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1   Introduction
Power-law distributions are among the most common 
distributions found in natural and human-related phe-
nomena. They are typically found in systems sharing 
common features  in  their  dynamics,  like  continuous 
growth and the insertion of new elements according to 
a  “rich  get  richer”  scheme.  These  peculiarities  are 
typical  of  complex systems and are widespread and 
ubiquitous – computer science, mathematics, physics, 
biology, social networks,  graph theory among many 
others are all fields in which power-law distributions 
have been found. 
   A  power-law  distribution,  also  called  Pareto 
distribution,  Zipf’s  law,  or  scale-free  distribution, 
implies that, while small values are far more common 
than large values, the probability to find a large value 
is  not  negligible.  Moreover,  it  is  possible  to  find 
samples whose values are as large as the sum of the 
values of many (or most) other samples. For example, 
the  number  of  citations  of  the  most  cited  paper  is 
equal  to  the  sum  of  the  citations  of  hundreds,  or 
thousands, other papers.

In order to explain the large diffusion of power-
laws in different fields, many models have been pro-
posed [1]. Among the others, one of the most convinc-
ing is the Yule-Simon process, introduced in the twen-
ties  of  last  century  by  G.U.  Yule  [2]  in  order  to 
explain  the  distribution  of  genera  and  species  in 
nature, and used by Simon in the fifties to model the 

frequency distribution of words in texts [3]. 
More  recently,  the  “preferential  attachment 

mechanism” which stays at the basis of Yule process, 
has been reintroduced in the modeling of the WWW 
growth dynamics [4]. 

As regards software systems, many of them have 
reached such a huge dimension that it looks sensible 
to  treat  them using stochastic  approaches.  Some re-
searchers started to scrutinize the field of software, in 
the perspective of finding and studying scale-free and 
small-world behavior [5-7]. In fact, software is built-
up out  of  many interacting units  and subsystems at 
many levels of  granularity (functions,  classes,  inter-
faces, libraries,  source files,  packages, etc.),  and the 
various kinds of interactions among those pieces can 
be used to define graphs that form a skeletal descrip-
tion of a system. Moreover, these entities are charac-
terized by features whose distribution in turn can be 
studied looking for scale-free behavior. 

As examples, in order to illustrate the motivations 
for this work and get a flavor about the importance of 
modeling  a  Yule-Simon  process  governed  by  the 
preferential attachment, we consider the Internet, the 
WWW, and software  development  activities.  In  the 
Internet,  the  various  connected  computers  must  be 
identified  uniquely.  Every  node  must  have  a  single 
identifier, namely the ”IP address“. IP addresses have 
a  structure  of  four  decimal  numbers,  separated  by 
dots, each ranging from 0 to 255. Thus the total num-
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ber of possible addresses is 232, more than 4 billions. 
It has been investigated that the Internet possesses a 
”scale-free“ structure [4], that may be explained using 
the preferential attachment mechanism. In this context 
it  means that larger hubs are more likely to receive 
more physical links than smaller hubs.

On  the  World  Wide  Web,  according  to 
NETCRAFT  (http://news.netcraft.com),  “In  the  De-
cember  2007  survey  we  received  responses  from 
155,230,051 sites”.  The  total  amount  of  web pages 
available to net-surfers are many billions. Again the 
WWW, like  the  Internet,  possesses  a  link structure, 
that  may be explained using the  preferential  attach-
ment mechanism [4]. Here the most visited web pages 
are the more likely to be linked by other web pages. 

Regarding software development,  we know that 
modern software systems can be composed by tens of 
thousand  different  files,  or  modules.  Concas  et  al. 
already shown that many properties of object-oriented 
(OO) software systems follow a power-law, including 
the number of in-links of OO software networks, the 
number  of  times  an  identifier  is  used  to  name  a 
variable or a method, the number of subclasses of a 
given class [6]. Moreover, in other papers Concas et 
al.  found  that  Yule-Simon  process  can  be  used 
precisely  to  stochastically  model  the  generation  of 
these properties [7], [8]. 

