
Comparison of Design and Performance of Snow Cover Computing on
GPUs and Multi-core processors

LADISLAV HURAJ1, VLADIMÍR SILÁDI 2, JOZEF SILÁČI2

1Department of Applied Informatics
University of SS. Cyril and Methodius in Trnava

Nám. J. Herdu 2, 917 01 Trnava
SLOVAK REPUBLIC

ladislav.huraj@ucm.sk www.ucm.sk
2Department of Computer Science

University of Matej Bel
Tajovskeho 40

SLOVAK REPUBLIC
{siladi, silaci}@fpv.umb.sk www.umb.sk

Abstract: The aim of this work is the depth of the snow cover computing in the desired point based on the
geographical characteristics of a specific geographical point in a modeled area. The measured data are known
on few places. These places are coincident with raingauge stations. These data have been collected by many
continuous observations and measurements at the specific climatologic raingauging stations of Slovak
Hydrometeorogical Institute. An interpolation method is necessary to obtain a representation of real situation
about whole surface. The main characteristic of the interpolation computing is the fact that it is time-
consuming. In paper, we present two cheap approaches of HPC. The first solution is a utilization of graphics
processing units (GPUs) where the availability of enormous computational performance of easily
programmable GPUs can rapidly decrease time of computing. The second one is a utilization of multi-thread
CPUs. In our article we demonstrate how to deploy the CUDA architecture, which utilizes the powerful parallel
computation capacity of GPU, to accelerate computational process of snow cover depth using the inverse-
distance weighting (IDW) method. The performance of GPU we face with OpenMP implementation of IDW
method. We consider variable number of threads per CPU. The outputs are visualized by the GIS Grass tool.

Key-Words: GPGPU, CUDA, Multi-core processor, OpenMP, Snow cover depth, Interpolation

1 Introduction
A big attention in the world is given to the research
of prognosis if the depth of snow cover depends on
influence of global warming. The high performance
computing resources (supercomputers, computer
grids) are used for this purpose [1,2,6]. In most
cases, the processing relates to a much larger area
than continents or countries [2,3,4,5]. Determination
of the snow cover depth in a defined territory seems
to be problematic because of absence of raingauge
stations. Therefore, the computationally time-
consuming interpolation methods for determination
of the snow cover depth are necessary where the
data from nearby raingauge stations are used. A
hardware development allows achieving good result
and low cost.

Our objective in this paper is to compare two
possibilities to obtain computation acceleration. The

aim of method is to develop GPGPU (General-
Purpose computing on Graphics Processing Units)
and multi-core CPU design that can be used for
implementation of snow cover modeling and for
acceleration of the computing. The utilization of
GPGPU and multi-core CPU will be tested for one
method used to use them for the interpolation in
geographical information systems (GIS). The
method is inverse-distance weighting method
(IDW).

GPGPU is the method of using the graphical
processing unit (GPU) to process programs that are
normally executed by CPUs. This has been possible
with the addition of programmable stages to the
GPUs and with development toolkits and libraries
from the vendors [15].

Graphics Processing Units (GPUs) are widely
used among researchers and developers as
accelerators for applications outside the domain of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1284 Issue 10, Volume 7, October 2010

traditional computer graphics. This trend largely
results from the great improvements in GPU
programmability [7]. CUDA (Compute Unified
Device Architecture) is a parallel computing
architecture developed by NVIDIA which presents
to the programmer a fairly generic abstraction of a
manycore architecture supporting fine-grained
parallelism. CUDA and the GPU therefore provide
massive, general purpose parallel computation
resources with the potential for speedups of data
processing.

The multi-core processors are ordinary used in
the high-performance computing (HPC). Our aim of
the experiment has been to utilize the multi-core
CPUs, which are used ordinary in personal
computers, in the effective and the simplest way.
The program executed by single core CPU has been
remade into a parallel program with OpenMP
library.

In our article the processed data by GPGPU is
climatologic data. For the Slovak Republic are
available widely relevant data monitored by Slovak
Hydrometeorological Institute, which has been
recording the trends of snow conditions on the
specific hydro-meteorological stations for at least 20
years. Using these data, we have tried to generate
computer models of the depth of snow cover for a
defined area during the period of time and to
visualize the data by geographic information
systems.

The rest of the paper is organized as follows.
First we review the CUDA and OpenMP
programming models briefly in section 2. Section 3
introduces the background of snow cover modeling.
Section 4 describes the algorithms and their
mapping on the GPU and multi-core CPU with
experimental results. The conclusion comes in
section 5 with an outlook to further work.

