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Abstract - In this paper, we have proposed Generalized Entropy Optimization Problems 

(GEOP) concerned with parameters which consist of maximizing Entropy Functional subject to 

constraints dependent on parameters. Therefore, MinMaxEnt and MaxMaxEnt distributions are 

obtained as solutions of these problems. On bases of MinMaxEnt distribution we have developed a 

new estimation method of obtaining missing values in time series. Mentioned estimation method is 

applied to the data generated from autoregressive model for one missing value. The performance of 

the developed method is evaluated by mean square errors (MSE) calculated from simulation studies 

and the validity of this method is shown. 
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1 Introduction 
In our society, we often have to analyse and 

make inferences using real data that is 

available for collection. Ideally, we would like 

to think that the data is carefully collected and 

has regular patterns with no outliers or missing 

value. In reality, this does not always happen, 

so that an important part of the initial 

examination of the data is to assess the quality 

of the data and to consider modifications 

where necessary. A common problem that is 

frequently encountered is missing observations 

for time series data. A time series stated as 

only one realization of a stochastic process is a 

set of data measured through time. In many 

areas to economics from engineering is faced 

with patterns of time series. It is difficult to 

find a science program not requirement to 

study with a data set in form of time series. 

Characteristic property of a time series is that 

can not be exactly estimated its future 

behavior. However, missing values is fairly 

common because of consist in the data depend 

on time and missing values is a typical 

distortion of model assumptions in data 

analysis. Reasons of this problem are listed as 

the data do not exist at the frequency we wish 

to observe them; registration errors; deletion of 

“outliers” [1-3]. Therefore, an important 

problem in time series analysis is that of 

estimation of missing values which, for some 

reason cannot be observed completely. Faced 

with this situation, several methods of 

replacement of the missing values were 

developed in the literature. To include 

estimations of missing values in time series 

allow us to forecast better.  

One of the key steps in time series 

analysis is to try to identify and correct 

obvious errors and fill in any missing 

observations enabling comprehensive analysis 

and forecasting. This can sometimes be 

achieved using simple methods such as 

eyeballing, or calculating appropriate mean 

value etc. However, more complex methods 

may be needed and they may also require a 

deeper understanding of the time series data. 

Sometimes, we are required to forecast values 
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beyond, or prior to, the range of known values. 

To complete this task successfully we need a 

model which satisfactorily fits the available 

data even when missing values are present [4]. 

More complex methods for analyzing 

time series data will depend on the type of data 

that we are handling [5,6]. But most of the 

time, we would use either a deterministic or 

stochastic approach. Deterministic method 

assumes the time series data corresponds to an 

unknown function and we try to fit the function 

in an appropriate way. The missing 

observation can be estimated by using the 

appropriate value of the function at the missing 

observation. Unlike traditional time series 

approaches, this method discards any 

relationship between the variables over time. 

Another common time series approach for 

modelling data is to use Box-Jenkins’ 

Autoregressive Integrated Moving. These 

models use a systematic approach to identify 

the known data patterns and then select the 

appropriate formulas that can generate the kind 

of patterns identified. Once the appropriate 

model has been obtained, the known time 

series data can be used to determine 

appropriate values for the parameters in the 

model. However, a disadvantage of the Box-

Jenkins ARIMA models is that it assumes that 

data is recorded for every time period. Often 

time series data with missing values require us 

to apply some intuitive method or appropriate 

interpolative technique to estimate those 

missing values prior to Box-Jenkins’s ARIMA 

approach. Additionally, a new approach to 

time series analysis is the use of state space 

modelling. State space modelling emphasises 

the notion that a time series is a set of distinct 

components. Essentially, Kalman Filtering and 

Maximum Likelihood Estimation methods are 

important procedures for handling state space 

models. The approach continually performs 

estimating and smoothing calculations that 

depend only on output from forward and 

backward recursions. With modifications on 

the maximum likelihood procedure, it enables 

the approach to estimate and forecast for data 

with missing values [4]. 

In [4], the application of deterministic 

and stochastic approaches to modelling time 

series data with missing value are compared, 

traditional Box-Jenkins ARIMA and state 

space models are used to obtain estimates of 

missing values and for forecasting. 

Furthermore, in many papers are devoted to 

incomplete autoregressive time series, the EM-

algorithm is used to estimate parameters [7, 8].  

