
Three efficient algorithms for implementing the preferential attachment
mechanism in Yule-Simon Stochastic Process

Roberto Tonelli, Giulio Concas, Mario Locci
Department of Electrical and Electronic Engineering

University of Cagliari
piazza d’Armi – 09123 Cagliari

ITALY
{roberto.tonelli, concas, mario.locci}@diee.unica.it

http://www.diee.unica.it

Abstract: - We describe how different optimized algorithms may be effective in implementing the preferential
attachment mechanism in different cases. We analyze performances with respect to different values of some
parameters related to the Yule process associated to the preferential attachment. We examine how performance
scales with system size and provide extensive simulations to support our theoretical findings.

Key-Words: - Complex Systems, Software Process Simulation, Algorithms, Modeling, Stochastic Processes.

1 Introduction
Power-law distributions are among the most common
distributions found in natural and human-related phe-
nomena. They are typically found in systems sharing
common features in their dynamics, like continuous
growth and the insertion of new elements according to
a “rich get richer” scheme. These peculiarities are
typical of complex systems and are widespread and
ubiquitous – computer science, mathematics, physics,
biology, social networks, graph theory among many
others are all fields in which power-law distributions
have been found.
 A power-law distribution, also called Pareto
distribution, Zipf’s law, or scale-free distribution,
implies that, while small values are far more common
than large values, the probability to find a large value
is not negligible. Moreover, it is possible to find
samples whose values are as large as the sum of the
values of many (or most) other samples. For example,
the number of citations of the most cited paper is
equal to the sum of the citations of hundreds, or
thousands, other papers.

In order to explain the large diffusion of power-
laws in different fields, many models have been pro-
posed [1]. Among the others, one of the most convinc-
ing is the Yule-Simon process, introduced in the twen-
ties of last century by G.U. Yule [2] in order to
explain the distribution of genera and species in
nature, and used by Simon in the fifties to model the

frequency distribution of words in texts [3].
More recently, the “preferential attachment

mechanism” which stays at the basis of Yule process,
has been reintroduced in the modeling of the WWW
growth dynamics [4].

As regards software systems, many of them have
reached such a huge dimension that it looks sensible
to treat them using stochastic approaches. Some re-
searchers started to scrutinize the field of software, in
the perspective of finding and studying scale-free and
small-world behavior [5-7]. In fact, software is built-
up out of many interacting units and subsystems at
many levels of granularity (functions, classes, inter-
faces, libraries, source files, packages, etc.), and the
various kinds of interactions among those pieces can
be used to define graphs that form a skeletal descrip-
tion of a system. Moreover, these entities are charac-
terized by features whose distribution in turn can be
studied looking for scale-free behavior.

As examples, in order to illustrate the motivations
for this work and get a flavor about the importance of
modeling a Yule-Simon process governed by the
preferential attachment, we consider the Internet, the
WWW, and software development activities. In the
Internet, the various connected computers must be
identified uniquely. Every node must have a single
identifier, namely the ”IP address“. IP addresses have
a structure of four decimal numbers, separated by
dots, each ranging from 0 to 255. Thus the total num-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 176 Issue 2, Volume 7, February 2010

ber of possible addresses is 232, more than 4 billions.
It has been investigated that the Internet possesses a
”scale-free“ structure [4], that may be explained using
the preferential attachment mechanism. In this context
it means that larger hubs are more likely to receive
more physical links than smaller hubs.

On the World Wide Web, according to
NETCRAFT (http://news.netcraft.com), “In the De-
cember 2007 survey we received responses from
155,230,051 sites”. The total amount of web pages
available to net-surfers are many billions. Again the
WWW, like the Internet, possesses a link structure,
that may be explained using the preferential attach-
ment mechanism [4]. Here the most visited web pages
are the more likely to be linked by other web pages.

Regarding software development, we know that
modern software systems can be composed by tens of
thousand different files, or modules. Concas et al.
already shown that many properties of object-oriented
(OO) software systems follow a power-law, including
the number of in-links of OO software networks, the
number of times an identifier is used to name a
variable or a method, the number of subclasses of a
given class [6]. Moreover, in other papers Concas et
al. found that Yule-Simon process can be used
precisely to stochastically model the generation of
these properties [7], [8].