Now the motivations for this paper have become 
clearer. On one side there is the need to create mathe-
matical models to simulate complex behaviors and to 
test  the  suitability  of  the  model  with  experimental 
data. On the other side, when dealing with real data, 
the involved quantities are often huge, millions or bil-
lions. The main issue is that, at each computation step, 
the Yule-Simon algorithm chooses among the system 
“entities” – which can be very many – proportionally 
to the actual value of their “property” that might be in-
cremented. This choice can thus be very critical. Real-
time then may become a critical issue and a faster al-
gorithm may make the difference among being able to 
simulate a real process or not, to discern among differ-
ent models which provide the same power-law distri-
bution, and to identify the relevant features and vari-
ables  representative of  the  entire  process,  especially 
when analytical results are not available.

In this paper we propose and compare some dif-
ferent  algorithms  for  simulating  a  Yule-Simon 
process, focusing on their speed even when the num-
ber of entities of the system reaches numbers of the 
order of millions. 

The article is organized as follows. In section 2 
we briefly illustrate the generalities about the Yule-Si-
mon process and the preferential  attachment mecha-
nism. In section 3 we present algorithms to simulate 
the simplest case, where growth through preferential 
attachment is the only process at play. In section 4 we 
analyze  and  discuss  the  algorithms.  Section  5 
concludes the paper.

2 The Yule-Simon Process
The  Yule-Simon process deals with a population of 
“entities”, each having a property, characterized by an 
integer numeric value – or number of “elements” of 
the property. In the original work, entities are genera, 
and  their  properties  (elements)  are  the  number  of 
species belonging to each genus. In Simon’s work, en-
tities are single words, and their elements are the num-
ber of times each word is used in a text. The Yule-Si-
mon process  describes  a  mechanism for  generating 
such a population, with successive addition of entities, 
and with a rule for incrementing the property value of 
existing entities. 
     The key issue is that, if the entity whose property 
has  to  be  modified  is  chosen  with  probability 
proportional to the size of this property, the resulting 
property distribution will tend to a power-law.

More formally, let us consider a population of  n 
entities,  each  having  a  property  with  integer  value,
vi, i = 1, 2,..., n. At the beginning of the process, there 
are no entities. As time flows, new entities are created, 
and existing entities are chosen for incrementing their 
properties by  one unit.  At  each time-step there is  a 
constant probability a that a new entity is created, and 
a probability 1-a that the value of an existing entity is 
increased by one. The average number, m, of property 
increments in between the addition of two new enti-
ties, is related to a by formula:

(1)

For instance, if on average four entities are cho-
sen for adding one element to their property values in 
between the addition of two new entities, then m = 4, 
and a = 0.2. If just one entity is chosen for adding one 
element,  on  average  every  other  addition  of  new 
entities, m will assume the value of 0.5, and a = 2/3.

The new entities have initial value of their prop-

m=
1−a

a
; a=

1
1m

.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Roberto Tonelli, Giulio Concas, Mario Locci

ISSN: 1790-0832 177 Issue 2, Volume 7, February 2010



erty equal to k0. When an existing entity has to be in-
cremented by one, it is chosen in proportion to its cur-
rent value of  vi,  plus a constant  c,  i.e.,  i-th entity is 
chosen with probability pi:

(2)

That is all – the Yule process depends only upon 
the values of these three parameters:  k0,  m and  c. In 
the original Yule’s and Simon’s models,  k0 = 1, be-
cause any new genus has  a single species,  and any 
new word appears just once in the text; moreover, in 
these models entities are chosen only proportionally to 
their values vi, and thus c = 0.

The generalized process described above can be 
analyzed  mathematically,  using  the  master  equation 
approach.  The  analysis  is  reported  in  detail  in  [1], 
though  with  slightly  different  assumptions  than  Si-
mon’s. For readers convenience, we briefly report the 
main steps.

Let  us  consider  discrete  temporal  steps.  These 
may be associated to the total number n of entities.

At each time step a new entity is introduced into 
the system, and m new properties are added according 
to the preferential attachment mechanism.