 In this study, firstly MaxEnt 

distribution of an observed time series is 

determined as a multivariate normal 

distribution that its dimension equal to number 

of observations. Then the entropy of 

distribution that has maximum entropy is 

obtained as a functional which is called 

entropy optimization functional. Furthermore   

Generalized Entropy Optimization 

distributions (GEOD) introduced in [8]  by A. 

Shamilov are defined when moment functions 

and moment values depend on parameter. Out 

of GEOD, MinMaxEnt and MaxMaxEnt for 

MaxEnt Distributions with moment 

functions and moment values dependent on 

parameter are defined for the time series 

with missing values by minimization and 

maximization of entropy functional. The 

definition of mentioned distributions 

concerned with problem of finding Lagrange 

multipliers as solution of corresponding system 

of equations. But from mentioned system of 

equations the determination of Lagrange 

multipliers is very difficult. This difficulty is 

overcome asymptotically by applying methods 

of complex analysis in [9]. 

By means of relations established between 

entropy values of MaxEnt, MinMaxEnt and 

MaxMaxEnt distributions, it is proved that the 

distribution containing the largest information 

is MinMaxEnt distribution. Through the result, 

estimating of missing values is considered 

respectively as a problem and a method based 

on MinMaxEnt distribution is developed for 

solving these problems. Thus, MinMaxEnt 

Distribution is used for estimation of missing 

value in time series. In order to use the 

developed method, the computations are 

performed by the programmes written in 

Matlab according to the number of missing 

values. Performance of estimation method 

based on MinMaxEnt distribution is evaluated 

by mean square errors (MSE) calculated on the 

time series generated from autoregressive 

model AR(4), by assumption that the value in 

each position in time series is missing. 

Furthermore, MSE’s are calculated 

from simulation studies by using mentioned 

method to estimate one missing value in time 

series generated by autoregressive models with 
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lag four, the validity of the new method is 

shown. 

 

 

2 MaxEnt Distribution for 

Observed Time Series 
In observed time series represented by the 

sequence of observations [ ]0 1 2

T

Ty y y yK  is 

assumed that range of observation is equal. 

Another assumption for taken time series is 

that the mean of the observations is zero. This 

assumption is not restrictive at all, because if 

the mean 

 
1

1 N

j

j

y y
N =

= ∑               (1) 

is non-zero, then the series can be transformed 

via 

 yyy ii −=′          (2) 

to another time series with zero mean. 

Furthermore, it is assumed that stochastic 

process generating time series is stationary. 

This assumption is not also restrictive, because 

non-stationarity of the time series may be 

removed by a suitable transformation such as 

data differencing,  

 1 .j j jy y y+′′ = − 1,2, ,j N= K        (3) 

The differencing operation can be repeated 

until the data is stationary. In summary then, 

given a discrete time series y, it should posses 

the following properties: 

• The samples are equispaced in time; 

• The series has a zero mean value; 

• The stochastic process yielding 

observations is stationary.  

Only when these conditions are satisfied is the 

following mathematical study of a time series 

applicable [9]. 

 The important property of a stochastic 

process is given as up to lag m  

autocovariances kr  which is covariance 

between jy  and j ky + : 

cov[ , ]k j j kr y y += , 0,1, ,k m= K  

            * *[( )( )k j y j k yr E y yµ µ+= − − .       (4) 

Because the process has a zero mean and is 

stationary, equation (4) is written as the 

following: 

 ][ kjjk yyEr += .        (5) 

For the real time series can be written as 

 kk rr =− .         (6) 

For the discrete time series up to lag m  

autocovariances are obtained from the data as 

follows:  

 
0

1
ˆ

N k

k j j k

j

r y y
N

−

+
=

= ∑ .                             (7) 

When the information about the time series is 

given as autocovariances up to lag m  obtained 

by equation (7), MaxEnt distribution of the reel 

time series has form as follows: 

  ( )
( )

1

2
1

1 22

1

2
N

p e

π

′−

−

=
y Λy

y

Λ

            (8) 

Where ( )p y  is a multivariate normal 

distribution and Λ  is a toeplitz matrix 

consisting Lagrange multipliers. These 

multipliers are asymptotically obtained by 

solution of the following matrix form: 