Now the motivations for this paper have become
clearer. On one side there is the need to create mathe-
matical models to simulate complex behaviors and to
test the suitability of the model with experimental
data. On the other side, when dealing with real data,
the involved quantities are often huge, millions or bil-
lions. The main issue is that, at each computation step,
the Yule-Simon algorithm chooses among the system
“entities” – which can be very many – proportionally
to the actual value of their “property” that might be in-
cremented. This choice can thus be very critical. Real-
time then may become a critical issue and a faster al-
gorithm may make the difference among being able to
simulate a real process or not, to discern among differ-
ent models which provide the same power-law distri-
bution, and to identify the relevant features and vari-
ables representative of the entire process, especially
when analytical results are not available.

In this paper we propose and compare some dif-
ferent algorithms for simulating a Yule-Simon
process, focusing on their speed even when the num-
ber of entities of the system reaches numbers of the
order of millions.

The article is organized as follows. In section 2
we briefly illustrate the generalities about the Yule-Si-
mon process and the preferential attachment mecha-
nism. In section 3 we present algorithms to simulate
the simplest case, where growth through preferential
attachment is the only process at play. In section 4 we
analyze and discuss the algorithms. Section 5
concludes the paper.

2 The Yule-Simon Process
The Yule-Simon process deals with a population of
“entities”, each having a property, characterized by an
integer numeric value – or number of “elements” of
the property. In the original work, entities are genera,
and their properties (elements) are the number of
species belonging to each genus. In Simon’s work, en-
tities are single words, and their elements are the num-
ber of times each word is used in a text. The Yule-Si-
mon process describes a mechanism for generating
such a population, with successive addition of entities,
and with a rule for incrementing the property value of
existing entities.
 The key issue is that, if the entity whose property
has to be modified is chosen with probability
proportional to the size of this property, the resulting
property distribution will tend to a power-law.

More formally, let us consider a population of n
entities, each having a property with integer value,
vi, i = 1, 2,..., n. At the beginning of the process, there
are no entities. As time flows, new entities are created,
and existing entities are chosen for incrementing their
properties by one unit. At each time-step there is a
constant probability a that a new entity is created, and
a probability 1-a that the value of an existing entity is
increased by one. The average number, m, of property
increments in between the addition of two new enti-
ties, is related to a by formula:

(1)

For instance, if on average four entities are cho-
sen for adding one element to their property values in
between the addition of two new entities, then m = 4,
and a = 0.2. If just one entity is chosen for adding one
element, on average every other addition of new
entities, m will assume the value of 0.5, and a = 2/3.

The new entities have initial value of their prop-

m=
1−a

a
; a=

1
1m

.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 177 Issue 2, Volume 7, February 2010

erty equal to k0. When an existing entity has to be in-
cremented by one, it is chosen in proportion to its cur-
rent value of vi, plus a constant c, i.e., i-th entity is
chosen with probability pi:

(2)

That is all – the Yule process depends only upon
the values of these three parameters: k0, m and c. In
the original Yule’s and Simon’s models, k0 = 1, be-
cause any new genus has a single species, and any
new word appears just once in the text; moreover, in
these models entities are chosen only proportionally to
their values vi, and thus c = 0.

The generalized process described above can be
analyzed mathematically, using the master equation
approach. The analysis is reported in detail in [1],
though with slightly different assumptions than Si-
mon’s. For readers convenience, we briefly report the
main steps.

Let us consider discrete temporal steps. These
may be associated to the total number n of entities.

At each time step a new entity is introduced into
the system, and m new properties are added according
to the preferential attachment mechanism.

Let us indicate pk,n the fraction of entities which
have k as porperty value when there are n entities in
the system. This provides, in the limit of large
numbers, the probability of having n entities with k
properties.

On average, the number of such entities having k
properties is npk,n.

We now look for the probability that the next
properties are added exactly to a particular entity
having ki as value of its property. This is proportional
to ki, by the preferential attachment, and after
normalization this probability is:

Here the denominator is simply the total number
of entities, namely n(m+1).

Now, in going from step n to step n+1, m other
entities are introduced. Thus the probability of a
single entity of increasing by one its property value in

this time step is mki /(n(m+1)).
The total number of entities with k properties

getting a new one is:

Obviously the number of entities having k
properties will decrease by this quantity. On the other
side it will also increase, since there are entities
having k-1 properties which get one more property,
thus contributing at the next step to the entities with k
properties. This quantity is calculated exactly as
above, replacing k with k-1.

Thus we obtain a master equation for the number
of entities with k properties at time n+1:

In the case of entities with just one property, this
equation becomes:

For large n, when the system goes to equilibrium,
we assume the probability pk,n be independent of n.
Then the rate equation gives:

Then, introducing the parameter c, this can be
generalized to the cases where there is no initial value
for the property.