Let us indicate  pk,n the fraction of entities which 
have  k as porperty value when there are  n entities in 
the  system.  This  provides,  in  the  limit  of  large 
numbers, the probability of having  n entities with  k 
properties.

On average, the number of such entities having k 
properties is npk,n. 

We  now look  for  the  probability  that  the  next 
properties  are  added  exactly  to  a  particular  entity 
having ki as value of its property. This is proportional 
to  ki,  by  the  preferential  attachment,  and  after 
normalization this probability is:

Here the denominator is simply the total number 
of entities, namely n(m+1).

Now, in going from step  n to step  n+1,  m other 
entities  are  introduced.  Thus  the  probability  of  a 
single entity of increasing by one its property value in 

this time step is mki /(n(m+1)).
The  total  number  of  entities  with k properties 

getting a new one is:

Obviously  the  number  of  entities  having  k 
properties will decrease by this quantity. On the other 
side  it  will  also  increase,  since  there  are  entities 
having  k-1 properties which get  one more property, 
thus contributing at the next step to the entities with k 
properties.  This  quantity  is  calculated  exactly  as 
above, replacing k with k-1.

Thus we obtain a master equation for the number 
of entities with k properties at time n+1: 

In the case of entities with just one property, this 
equation becomes:

For large n, when the system goes to equilibrium, 
we  assume the  probability  pk,n  be  independent  of  n. 
Then the rate equation gives:

Then,  introducing  the  parameter  c,  this  can  be 
generalized to the cases where there is no initial value 
for the property.

In these cases, as  n  , the analysis yields an 
exact expression for the probability  qk0 that an entity 

has property left at the initial value of k0:

(3)

The  probability  that  an  entity  has  property  whose 
value is k, is given instead by the following equation:

p i=
v ic

∑i=1

n
v i nc

.

qk0
=

k 0cm

m1k0cm
.

p i=
k i

∑i=1

n
ki

.

mk
nm1

×npk , n=
m

m1
kpk ,n .

n1 pk ,n1=npk , n
m

m1
[k−1 pk−1,n−kpk , n]

n1 p1,n1=np1,n1−
m

m1
p1,n

pk=
m

m1
[k−1 pk−1−kpk ]=

k−1

k1
1
m

pk−1 .
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(4)

where   is  related  to  the  three  parameters  of  the 
process according to the following formula:

(5)

and B(a,b) is Legendre’s Beta function. This function 
has the property that it follows a power-law for large 
values of either of its arguments. In our case, for large 
values of a, B(a,b)  a-b, and consequently, the tail of 

the probability distribution given by eq. (4) is qk  k-, 
neglecting the term  c, which is small with respect to 
the values of k in the tail.

3 Implementing Yule-Simon process
The key feature for implementing the process is the 
preferential attachment mechanism described by eq. 2. 
If we define the auxiliary variable  xi =  vi + c, eq. 2 
becomes:

(6)

To perform a choice among n entities with proba-
bility pi, we represent entities as the cells of an array 
indicated by x, containing the values xi = vi + c, where 
vi  is an integer denoting the number of elements. The 
distribution  of  the  values  inside  the  cells  is  unbal-
anced, due to preferential attachment that, on average, 
will make higher the properties vi of the entities which 
were created first. For instance, when m is very large, 
almost all the elements will be contained in the first 
few cells, while the remaining cells will contain only 
few  elements.  The  distribution  is  less  skewed  for 
smaller  m: for  m  0 very few elements will be in≃ -
serted through preferential attachment in existing enti-
ties and most cells will contain just  k0 elements, pre-
senting an almost uniform distribution.
Preferential  attachment  is  implemented  by  mapping 
the cells to a segment of length i xi, with each cell i 
corresponding  to  adjacent  sub-segments  of  length 
proportional  to  cell  value  xi.  In  order  to  select  an 

entity with probability proportional to the elements it 
possesses we extract a random variable,  r, uniformly 
distributed with value between zero and i xi. The ran-
dom number is mapped to a point in the segment  S, 
and the probability for this point to fall in a given sub-
segment is proportional to the sub-segment size, and 
thus to the amount of elements of the corresponding 
entity. Fig. 1 shows the segment and its sub-segments.