 
2

0 1 2 0

1 0 1 1 1

2

1

1 2 0

ˆ ˆ ˆ ˆ 1 1

ˆ ˆ ˆ ˆ 0

0

ˆ

ˆ ˆ ˆ ˆ 0

m

m

m m m m

r r r r g

r r r r a

a

r

r r r r a

−

− −

    
    
    
    =
    
    
         

K

K

M O M O M

M M M O M M

K

        (9) 

 

Furthermore, Lagrange multipliers are 

determined as the following: 

2

0

0

m k

k j j k

j

g a aλ
−

+
=

= ∑ , 0,1, ,k m= K .              (10) 

Then Λ  is depicted as follows: 

0

11

2
2 cos

1

N m

k

kj

jk

T

π
λ λ

==

  = +  +  
∑∏Λ .           (11) 

Therefore, MaxEnt distribution is constituted 

as the form (8) via equations (10) and (11) [9]. 

 It is known that the entropy value of 

MaxEnt distribution is 

 

( ) ( ) 2

1
2

2
( ) ln

N

e
H p y

π
=

Λ
.                  (12) 

where Λ  is obtained by formula (11). If we 

take into account the definition of entropy 

optimization (EO) functional U , then the 

equation (12) is considered as EO functional 

which will be required to define Generalized 

Entropy Optimization Distributions (GEOD) in 

Section 3. 
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3 Generalized Entropy 

Optimization Distributions  
In this section, firstly GEOD formulated in [9] 

are introduced. Then, special cases of GEOD 

with moment functions and moment values 

depend on parameter are investigated. 

Moreover, MinMaxEnt distribution out of 

GEO distributions is defined for observed time 

series with missing value. 

 In [10], giving set of moment vector 

functions ( )g x , according to each measure L  

special functional ( )U g   is defined. Via the 

moment vector functions giving the least and 

the greatest values to ( )U g , GEO 

distributions in the form MinMaxEnt and 

MaxMaxEnt are obtained. Each of these 

distributions is closest (or furthest) to the given 

(from the given) a priori distribution in the 

corresponding measure. 

 Let us consider the problem of 

optimizing entropy optimization measure L  

subject to constraints, 

( ) ( )
b

j j
a

f x g x dx µ∫ = , 0,1, ,j m= K      (13) 

where 1oµ = , ( )0 1g x = , ( ) ( )11, , , mg x g xK  are 

linearly independent moment functions, L  is 

given functional on probability density 

functions ( )f x . 

If the distribution 
( ) ( )0
f x  and 

moment vector functions 

( ) ( ) ( )( )11, , , mg x g x g x= K  are given, then 

one can obtain moment value 

( )11, , , mµ µ µ= K  for this moment vector 

function. Consequently, optimum value of L 

can be considered as a functional dependent on 

moment vector function ( )g x . We call this 

functional entropy optimization functional and 

will use the notation ( )U f  or ( )U g  [11]. 

GEOD: Let 
( ) ( )0
f x  be given probability 

density function of random variable X , L  be 

an entropy optimization measure and K  be a 

set of given moment vector functions. It is 

required to choose moment vector functions 

( )1
g ,

( )2
g K∈  such that 

( )1
g  defines entropy 

optimization distribution 
( ) ( )1
f x  closest to 

( ) ( )0
f x , 

( )2
g  defines entropy optimization 

distribution 
( ) ( )2
f x  furthest from 

( ) ( )0
f x  

with respect to entropy optimization measure 

L . In other words moment vector functions 

( ) ( )1 2
,g g  which give to U the least and the 

greatest values respectively play important role 

in definition of special distributions. 

 Let 

( ) ( ) ( ) ( )1 1
min ;U g U f x U g
g K

   
= =   

   ∈
    (14) 

( ) ( ) ( ) ( )2 2
max .U g U f x U g
g K

   
= =   

   ∈
   (15) 

In fact, If L  is chosen as Shannon 

entropy measure, then ( )U g  is maximum 

value of H subject to constraints generated 

by ( )g x , in other words is maxH . For this 

reason 
( ) ( )1
f x  is called MinMaxEnt 

distribution and 
( ) ( )2
f x  is called p.d.f. of 

MaxMaxEnt distribution. 
Let us consider GEOD with finite 

number of given moment functions and 

moment values dependent on parameters. In 

this case condition (13) takes the form 

( ) ( ) ( ), , 0,1, ,
b

j j
a

f x g x dx j mν µ ν∫ = = K  (16) 

where ( )0 01, 1g x µ≡ = , ν  is scalar or vector 

parameter, ( )f x  is unknown p.d.f. 

