached 

when hash function is regular and minimum 0 is 
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reached when hash function is constant meaning 

that all preimages map to a single hash value. 

     This is similar to balance function introduced by 

Bellare and Kohno [10] and can be used to 

quantitative estimate how sooner the birthday attack 

can succeed. 

 

 

4 Conclusion 
In this paper we provide quantitative information 

about the success-rate of the birthday attack on the 

irregular hash functions. The hash function's 

irregularity is accomplished by disturbing the 

uniform distribution of the observed functions. For 

our research we design irregular hash functions with 

different characteristics and show how “amount of 

irregularity” in the hash function h characterizes the 

behavior of the birthday attack on h, by showing the 

probability of finding a collision. The results of 

these examples determine how we can model the 

collision resistance decrease as hash function's 

irregularity increases. This can be of interest for 

hash functions that are used in practice (like MD5, 

SHA-1 etc.) since they use Merkle-Damgard 

transform applied to the underlying compression 

function which does not preserve regularity. Further 

research is directed toward establishing a general 

model of irregularity and quantitative relation 

between such irregularity and collision resistance 

focused on the interesting area of hash functions that 

are close to regular. 
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