3.1 Algorithm 1
The  first  algorithm  we  present  is  very  simple  and 
takes  advantage  of  the  properties  of  the  power-law 
distribution. In  fact  most  processes  in  nature  which 
show a power-law distribution for the rank-frequency 
representation  [1]  have  exponents  in  the  range  2-3. 
This means that most of the elements lay in a small 
percentage of classes. Thus most of the probability of 
preferential  attachment  is  associated  to  very  few 
classes. In this algorithm, new cells corresponding to 
new entities  are  inserted in  array  x in  the  order  of 
creation. When an entity  i is chosen to have its ele-
ments incremented by one, its cell  xi is immediately 
available, and its value is simply increased  by one. 

More in detail, the algorithm is:

(1) x[1]:= k0 + c; i := 1; s := x[1];
(2) Extract random variable r uniformly dis-

tributed between 0 and 1;
(3) If r < a then       // new entity

i:=i+1; x[i]:=k0 +c; s:=s+x[i];
(4) else           // element addition

Extract random variable r uniformly
distributed between 0 and s;
k := 1; s’:= x[1];
while r > s’ do

k := k + 1;  s’ := s’ + x[k]
end while

qk=
Bkc ,
B k 0c ,

qk0
.

=2
k0c

m

p i=
x i

∑i=1

n
xi

.

Fig. 1: Scheme of segment representing entities and used to 
implement the preferential attachment. xi are the values  
stored in the array x.
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x[k] := x[k] + 1;
endif

(5) If i > imax  END;
(6) goto (2)

where s is the length of the segment, imax is the maxi-
mum number  of  entities  allowed,  s’ is  the  sum of 
consecutive  sub-segment  lengths  during  the 
computation of preferential attachment. 
In Fig. 1 s' corresponds to x1+x2+...+xn. The values xi 

are stored in x.
In the case of  value of   quite low, say in the 

range 2-3, most elements lay in a small percentage of 
entities,  located  on  average  in  the  cells  with  lower 
index  i.  This  means that  most  of  the  probability  of 
preferential  attachment  is  associated  to  very  few 
entities,  and the run through the segment to find an 
entity with probability pi will in most cases end after a 
few steps of the while in the above algorithm. 

Thus, this algorithm is very fast when   is low. 
However, it does not easily accommodate deletion of 
entities, because they would imply to shift entire por-
tions of array x to the left.

3.2 Algorithm 2
The second algorithm uses a standard approach for ef-
ficiently search in a list of p items, the binary search, 
slightly modified in order to incorporate the preferen-
tial attachment mechanism. Let consider two arrays, u 
and v. In u we store, in the p-th cell, the total number 
of elements in the system up to the p-th step, namely 

the quantity  p
i=1 xi . Thus each time we add a new 

element in some entity or add a new entity with initial 
content k0 + c, we add a new cell at the end of array u, 
whose content will be, respectively, the amount of it 
former last cell increased by k0 or by k0 +  c. In v, at 
the same time, in correspondence to each cell of u, we 
store the integer number which identifies the selected 
entity  (that  may  be  an  already  existing  entity  or  a 
newly created one). 

    For each insertion of a new entity the sum increases 
by k0 + c, and correspondingly the amounts in the last 
two cells of the array u will differ by k0 + c. In the last 
cell of the array v we instert a new label for the new 
entity.

    When the property of an existing entity increases, 
the amounts of the last two cells of the array  u will 
differ by k0. In the last cell of the array v we insert an 
already existing label.

    Array  u can be associated to a one-dimensional 
segment  divided  in  sub-segments  whose  length  is 
equal either to k0 or to k0 + c. The values in the cells in 
u mark the  points  in this  segment implementing the 
above mentioned partition. A label is associated to each 
piece by means of v, keeping track of the related entity. 
The situation is illustrated in Fig 2.