In these cases, as n  , the analysis yields an
exact expression for the probability qk0 that an entity

has property left at the initial value of k0:

(3)

The probability that an entity has property whose
value is k, is given instead by the following equation:

p i=
v ic

∑i=1

n
v i nc

.

qk0
=

k 0cm

m1k0cm
.

p i=
k i

∑i=1

n
ki

.

mk
nm1

×npk , n=
m

m1
kpk ,n .

n1 pk ,n1=npk , n
m

m1
[k−1 pk−1,n−kpk , n]

n1 p1,n1=np1,n1−
m

m1
p1,n

pk=
m

m1
[k−1 pk−1−kpk]=

k−1

k1
1
m

pk−1 .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 178 Issue 2, Volume 7, February 2010

(4)

where  is related to the three parameters of the
process according to the following formula:

(5)

and B(a,b) is Legendre’s Beta function. This function
has the property that it follows a power-law for large
values of either of its arguments. In our case, for large
values of a, B(a,b)  a-b, and consequently, the tail of

the probability distribution given by eq. (4) is qk  k-,
neglecting the term c, which is small with respect to
the values of k in the tail.

3 Implementing Yule-Simon process
The key feature for implementing the process is the
preferential attachment mechanism described by eq. 2.
If we define the auxiliary variable xi = vi + c, eq. 2
becomes:

(6)

To perform a choice among n entities with proba-
bility pi, we represent entities as the cells of an array
indicated by x, containing the values xi = vi + c, where
vi is an integer denoting the number of elements. The
distribution of the values inside the cells is unbal-
anced, due to preferential attachment that, on average,
will make higher the properties vi of the entities which
were created first. For instance, when m is very large,
almost all the elements will be contained in the first
few cells, while the remaining cells will contain only
few elements. The distribution is less skewed for
smaller m: for m 0 very few elements will be in≃ -
serted through preferential attachment in existing enti-
ties and most cells will contain just k0 elements, pre-
senting an almost uniform distribution.
Preferential attachment is implemented by mapping
the cells to a segment of length i xi, with each cell i
corresponding to adjacent sub-segments of length
proportional to cell value xi. In order to select an

entity with probability proportional to the elements it
possesses we extract a random variable, r, uniformly
distributed with value between zero and i xi. The ran-
dom number is mapped to a point in the segment S,
and the probability for this point to fall in a given sub-
segment is proportional to the sub-segment size, and
thus to the amount of elements of the corresponding
entity. Fig. 1 shows the segment and its sub-segments.

3.1 Algorithm 1
The first algorithm we present is very simple and
takes advantage of the properties of the power-law
distribution. In fact most processes in nature which
show a power-law distribution for the rank-frequency
representation [1] have exponents in the range 2-3.
This means that most of the elements lay in a small
percentage of classes. Thus most of the probability of
preferential attachment is associated to very few
classes. In this algorithm, new cells corresponding to
new entities are inserted in array x in the order of
creation. When an entity i is chosen to have its ele-
ments incremented by one, its cell xi is immediately
available, and its value is simply increased by one.

More in detail, the algorithm is:

(1) x[1]:= k0 + c; i := 1; s := x[1];
(2) Extract random variable r uniformly dis-

tributed between 0 and 1;
(3) If r < a then // new entity

i:=i+1; x[i]:=k0 +c; s:=s+x[i];
(4) else // element addition

Extract random variable r uniformly
distributed between 0 and s;
k := 1; s’:= x[1];
while r > s’ do

k := k + 1; s’ := s’ + x[k]
end while

qk=
Bkc ,
B k 0c ,

qk0
.

=2
k0c

m

p i=
x i

∑i=1

n
xi

.

Fig. 1: Scheme of segment representing entities and used to
implement the preferential attachment. xi are the values
stored in the array x.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 179 Issue 2, Volume 7, February 2010

x[k] := x[k] + 1;
endif

(5) If i > imax END;
(6) goto (2)

where s is the length of the segment, imax is the maxi-
mum number of entities allowed, s’ is the sum of
consecutive sub-segment lengths during the
computation of preferential attachment.
In Fig. 1 s' corresponds to x1+x2+...+xn. The values xi

are stored in x.
In the case of value of  quite low, say in the

range 2-3, most elements lay in a small percentage of
entities, located on average in the cells with lower
index i. This means that most of the probability of
preferential attachment is associated to very few
entities, and the run through the segment to find an
entity with probability pi will in most cases end after a
few steps of the while in the above algorithm.