 It is required to obtain extremum value 

of EO measure L subject to constraints (16). 

 Let ( ) ( )ln
b

a

L H f x f x dx∫= = − . 

 Then EO functional U  defined by (12) 

turns into function on ν : 

( ) ( ) ( )( ) ( )
0

, ,
m

j j
j

U g xν λ ν µ ν µ ν
=

≡ − ∑         (17) 

MaxMaxEnt and MinMaxEnt distributions 

defined in section 3 can be obtained depending 

on the greatest and the least values of ( )U ν . 

The continuity of ( ) ( )( ), ,j g xλ ν µ ν  on ν  can 

be proved by global implicit function theorem 

[12,13]. 
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4 GEO Distributions for the Time 

Series with Missing Value 
From (9) and (10) follows 

that kλ , 0,1, ,k m= K  can be considered as 

functions of 0 1ˆ ˆ ˆ, , , mr r rK . According to (7) 

0 1ˆ ˆ ˆ, , , mr r rK  depend on 0 1, , , Ty y yK . For this 

reason EO functional U  obtained by (12) 

according to (11) and (10) is a function of 

0 1, , , Ty y yK . This function allows us to 

define new distributions by consideration as 

unknown parameters when one or several of 

0 1, , , Ty y yK  are missing values. Firstly, we 

assume that one of 0 1, , , Ty y yK  is parameter, 

this parameter denoted as ν . Then EO 

functional is function of ν , in other words U  

can be write as ( )U ν . We assume that 

[ , ]ν α β∈ . It is easy to see that ( )U ν  is 

continuous with respect to ν . Therefore, the 

following statements are valid: 

( ) ( )

( ) ( )

0
[ , ]

1
[ , ]

min ;

max .

U U

U U

ν α β

ν α β

ν ν

ν ν
∈

∈

=

=
       (18) 

If we consider one of 0 1, , , Ty y yK  as 

parameter ( )jyν ν= , then the probability 

distribution obtained by formula (8) is a 

function of ν . This function is denoted by 

( )p ν . Any probability distribution satisfying 

the same constraints as MaxEnt distribution is 

denoted by ( )0p ν  or ( )0p y . 

Therefore, MinMaxEnt distribution for 

the time series with missing value can be 

considered as MinMaxEnt distribution with 

moment functions and moment values 

dependent on parameter. Because missing 

value ν  involve in moment constraints, 

entropy optimization functional (12) depends 

on missing value ν . Thus, entropy 

optimization functional denoted ( )U ν  is 

minimized with respect to ν  and obtained 0ν  

generate MinMaxEnt distribution and is 

maximized with respect to ν  and obtained 1ν  

generate MaxMaxEnt distribution. The 

following theorem assert that 0ν  is estimation 

for the missing value ν .  

 

 

Theorem 1. Let we are given the real valued 

stochastic time series 0 1, , , Ty y yK ; involving 

unknown element: kyν = ; 0 k T≤ ≤  and 

( )U ν , [ , ]ν α β∈ , 
0 0
min ; maxk k
k T k T

y yα β
≤ ≤ ≤ ≤

= = , 

is Entropy Optimization Function defined by 

(12), where Λ  is defined by (11), kλ  is 

defined by (10). 

Moreover, let ( )0p γ , ( )1p γ  are respectively 

MinMaxEnt and MaxMaxEnt distributions, 

where  

( ) ( )
0

0p p y
ν ν

ν
=

= ; ( ) ( )
1

1p p y
ν ν

ν
=

=  

( ) ( ) ( ) ( )0 1
[ , ] [ , ]
min ; maxU U U U

ν α β ν α β
ν ν ν ν

∈ ∈
= =  

Then between entropy values of MinMaxEnt-

( )0p ν , MaxEnt- ( )p ν  and MaxMaxEnt-

( )1p ν  distributions the inequalities 

( )( ) ( )( ) ( )( )0 1H p H p H pν ν ν≤ ≤      (19) 

hold. 

Proof: ( )p y  is defined by formula (8), where 

Λ  and kλ  are obtained by (11) and (10) 

respectively, if we consider ky ν=  as 

parameter, where [ , ]ν α β∈ , then ( )p y  and 

( )U ν  defined by (12) are continuous 

functions of ν . Consequently continuous 

function ( )U ν  on the interval [ , ]ν α β∈  

reaches its greatest and least values. For this 

reason, values of 0γ  and 1γ  satisfying (18) 

exist. In other words the inequalities  

 ( ) ( ) ( )0 1U U Uγ γ γ≤ ≤      (20) 

hold.  