The extraction of a random number,  r, between zero 

and  p
i=1 xi ,  selects  one of the sub-segments  with 

probability proportional to its size. 

     If an entity is associated to many sub-segments, its 
cumulative probability to be selected is proportional 
to the sum of the lengths of all its sub-segments. 

   The  label  attached  allows  to  identify  the  entity 
selected  through  preferential  attachment.  A  binary 
search is applied to the array u, which is sorted. After 
extracting the random number  r, we compare it with 
the value of the cell in the middle of u. If it is larger 
(smaller) than the value in the cell, we perform again 
the same comparison with the value in the cell in the 
middle of the half right (left) part of u. We repeat this 
procedure until the same cell is found two consecutive 
times.  This  binary  search  requires  at  most  log2(p) 
steps,  which  thus  is  the  time  associated  to  the 
execution of the preferential attachment mechanism.

Fig. 2: Content of arrays u and v with 3 entities. Entity 1 
got two increments. We assume c = 0.3 and k0 = 1. The line 

in the bottom represents the associated segments.
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3.3 Algorithm 3

The  third  algorithm  splits  segments  associated  to 
probabilities.  Any  new  inserted  entity  has  starting 
property value  k0 + c. A label, identifying the entity, 
is associated to the integer part  k0, and is stored into 
an array of integers  u. The part  c  is fractionary, and 
stored into a real variable F, containing the sum of all 
the  c's relative to all the entities. Since there is only 
one  c for  each  entity,  this  sum will  amount  to  Nc, 
where N are the entities. 

    When a property of an entity is incremented by  k0, 
a new cell is allocated in the array of integers u, and 
filled with the label of the entity. At a generic time 
step this array will contain, for each entity, as many 
labels as the amount of its property value expressed in 
k0  units.  The real  variable  F instead will  contain as 
many  c's  as  the  total  number  of  entities.  Let  us 
indicate by K the sum of all the values into the array's 
cells.  The  total  amount  of  properties  into  all  the 
entities  will  be  K+Nc.  Again  we  use  segments  to 
extract probabilities. Associated to the array there is a 
segment of length K, made of subsegments of length 
k0,  each  labeled  correspondingly  to  the  entity  it 
represents. 

  Associated  to  the  real  variable  there  is  another 
segment, of length Nc, made of subsegment of length 
c, ordered from the first to the last, accordingly to the 
entities as they were inserted into the system. 

    The total segments length is K+Nc, namely the total 
amount of properties. Thus, if the entity i has property 
value  xi =  ji  k0 +  c, where  ji is integer, the associated 
probability for the preferential attachment is:

        pi    =   xi / ( xi) = (ji k0 + c) / (K+Nc). (7)

    This is proportional to the segment of length c plus 
all  the  ji segments  of  length  k0 labeled  by  i.  The 
probability associated to each entity is  recovered as 
follows.  We extract  a  random variable  r,  uniformly 
distributed among zero and  K+Nc. If  r is larger than 
K,  it identifies a point in the second segment,  lying 
into a particular subsegment of length c. The quantity 
round((r-K)/c) +1 then provides immediately the label 
of the associated entity. If r is smaller than K, it iden-
tifies a point in the first segment, lying into a particular 

subsegment of length  k0.  The quantity round(r/k0)+1 
then provides the number of the cell into the array of 
integers  u, containing the label of the associated en-
tity, which may be immediately recovered. Thus the 
execution time for the preferential attachment mecha-
nism  is  of  order  O(1).  The  correspondence  among 
segments  lengths  and  entities  probabilities  is  illus-
trated in Fig. 3. 

4 Discussion
We performed numerical simulations in order to ana-
lyze the effectiveness of the three algorithms. All the 
simulations were performed averaging the run times 
over ten independent trials, and with different choices 
for  the  parameters  m and  c, which  influence  the 
execution time. The values for  m are 12.8, 6.4, 3.2, 
1.6, 0.8, 0.4, 0.2. The values for c are -0.9, -0.6, -0.3, 
0.0, +0.3, +0.6, +0.9. 