Thus, this algorithm is very fast when  is low.
However, it does not easily accommodate deletion of
entities, because they would imply to shift entire por-
tions of array x to the left.

3.2 Algorithm 2
The second algorithm uses a standard approach for ef-
ficiently search in a list of p items, the binary search,
slightly modified in order to incorporate the preferen-
tial attachment mechanism. Let consider two arrays, u
and v. In u we store, in the p-th cell, the total number
of elements in the system up to the p-th step, namely

the quantity p
i=1 xi . Thus each time we add a new

element in some entity or add a new entity with initial
content k0 + c, we add a new cell at the end of array u,
whose content will be, respectively, the amount of it
former last cell increased by k0 or by k0 + c. In v, at
the same time, in correspondence to each cell of u, we
store the integer number which identifies the selected
entity (that may be an already existing entity or a
newly created one).

 For each insertion of a new entity the sum increases
by k0 + c, and correspondingly the amounts in the last
two cells of the array u will differ by k0 + c. In the last
cell of the array v we instert a new label for the new
entity.

 When the property of an existing entity increases,
the amounts of the last two cells of the array u will
differ by k0. In the last cell of the array v we insert an
already existing label.

 Array u can be associated to a one-dimensional
segment divided in sub-segments whose length is
equal either to k0 or to k0 + c. The values in the cells in
u mark the points in this segment implementing the
above mentioned partition. A label is associated to each
piece by means of v, keeping track of the related entity.
The situation is illustrated in Fig 2.

The extraction of a random number, r, between zero

and p
i=1 xi , selects one of the sub-segments with

probability proportional to its size.

 If an entity is associated to many sub-segments, its
cumulative probability to be selected is proportional
to the sum of the lengths of all its sub-segments.

 The label attached allows to identify the entity
selected through preferential attachment. A binary
search is applied to the array u, which is sorted. After
extracting the random number r, we compare it with
the value of the cell in the middle of u. If it is larger
(smaller) than the value in the cell, we perform again
the same comparison with the value in the cell in the
middle of the half right (left) part of u. We repeat this
procedure until the same cell is found two consecutive
times. This binary search requires at most log2(p)
steps, which thus is the time associated to the
execution of the preferential attachment mechanism.

Fig. 2: Content of arrays u and v with 3 entities. Entity 1
got two increments. We assume c = 0.3 and k0 = 1. The line

in the bottom represents the associated segments.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 180 Issue 2, Volume 7, February 2010

3.3 Algorithm 3

The third algorithm splits segments associated to
probabilities. Any new inserted entity has starting
property value k0 + c. A label, identifying the entity,
is associated to the integer part k0, and is stored into
an array of integers u. The part c is fractionary, and
stored into a real variable F, containing the sum of all
the c's relative to all the entities. Since there is only
one c for each entity, this sum will amount to Nc,
where N are the entities.

 When a property of an entity is incremented by k0,
a new cell is allocated in the array of integers u, and
filled with the label of the entity. At a generic time
step this array will contain, for each entity, as many
labels as the amount of its property value expressed in
k0 units. The real variable F instead will contain as
many c's as the total number of entities. Let us
indicate by K the sum of all the values into the array's
cells. The total amount of properties into all the
entities will be K+Nc. Again we use segments to
extract probabilities. Associated to the array there is a
segment of length K, made of subsegments of length
k0, each labeled correspondingly to the entity it
represents.

 Associated to the real variable there is another
segment, of length Nc, made of subsegment of length
c, ordered from the first to the last, accordingly to the
entities as they were inserted into the system.

 The total segments length is K+Nc, namely the total
amount of properties. Thus, if the entity i has property
value xi = ji k0 + c, where ji is integer, the associated
probability for the preferential attachment is:

 pi = xi / ( xi) = (ji k0 + c) / (K+Nc). (7)

 This is proportional to the segment of length c plus
all the ji segments of length k0 labeled by i. The
probability associated to each entity is recovered as
follows. We extract a random variable r, uniformly
distributed among zero and K+Nc. If r is larger than
K, it identifies a point in the second segment, lying
into a particular subsegment of length c. The quantity
round((r-K)/c) +1 then provides immediately the label
of the associated entity. If r is smaller than K, it iden-
tifies a point in the first segment, lying into a particular

subsegment of length k0. The quantity round(r/k0)+1
then provides the number of the cell into the array of
integers u, containing the label of the associated en-
tity, which may be immediately recovered. Thus the
execution time for the preferential attachment mecha-
nism is of order O(1). The correspondence among
segments lengths and entities probabilities is illus-
trated in Fig. 3.