If we take into account the definition 

(12) of U , then inequalities (19) are result of 

inequalities (20). Theorem is proved. 
 

Theorem 2. Let we are given the real time 

series 0 1, , , Ty y yK ; involving missing 

value: kyν = , 0 k T≤ ≤  and ( )U ν , 

[ , ]ν α β∈ , 
0 0
min ; maxk k
k T k T

y yα β
≤ ≤ ≤ ≤

= = , is Entropy 

Optimization Function defined by (12), where 

Λ  is defined by (11), kλ  is obtained by (10). 

Moreover, Let ( )p y  or ( )p ν  be MaxEnt 

distribution depend on ν , where [ , ]ν α β∈ , 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Aladdin Shamilov, Cigdem Giriftinoglu

ISSN: 1790-0832 106 Issue 1, Volume 7, January 2010



 

min i
i
yα = , max i

i
yβ = . Let ( )1p ν  be 

MaxMaxEnt and ( )0p ν  be MinMaxEnt 

distributions such that  

( )( ) ( ) ( )( ) ( )1 1
[ , ] [ , ]
max maxH p U H p U

ν α β ν α β
ν ν ν ν

∈ ∈
= = =  

( )( ) ( ) ( )( ) ( )0 0
[ , ] [ , ]
min minH p U H p U

ν α β ν α β
ν ν ν ν

∈ ∈
= = =  

where ( )U ν  is EO functional: 

( ) ( )( )U H pν ν= . 

Proof: Let ( )0p ν  be probability distribution 

of given time series which have entropy 

( )( )0H p ν . According to Jaynes’s 

concentration theorem, if we take any 

probability distribution ( )0p ν  satisfying the 

same constraints as MaxEnt distribution ( )p ν , 

there is a 95% chance that its entropy 

( )( )0H p ν  greater than 

( )( ) ( )
( )

2 0.95

2 1
H p

T

ϑχν −
+

, and there is a 99% 

chance that its entropy greater than 

( )( ) ( )
( )

2 0.99

2 1
H p

T

ϑχν −
+

, where T mϑ = −  is 

degrees of freedom. 

 In other words for large values of N  

entropies of most of the probability 

distributions satisfying a given set of 

constraints will be concentrated near the 

maximum value: 

( )( ) ( )
( )

( )( ) ( )( )
2

0

0.95

2 1
H p H p H p

T

ϑχν ν ν− ≤ ≤
+

( )( ) ( )
( )

( )( ) ( )( )
2

0

0.99

2 1
H p H p H p

T

ϑχν ν ν− ≤ ≤
+

 

Consequently by virtue of these 

inequalities ( )( )0H p ν  asymptotically can be 

considered as ( )( )H p ν . 

The amount of our uncertainty we need 

to resolve or information we need to gain about 

the observed time series 0 1, , , Ty y yK  before 

( )p ν  reflects over state of knowledge is 

( )( ) ( )( )1H H p H pν ν∆ = −  

or 

 ( ) ( )1U U Uν ν∆ = −  

From the Theorem 1 it follows that 

( ) ( ) ( )0 1U U Uν ν ν≤ ≤ . Therefore, 

according to this inequality, U∆  reaches its 

maximum value, when 0ν ν= . Consequently if 

0ν ν=  then ( )0p ν  represents MinMaxEnt 

distribution and as unknown term of observed 

time series 0 1, , , Ty y yK  can be taken 0ν ν=  

generating the MinMaxEnt distribution ( )0p ν . 

 Theorem is proved. Then missing 

value ν  can be estimated as the value of 

0ν ν=  generating MinMaxEnt distribution 

( )0p ν . Similarly, instead one unknown 

parameter it is possible to consider vector 

parameter ( )1 2, , , kν ν ν=ν K  and define 

MinMaxEnt and MaxMaxEnt distributions.  

This theorem holds also when ν  is a 

unknown vector. Therefore, by virtue of 

MinMaxEnt distribution it is possible to 

estimate several missing values in time 

series. 
 