    In the first  algorithm the overall  execution time 
grows quadratically with  N but,  if  the power-law is 
strongly unbalanced, on average it will take only few 
steps  for  each  search.  The  execution  time  in  fact 
depends  on  the  preferential  attachment  algorithm, 
which requires O(N) iterations on average, and on the 
number  of  iterations  selected,  which  is  directly 

Fig.  3:  Scheme  of  the  segment  splitting.  Segments  of  
length k0 + c are split in two. The k0 parts are labeled and 
their labels are stored into an array of integer. The c parts  
are cumulated into the floating variable F, summing to Nc.
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proportional  to  the  final  number  of  entities  in  the 
system. This linear dependence is determined by the 
value  of  parameter  m.  The  combination  of  the  two 
provides  a  run  time  of  the  order  O(N2).  Fig.  4 
illustrates  the  results  of  our  simulations,  confirming 
the quadratic dependence. 

It  is  interesting  to  analyze  also  the  dependence  of 
execution time on m and on c, shown in Figs. 5 and 6. 

As predicted, this algorithm may be very effective for 
power-laws strongly unbalanced, namely for m large.

   Fig. 5 shows in fact that large m values have a run 
time  an  order  of  magnitude  smaller  than  small  m 
values.  In  fact  m represents  the  average  number  of 
property for every entity, and it is related to the power 
law exponent  by the equation (5). For very large m 
only  very  few  entities  contain  almost  all  system's 
properties.  These  will  be,  on  average,  among  the 
entities created first. According to the algorithm, they 
will be positioned in the left-most cells of array x, and 
thus  the  routine  for  the  preferential  attachment  will 
require  a  very  short  time  for  very  large  m.  On the 
other hand, the figure shows also a fast increase for 
small  m,  and  a  decrease  after  a  maximum.  The 
complete algorithm consists actually of two separate 
steps. First, with probability a = 1/(1+m), a new entity 
is  created.  Alternatively,  with  probability  1-a,  an 
already  existing  entity  will  have  its  property  value 
incremented. Thus the routine of the algorithm used to 
implement  the  preferential  attachment  will  be 
activated only with probability 1-a.  Otherwise,  with 
probability a, no call to such routine is needed. In this 
last case there is no extra time required for searching 
the  entity  to  add  new  properties  to.  For  small  m 
values,  a tends  to  one.  The  preferential  attachment 
will be activated very rarely, and the run time will be 

Fig. 6: First algorithm: Scaling of run-time with parameter  
c. Different colors and symbols represent different values  
of system size and parameter m. For any choice of m and 
system size the behavior remains the same.

Fig. 5: First algorithm: Scaling of run-time with parameter  
m  for  fixed  system  size.  Different  colors  and  sysmbols 
correspond  to  different  values  for  system  size  and 
parameter  c.  The  behavior  is  the  same  regardeless  to  
changes in system size and c.

Fig.  4:  First  algorithm:  Scaling  of  run-time with system 
size.  Different  colors  and  symbols  represent  different  
values of parameters m and c. The scaling is quadratic for  
any choice of these parameters. 
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shorter. As  m increases, still keeping low values, the 
preferential  attachment  routine  will  be  called  more 
frequently,  and  the  run  time  will  increase.  This 
behavior is  valid until  m reaches a value where the 
second mechanism, the decrease of searching time for 

preferential  attachment  for  large  m values,  will 
dominate.  These  effects  together  give  rise  to  the 
presence of a maximum run time for some  m value. 
Before this value the preferential attachment routine is 
rarely  involved,  while  after  this  value  it  is  mainly 
involved and its execution time decreases with m. 

Fig.  7:   Second  algorithm:   Scaling  of  run-time  with 
system size. The scaling is slightly superlinear, as espected  
for  the  O(nlog(n))  case.  Different  colors  and  sysmbols  
correspond to different values for parameters m and c. The  
scaling  remains  the  same  for  any  choice  of  these 
parameters. 