4 Discussion
We performed numerical simulations in order to ana-
lyze the effectiveness of the three algorithms. All the
simulations were performed averaging the run times
over ten independent trials, and with different choices
for the parameters m and c, which influence the
execution time. The values for m are 12.8, 6.4, 3.2,
1.6, 0.8, 0.4, 0.2. The values for c are -0.9, -0.6, -0.3,
0.0, +0.3, +0.6, +0.9.

 In the first algorithm the overall execution time
grows quadratically with N but, if the power-law is
strongly unbalanced, on average it will take only few
steps for each search. The execution time in fact
depends on the preferential attachment algorithm,
which requires O(N) iterations on average, and on the
number of iterations selected, which is directly

Fig. 3: Scheme of the segment splitting. Segments of
length k0 + c are split in two. The k0 parts are labeled and
their labels are stored into an array of integer. The c parts
are cumulated into the floating variable F, summing to Nc.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 181 Issue 2, Volume 7, February 2010

proportional to the final number of entities in the
system. This linear dependence is determined by the
value of parameter m. The combination of the two
provides a run time of the order O(N2). Fig. 4
illustrates the results of our simulations, confirming
the quadratic dependence.

It is interesting to analyze also the dependence of
execution time on m and on c, shown in Figs. 5 and 6.

As predicted, this algorithm may be very effective for
power-laws strongly unbalanced, namely for m large.

 Fig. 5 shows in fact that large m values have a run
time an order of magnitude smaller than small m
values. In fact m represents the average number of
property for every entity, and it is related to the power
law exponent  by the equation (5). For very large m
only very few entities contain almost all system's
properties. These will be, on average, among the
entities created first. According to the algorithm, they
will be positioned in the left-most cells of array x, and
thus the routine for the preferential attachment will
require a very short time for very large m. On the
other hand, the figure shows also a fast increase for
small m, and a decrease after a maximum. The
complete algorithm consists actually of two separate
steps. First, with probability a = 1/(1+m), a new entity
is created. Alternatively, with probability 1-a, an
already existing entity will have its property value
incremented. Thus the routine of the algorithm used to
implement the preferential attachment will be
activated only with probability 1-a. Otherwise, with
probability a, no call to such routine is needed. In this
last case there is no extra time required for searching
the entity to add new properties to. For small m
values, a tends to one. The preferential attachment
will be activated very rarely, and the run time will be

Fig. 6: First algorithm: Scaling of run-time with parameter
c. Different colors and symbols represent different values
of system size and parameter m. For any choice of m and
system size the behavior remains the same.

Fig. 5: First algorithm: Scaling of run-time with parameter
m for fixed system size. Different colors and sysmbols
correspond to different values for system size and
parameter c. The behavior is the same regardeless to
changes in system size and c.

Fig. 4: First algorithm: Scaling of run-time with system
size. Different colors and symbols represent different
values of parameters m and c. The scaling is quadratic for
any choice of these parameters.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 182 Issue 2, Volume 7, February 2010

shorter. As m increases, still keeping low values, the
preferential attachment routine will be called more
frequently, and the run time will increase. This
behavior is valid until m reaches a value where the
second mechanism, the decrease of searching time for

preferential attachment for large m values, will
dominate. These effects together give rise to the
presence of a maximum run time for some m value.
Before this value the preferential attachment routine is
rarely involved, while after this value it is mainly
involved and its execution time decreases with m.

Fig. 7: Second algorithm: Scaling of run-time with
system size. The scaling is slightly superlinear, as espected
for the O(nlog(n)) case. Different colors and sysmbols
correspond to different values for parameters m and c. The
scaling remains the same for any choice of these
parameters.

Fig. 10: Third algorithm: Scaling of run-time with system
size. Different colors and sysmbols correspond to different
values for parameters m and c. The scaling is linear for
any choice of m and c, confirming the O(n) relationship.
Parameters m and c influence the proportionality
coefficient among run time and size, determining the slope
of the straight lines.

Fig. 9: Second algorithm: Scaling of run-time with
parameter c. Different colors and sysmbols correspond to
different values for system size and parameter m. Run time
is essentially independent on c.