1 CUDA and OpenMP programming
models

In paper, we consider three computer
architectures according to Flynn’s taxonomy. The
first one is SISD computer architecture represented
with usual processor for PC. The second one is
SIMD computer architecture represented with
graphic card. And the last one is MIMD architecture
represented with the usual multi-core processor for
PC. The SIMD and MIMD belong in the part of
parallel architectures, but programming style is
pretty different. The MIMD architecture has got a
variety of implementations. Most often they are
multiprocessors and multicomputers. The

programming style is in either event different. The
multiprocessors allow using automatic
parallelization unlike multicomputers. The
automatic parallelization is applicable on multi-core
processors so as for the multiprocessors. An
utilization of OpenMP libraries in an initial
sequential program is easy way to do that.

Graphic cards, especially GPUs, represent quite
new possibility for HPC. Parallel computing
architecture developed by NVIDIA named CUDA
allows programmers to use the graphic cards for
parallel programming.

2.1 CUDA
The Compute Unified Device Architecture (CUDA)
allows developers to use the C programming
language for the development of general-purpose
applications using fine-grain parallelism. CUDA is
currently supported only on NVIDIA GPUs, but
recent work has shown the viability of compiling
CUDA programs for performance on multi-core
processors [8]. A simple extension to C had invoked
that more non-graphics developers port their
existing applications to CUDA. CUDA consists of a
runtime library and an expanded version of C.
CUDA gives developers access to the native
instruction set and memory of the parallel
computational elements in CUDA GPUs. It includes
the CUDA Instruction Set Architecture (ISA) and
the parallel compute engine in the GPU [9].

A single source program contains both the host
(CPU) code and the device (GPU) code which are
automatically separated and compiled by the CUDA
compiler tool chain, Figure 1.

Fig. 1 Heterogeneous Programming in CUDA

CUDA is based on the notion of a kernel

function, which is a single routine that is invoked
concurrently across many thread instances; a
software controlled scratchpad, which CUDA calls
the “shared memory”, in a Single Instruction
Multiple Data (SIMD) fashion for each SIMD core;

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1285 Issue 10, Volume 7, October 2010

and barrier synchronization. Each GPU thread is a
fully independent, scalar, and can execute arbitrary
code and access arbitrary addresses. Moreover, each
of the GPU threads is given a unique ID that is
accessible within the kernel through the built-in
threadIdx variable [10,11,13].

CUDA presents a virtual machine consisting of
an arbitrary number of streaming multiprocessors
(SMs), which appear to be 32-wide SIMD cores
with a total of up to 512 thread contexts. Kernels are
applied to a 2D grid that is divided into as many as
64K 3D thread blocks. Each thread block is mapped
in its entirety and executes to completion on an
arbitrary SM. All thread blocks in a kernel run to
completion before a subsequent kernel may start,
offering a global memory fence. Data in the GPU is
stored in special structure. Each group of data is
called a texture [10,11,13,14].

2.2 OpenMP
OpenMP (Open Multi-Processing) is an

application programming interface (API) that
supports shared-memory multiprocessors
programming in C, C++ and Fortran. The interface
consists of a set of compiler directives, library
routines, and environment variables that influence
run-time behavior. OpenMP is a portable, scalable
model that gives shared-memory parallel
programmers a simple and flexible interface for
developing parallel applications for platforms
ranging from the desktop to the supercomputer [22].
It is useful programming tool to develop parallel
programs for desktops equipped with some multi-
core processor.

The interface allows dividing a code into two
inconsequent parts. The first part of code is
executable parallel and the second part contains the
part of non-parallelized (sequential) code, Figure 2.

Fig. 2 Master thread forks off a number of threads

The code for parallel execution is enclosed into
compiler directives of OpenMP #pragma omp
<rest of pragma> .

Programmers have to find out the parts, which
are suitable for parallelization, place
synchronization, locate place of variables in
memories (shared, local), set appropriate number of
threads, etc. The allocation of threads is not so
important task for programmers. Using OpenMP in
this way we can achieve task and data parallelism.

3 Snow Cover Modeling and
Interpolation

The depth of the snow cover is a very variable
meteorological element in the landscape. It depends
on many factors, mainly on snow precipitation,
altitude, air temperature, profile of the relief, solar
power, cloudiness, air temperature inversion, etc.
The measurement of the snow cover is taken by
meteorological, climatologic and precipitation
stations. The total depth of snow is measured and
stored, i.e. the depth of snow and the depth of new
snow cover. We are able to analyze the depth of the
snow cover in detail.

The analysis is based on many continuous
observations and measurements at the specific
climatologic stations. Geographically we can strictly
characterize all these gauging places by the altitude,
latitude and longitude, as well as by the detailed
characteristics of the relief shape.

Fig. 3 Location of the 17 meteorological stations [20]

The aim of this work is the depth of the snow
cover computing in the arbitrary point based on the
geographical characteristics of a specific
geographical point in a modeled area. The result is
derived from the available data, which have been

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1286 Issue 10, Volume 7, October 2010

obtained from metrological stations, climatologic
stations and rain gauge stations from a defined
landscape area [17, 18].