Fig. 10: Third algorithm: Scaling of run-time with system  
size. Different colors and sysmbols correspond to different  
values for parameters m and c. The scaling is linear for  
any choice of m and c, confirming the O(n) relationship.  
Parameters  m  and  c  influence  the  proportionality  
coefficient among run time and size, determining the slope  
of the straight lines.

Fig.  9:  Second  algorithm:  Scaling  of  run-time  with  
parameter c. Different colors and sysmbols correspond to  
different values for system size and parameter m. Run time 
is essentially independent on c. 

Fig.  8:  Second  algorithm:  Scaling  of  run-time  with  
parameter  m  for  fixed  system size.  Different  colors  and  
sysmbols correspond to different values for system size and  
parameter c. For any choice of size and c there is the same 
initial growth, followed by an asimptotic saturation of run 
time for large m. 
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    Fig. 6 shows that also the value of c may influence 
the overall run time, even if to a less extent. In general 
the execution time increases with c. This can be seen 
from eq. (5). The power-law exponent grows with  c, 

thus  c has  an  effect  opposite  to  m.  Since  this 
algorithm's performance strongly relais on the bias in 
the distribution of properties among entities, any little 
change in the  power-law exponent  easily influences 
the run time. 

    For the second algorithm, the binary search in the 
sorted array requires an execution time of the order 
O(log2(N)).  This,  combined  with  the  O(N)  time 
linearly related to the  N entities, provides a total run 
time of O(N log2(N)). 

    In Fig. 7 the plot of time versus the number of runs 
is slightly super-linear, as it should be for an N log2(N) 
process. In this case the time dependence on m shows 
a  fast  increase  for  lower  m,  while  reaches  a  stable 
behavior for larger m (Fig. 8). Larger m determines a 
larger  probability  for  adding  a  new element  in  the 
existing  classes,  thus  a  more  frequent  call  to  the 
routine  implementing  the  preferential  attachment 
process which is the more time consuming part. In this 
case  the  parameter  c plays  almost  no  role  in 
determining the run time, as illustrated in Fig. 9. 

    For  the  third  algorithm,  there  is  still  a  linear 
dependence of the execution time on the number of 
iterations, which is  directly proportional  to the final 
number of entities in the system, but there is no addi-
tional  time  dependence  on  N,  which  is  due  to  the 
routine  implementing  the  preferential  attachment 
mechanism. 

    Thus, the total execution time grows as O(N) for 
any choice of m and c, as illustrated in Fig 10. At the 
same  time,  the  execution  time  increases  with  m, 
because  the  probability  of  adding  new  elements  to 
existing  classes,  which  is  also  the  probability  of 
making a call to the preferential attachment procedure, 
increases  too  (Fig.  11).  Finally,  the  run  time  tends 
again to increase in general with c, even if the effect is 
clearly  reduced  with  respect  to  the  first  algorithm 
(Fig. 12).

5 Conclusions
We described three different algorithms implementing 
the  Yule process,  and supported them by numerical 
simulations. We discussed main advantages and dis-
advantages in relation to the values assumed by the 
model parameters. In particular, the first algorithm is 

Fig.  12:  Third  algorithm:  Scaling  of  run-time  with 
parameter c. Different colors and sysmbols correspond to  
different  values  for  system  size  and  parameter  m.  The  
behavior is again similar to the second algorithm, even if a  
smooth  increase  of  run  time  with  c  may  be  noted,  
regardeless of any choice for system size and m.

Fig.  11:  Third  algorithm:  Scaling  of  run-time  with 
parameter m. Different colors and sysmbols correspond to  
different  values  for  system  size  and  parameter  c.  The  
behavior is similar to the second algorithm. An increase of  
run time for small m values is followed by a saturation at  
large m. This behavior is the same for any choice of sistem 
size and c. 
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convenient  when  the  power-law  is  strongly 
unbalanced, while the third is outperforming for large 
system sizes and may be easily extended in order to 
incorporate entities deletions and non-linearity of the 
preferential attachment. Since the Yule model is one 
of the  most  commonly used to  produce power-laws 
populations in a wide variety of  research fields,  we 
hope that this work be of help in providing efficient 
algorithms to all interested researchers.
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