Fig. 8: Second algorithm: Scaling of run-time with
parameter m for fixed system size. Different colors and
sysmbols correspond to different values for system size and
parameter c. For any choice of size and c there is the same
initial growth, followed by an asimptotic saturation of run
time for large m.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 183 Issue 2, Volume 7, February 2010

 Fig. 6 shows that also the value of c may influence
the overall run time, even if to a less extent. In general
the execution time increases with c. This can be seen
from eq. (5). The power-law exponent grows with c,

thus c has an effect opposite to m. Since this
algorithm's performance strongly relais on the bias in
the distribution of properties among entities, any little
change in the power-law exponent easily influences
the run time.

 For the second algorithm, the binary search in the
sorted array requires an execution time of the order
O(log2(N)). This, combined with the O(N) time
linearly related to the N entities, provides a total run
time of O(N log2(N)).

 In Fig. 7 the plot of time versus the number of runs
is slightly super-linear, as it should be for an N log2(N)
process. In this case the time dependence on m shows
a fast increase for lower m, while reaches a stable
behavior for larger m (Fig. 8). Larger m determines a
larger probability for adding a new element in the
existing classes, thus a more frequent call to the
routine implementing the preferential attachment
process which is the more time consuming part. In this
case the parameter c plays almost no role in
determining the run time, as illustrated in Fig. 9.

 For the third algorithm, there is still a linear
dependence of the execution time on the number of
iterations, which is directly proportional to the final
number of entities in the system, but there is no addi-
tional time dependence on N, which is due to the
routine implementing the preferential attachment
mechanism.

 Thus, the total execution time grows as O(N) for
any choice of m and c, as illustrated in Fig 10. At the
same time, the execution time increases with m,
because the probability of adding new elements to
existing classes, which is also the probability of
making a call to the preferential attachment procedure,
increases too (Fig. 11). Finally, the run time tends
again to increase in general with c, even if the effect is
clearly reduced with respect to the first algorithm
(Fig. 12).

5 Conclusions
We described three different algorithms implementing
the Yule process, and supported them by numerical
simulations. We discussed main advantages and dis-
advantages in relation to the values assumed by the
model parameters. In particular, the first algorithm is

Fig. 12: Third algorithm: Scaling of run-time with
parameter c. Different colors and sysmbols correspond to
different values for system size and parameter m. The
behavior is again similar to the second algorithm, even if a
smooth increase of run time with c may be noted,
regardeless of any choice for system size and m.

Fig. 11: Third algorithm: Scaling of run-time with
parameter m. Different colors and sysmbols correspond to
different values for system size and parameter c. The
behavior is similar to the second algorithm. An increase of
run time for small m values is followed by a saturation at
large m. This behavior is the same for any choice of sistem
size and c.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 184 Issue 2, Volume 7, February 2010

convenient when the power-law is strongly
unbalanced, while the third is outperforming for large
system sizes and may be easily extended in order to
incorporate entities deletions and non-linearity of the
preferential attachment. Since the Yule model is one
of the most commonly used to produce power-laws
populations in a wide variety of research fields, we
hope that this work be of help in providing efficient
algorithms to all interested researchers.

References:
[1] M. Newman. Power laws, pareto distributions

and zipf’s law. Contemporary Physics 46 (2005)
323-351.

[2] G. U. Yule, A mathematical theory of evolution
based on the conclusions of Dr. J. C. Willis.
Philos. Trans. R. Soc. London B 213, 21-87
(1925)

[3] H. A. Simon, On a class of skew distribution
functions. Biometrika 42, 425-440 (1955).

[4] A. Barabasi and R. Albert. Emergence of scaling
in random networks. Science 286 (1999)
509-512.

[5] S. Valverde, R. Ferrer-Cancho, and R. Sole'.
Scale-free networks from optimal design.
Europhysics Letters 60 (2002) 512-517.

[6] G. Concas, M. Marchesi, S. Pinna, and N. Serra,
Power-Laws in a Large Object-Oriented Software
System, IEEE Transactions on Software
Engineering, vol. 33, No. 10, 2007, pp. 687-708.

[7] Giulio Concas, Michele Marchesi, Sandro Pinna,
Roberto Tonelli, Ivana Turnu: A Dynamic Model
of Software Product Generative Process . APSEC
2008: 43-50

[8] P. Louridas, D. Spinellis and V. Vlachos, Power
Laws in Software. ACM Trans. Software Eng.
and Method., Vol. 18, No. 1, 2008.

[9] G. Concas, M. Marchesi, S. Pinna, and N. Serra.
On the suitability of yule process to stochastically
model some properties of object-oriented
systems. Physica A 370 (2006) 817-831

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 185 Issue 2, Volume 7, February 2010