As an example of the application of our designed
method the geomorphological entity Zvolenská
kotlina as a part of Slovak Republic has been
chosen, which is exactly defined by its borders. We
use the digital terrain model of this entity, which has
been done. The 17 meteorological stations of Slovak
Hydrometeorogical Institute are situated in this
defined area and their long-term measurements are
available for our research, Figure 3. We decided for
the period of years 1990–2009.

The input data are stored in the large matrices.
The output values depend on the time-consuming
computing process and CUDA and OpenMP were
deployed to accelerate these operations.

In addition, the problem of used coordinates
system has to be solved, because the coordinates
system used in Czech Republic and Slovak Republic
was another than the coordinates system used in GIS
Grass. Data provided by Slovak Hydrometeorogical
Institute have coordinates (latitude, longitude)
measured in WGS-84 coordinates system and on the
other hand data visualized in GIS Grass has been
coded in S-JTSK [19]. The S-JTSK coordinates
system was implemented and the conversion of
coordinates from WGS-84 into S-JTSK was
necessarily performed [21]. This data transformation
was applied during computing only once to
transform WGS-84 coordinates of the 17 raingauge
stations into S-JTSK coordinates system. The
consequent computations were performed in the S-
JTSK coordinates system.

3.1 Interpolation Methods
A couple of interpolation methods are used in GIS
to obtain required data from measured data. We
experimented with three of them:
1. Triangular linear interpolation method,
2. Kriging interpolation method,
3. Inverse-distance Weighting Method.

In our experiment we have to model 3D space.
However, we use 2D data in the interpolation
methods. The altitude is omitted. The little change
would be made in the distance computation if the
altitude was considered. This simplification does not
have an essential influence on examined comparison
of the computing performance.

The triangular method offers an estimation of the
unknown value by linear interpolation. The missing
climatologic value in known point, given by the
coordinates, is calculated from data of the three

closest points. Point lies within the area bounded by
three lines (triangle). Each line passes through the
two points, Figure 4. This method is relatively
simple. It is suitable for basic geographical tasks. In
relation to the time complexity of computing is this
method relatively fast and it can be implemented
and performed on weaker computers. For the
modeling of complex situations is necessary to
choose more efficient and accurate method, e.g.
kriging.

Fig. 4 Linear interpolation method for one point in
the location with 17 raingauge stations [20]

Kriging belongs to the family of linear least
squares estimation method. This method has been
used in geography and in hydrogeography, too. It is
one of the frequently used methods to obtain the
reliable estimations (local or global) of observed
values. Despite of exact results this method uses
more complex mathematical apparatus and it is very
time consuming.

We decided to use an inverse-distance-weighting
(IDW) algorithm to interpolate the snow cover
measurements, as a compromise between time
complexity and accuracy.

3.2 Inverse-distance Weighting Method
This deterministic model is relatively fast and easy
to compute, and straightforward to interpret. The
IDW method as a deterministic spatial interpolation
model is one of the more popular methods adopted
by geoscientists and geographers partly because it
has been implemented in many GIS tools [12]. The

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1287 Issue 10, Volume 7, October 2010

general assumption of this method is that the
attribute values of any given pair of points are
related to each other, but their similarity is inversely
related to the distance between the two locations.
The general idea of IDW is that the attribute value
of an un-sampled point is the weighted average of
known values within the neighborhood, and the
weights are inversely related to the distances
between the location of un-sampled point and the
location of its neighbors. The value of inverse-
distance weight is modified by a constant power
with increasing distance. This dependence can be
expressed by the relationship (1).

∑

∑

=

==
n

i
k
i

n

i
k
i

i

d

d

y

y

1

1
0 1

 (1)

Where y0 is value of un-sampled point; di denotes
the distance between un-sampled point and sampled
location i and yi is given value at sampled locations
i, Figure 5.

Fig. 5 IDW method for one point in the location with
17 raingauge stations [20]

4 Sequential and Parallel
Implementation of IDW Method

To write a CUDA program and an OpenMP
program, we designed the sequential version of
program. Our implementation was written in
language C, because the code was easier modifiable
on code for GPU and multi-core CPU. In addition to
the changes in the program code, the time

calculating commands had to be changed for each
programming model. We used the header file
time.h:

#include <time.h>
…
clock_t start = clock();
…
printf("Elapsed time: %f\n",
((double)clock() -
 start) / CLOCKS_PER_SEC);

A tendency to use these commands suitable for

the sequential program made towards incorrect
results in the parallel programs. These commands
had to be overridden with related commands from
the corresponding OpenMP or CUDA libraries. We
used header file omp.h in the OpenMP
implementation:

#include <omp.h>
…
double startomp = omp_get_wtime();
…
double endomp = omp_get_wtime();
printf("Elapsed time openmp:
%.4g\n",endomp - startomp);