 

5 An Application of Estimation 

Method Based on MinMaxEnt 

Distribution for Missing Value 
In application of estimation method based on 

MinMaxEnt distribution for missing value is 

used the data set generated from autoregressive 

model. In autoregressive process developed by 

Box and Jenkins [14], each observation is 

made up of a random error component and a 

linear combination of prior observations. 

)(pAR  models are depicted as follows:  

εφφφξ +++++= −−− )()2(2)1(1 ptpttt xxxx Κ  

where ξ  is a constant and pφφφ ,,, 21 Κ  are 

the autoregressive model parameters, 

)()2()1( ,,, pttt xxx −−− Κ  are prior observations 

[15].  

The used data set generated from 

( )4AR  process as follows:  

1 22.76 3.81t t tX X X− −= −  

       3 42.65 0.92 ,t t tX X ε− −+ − + ( )0,1t Nε :  

is given in Table 1. 
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Table 1 The data generated from AR(4) and 

MinMaxEnt estimations of missing values in 

each position  

t  ( )X t  ( )
2

MinMaxEnt  

1 -1.9172 - 

2 8.8041 - 

3 5.8994 5.6387 

4 -4.9992 -5.4169 

5 -11.4250 -11.8323 

6 -3.6937 -3.5559 

7 16.4869 16.1702 

8 33.3703 32.9922 

9 30.1568 29.3102 

10 2.4457 2.5585 

11 -34.1657 -34.6224 

12 -56.8119 -56.7917 

13 -47.0279 -46.9790 

14 -6.0415 -6.4423 

15 43.5992 43.2731 

16 72.2938 71.6972 

17 60.5811 60.2642 

18 12.9017 12.8657 

19 -44.9481 -44.9732 

20 -80.9485 -80.9485 

21 -74.6286 -74.4715 

22 -28.4727 -28.3051 

23 31.9604 31.2631 

24 72.1508 71.8033 

25 71.8607 71.3803 

26 33.8458 33.5386 

27 -18.4783 -18.5549 

28 -55.9572 -56.1478 

29 -60.8923 - 

30 -34.7771 - 

 ( )
2

MSE  0.1294 

 

Firstly, by using the data in Table 1, 

estimations based on MinMaxEnt distribution 

are obtained for missing values in each 

position given constraints up to lag two 

autocovariances. These estimations are 

denoted by (MinMaxEnt)2. It is seen that 

calculated mean square error (MSE) is quite 

small. The MSE is the second moment (about 

the origin) of the error, and thus incorporates 

both the variance of the estimator and its bias. 
Thus, we can performance of estimation 

method based on MinMaxEnt distribution is 

good. 

Secondly, by using the same data set in 

Table 1, estimations based on MinMaxEnt 

distribution are obtained for missing values in 

each position given constraints up to lag three 

autocovariances. These estimations are 

denoted by (MinMaxEnt)3. 

Table 2 The data generated from AR(4) and 

MinMaxEnt estimations of missing values in 

each position  

t  ( )X t  ( )
3

MinMaxEnt  

1 -1.9172 - 

2 8.8041 - 

3 5.8994 - 

4 -4.9992 -5.2914 

5 -11.4250 -11.8093 

6 -3.6937 -3.6118 

7 16.4869 16.1592 

8 33.3703 33.2251 

9 30.1568 29.5001 

10 2.4457 2.6745 

11 -34.1657 -34.6565 

12 -56.8119 -56.8670 

13 -47.0279 -47.0769 

14 -6.0415 -6.4176 

15 43.5992 43.4434 

16 72.2938 71.8809 

17 60.5811 60.3586 

18 12.9017 12.8027 

19 -44.9481 -45.0940 

20 -80.9485 -80.9485 

21 -74.6286 -74.7012 

22 -28.4727 -28.3925 

23 31.9604 31.3760 

24 72.1508 72.0291 

25 71.8607 71.5250 

26 33.8458 33.5998 

27 -18.4783 -18.5836 

28 -55.9572 - 

29 -60.8923 - 

30 -34.7771 - 

 ( )
3

MSE  0.0861 

 

In these MSE’s comparison in Table 1 

and Table 2, we can see that MSE of 

MinMaxEnt estimations with lag three 

autocovariances ( )
3

MSE  is smaller than 

( )
2

MSE  of MinMaxEnt estimations with lag 

two autocovariances ( )
2

MSE . Thus, we think 

that this result comes from the fact that 

(MinMaxEnt)3 shows better performance than 

(MinMaxEnt)2.  
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6 Simulation Study 
In this section, in order to test 

effectiveness of this estimation method, we 

apply mentioned method to simulated data sets 

derived from same time series model ( )4AR . 

One way to obtain such a large amount of data 

is by simulation using the computer. However, 

in this study, we have written the programme 

to estimate of missing values in each position 

and to calculate the MSE. Estimation process 

based on MinMaxEnt Distribution with lag two 

autocovariances is realized one hundred times 

for the generated data sets of which sample 

size are 50 under the assumption that the value 

in each position is taken (accepted) as missing 

value. 

 The simulation was carried out by 

following a number of steps. These were: 

1. Generate specific time series model 

data sets for testing. 

2. Take out a single value from the data 

set and store it at another cell for 

comparison. 

3. Apply the MinMaxEnt estimation 

method to each value in data set one 

by one. 

4. Calculate the mean square error. 

5. Repeat the process one hundred times, 

determine the MSE for each data set. 

The results of simulation study are as follows 

in Table 3 and Table 4.  

According to our results in Table 3 and 

Table 4, the performance of the developed 

method is pretty good due to very small MSE 

values. 

 

Table 3 Calculated MSE Values of 100 Time 

series generated from AR(4) Model 

No MSE No MSE 

1 0.0699 51 0.2270 

2 0.3352 52 0.1176 

3 0.0906 53 0.2740 

4 0.1815 54 0.3734 

5 0.2406 55 0.1158 

6 0.1940 56 0.0735 

7 0.1394 57 0.1205 

8 0.1156 58 0.3967 

9 0.5051 59 0.2581 

10 0.0865 60 0.0951 

 

 

 

Table 4 Calculated MSE Values of 100 Time 

series generated from AR(4) Model 

(continue) 

No MSE No MSE 

11 0.0775 61 0.0692 

12 0.1982 62 0.1343 

13 0.0743 63 0.0883 

14 0.1398 64 0.0998 

15 0.5759 65 0.1356 

16 0.1246 66 0.5838 

17 0.1907 67 0.3519 

18 0.0688 68 0.1029 

19 0.1121 69 0.1418 

20 0.1085 70 0.0707 

21 0.0699 71 0.0925 

22 0.0872 72 0.2429 

23 0.2822 73 0.1568 

24 0.0793 74 0.1428 

25 0.0452 75 0.2707 

26 0.0763 76 0.1224 

27 0.1029 77 0.1871 

28 0.1099 78 0.0910 

29 0.3705 79 0.1458 

30 0.1619 80 0.0605 

31 0.0780 81 0.1445 

32 0.5575 82 0.0974 

33 0.1527 83 0.1649 

34 0.1021 84 0.1004 

35 0.1921 85 0.0804 

36 0.0978 86 0.3792 

37 0.5068 87 0.1383 

38 0.1007 88 0.4664 

39 0.0805 89 0.1780 

40 0.0904 90 0.1030 

41 0.0699 91 0.1060 

42 0.1066 92 0.1581 

43 0.1057 93 0.0947 

44 0.1204 94 0.1138 

45 0.2319 95 0.1410 

46 0.2078 96 0.1156 

47 0.2491 97 0.1092 

48 0.1083 98 0.0939 

49 0.1085 99 0.1581 

50 0.1080 100 0.0997 

 

Moreover, It is seen that determined 

MSE values is very much smaller than 1, while 

standard deviation of random noise is 1. 
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6 Conclusion 
MinMaxEnt distribution out of GEOD 

is very important in modeling statistical data. 

In the present study, by virtue of MaxEnt 

Distribution for a stationary time series giving 

autocovariance constraints up to lag m, 

Generalized Entropy Optimization 

Distributions are introduced. Then Generalized 

Entropy Optimization Distributions with 

moment constraints dependent on parameter 

are investigated. Furthermore, we have showed 

that the MinMaxEnt  distribution out of GEOD 

successfully can be applied also to estimating 

problems for observed time series with missing 

value. 

 In this study, mentioned method is 

applied to the data set generated by ( )4AR  

process under the assumption that the value in 

each position is accepted as missing value.  

However, proposed method can be also 

used to interpolate and forecast more than one 

missing values in time series. Furthermore, A 

comparison of this method with other 

estimation and interpolation methods can be 

realized. 
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