Similarly, we used header file omp.h in the
CUDA implementation:

…
cudaEvent_t c_start,c_stop;
cudaEventCreate(&c_start);
cudaEventCreate(&c_stop);
cudaThreadSynchronize();
cudaEventRecord(c_start,0);

//copying data from host to device
//call of kernel
//copying data from device to host
…
cudaEventRecord(c_stop,0);
cudaThreadSynchronize();
cudaEventElapsedTime(&memsettime,
c_start, c_stop);
cudaEventDestroy(c_start);
cudaEventDestroy(c_stop);
printf("Cas vypoctu raster [CUDA -
cudaEventElapsedTime]: %.4f\n",
memsettime / 1000.0);

The change of the sequential program code to the
multi-core CPU’s program was simpler than the
change to the CUDA implementation. In addition,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1288 Issue 10, Volume 7, October 2010

we had to provide a data transfer from the host
(CPU) to the device (GPU – graphic card) and vice-
versa in the CUDA implementation.

4.1. Sequential Program

The sequential program consists of several
functions. The function IDW has got significant
position, because it is the implementation of the
IDW method. This function (and whole program)
uses common programmer-defined data-type
RASTER. This data-type contains all values needed
for GIS Grass visualization (location of map
segment, number of raster columns, number of
raster rows, array of visualized values, etc.). The
function IDW computes absent data from measuring
data. The measuring data are stored in data-type
DATA. This data-type keeps data from raingauge
stations. The code of IDW method in language C
has this representation:

RASTER* IDW(RASTER* raster, DATA*
data)
{
 int i,j;
 float sum_up;
 float sum_down;
 float distance;
 for(i=0;i<raster->points_count;
i++)
 {
 sum_up = 0;
 sum_down = 0;
 for(j =0; j < data->_data;
j++)
 {
 distance = SQR(raster-
>x[i] - data->x[j]) + SQR(raster-
>y[i] - data->y[j]);
 sum_up += (data-
>value[j]/distance);
 sum_down +=
(1.00/distance);
 }
 raster->value[i] =
sum_up/sum_down;
 }
 return raster;
}

4.2. Parallel Program for GPU
To write a CUDA program, we obeyed the
following steps from [7] starting from a sequential
version and proceeds through:

4. Identify the kernel and package it as a separate
function.

5. Specify the GPU threads’ grid and partition the
computation among these threads.

6. Manage data transfer between the memory of
host and GPU memories before and after the
kernel invocation.

7. Make memory optimizations in the kernel.
8. Make further optimizations in the kernel for

optimizing the single thread performance and
the level of parallelism.

The CUDA kernel is written below:

__global__ void cudaIDWKernel(float
*raster_x, float *raster_y, float
*raster_values, int points_count,
float *data, float *data_x, float
*data_y, int data_count)
{
 unsigned int inx = blockDim.x *
blockIdx.x + threadIdx.x;
 unsigned int j;

 float sum_up;
 float sum_down;
 float distance;
 if (inx < points_count)
 {
 sum_up = 0;
 sum_down = 0;
 for(j =0; j < data_count;
j++)
 {
 distance =
SQR(raster_x[inx] - data_x[j]) +
SQR(raster_y[inx] - data_y[j]);
 sum_up += (data[j] /
distance);
 sum_down += (1.0f /
distance);
 }
 raster_values[inx] = sum_up /
sum_down;
 }
}

4.3. Parallel Program for Multi-core
processor
The parallelization of the sequential program is not
difficult. OpenMP directives of C compiler are
placed into previous sequential program code. A
separation of variables (firstprivate, private, shared)
is made by programmer, only. The adapted program
code is written belowe:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1289 Issue 10, Volume 7, October 2010

RASTER* IDW_OMP(RASTER* raster,
DATA* data)
{
 int i,j;
 float sum_up;
 float sum_down;
 float distance;
 omp_set_num_threads(n);
 #pragma omp parallel for
firstprivate(raster,data)
private(i, j, sum_up, sum_down,
distance) schedule(dynamic, 500)
 for(i=0;i<raster->points_count;
i++)
 {
 sum_up = 0;
 sum_down = 0;
 for(j =0; j < data->_data;
j++)
 {
 distance = SQR(raster-
>x[i] - data->x[j]) + SQR(raster-
>y[i] - data->y[j]);
 sum_up += (data-
>value[j]/distance);
 sum_down +=
(1.00/distance);
 }
 raster->value[i] =
sum_up/sum_down;
 }
 return raster;
}

5 Solution and Performance
Evaluation
In the experimental evaluation of our computing we
focused on the performance improvements from
CUDA implementation and multi-core
implementation. We used two computers and
investigated two likely scenarios of use:
1. CPU
2. GPU.

We made five experiments on CPU. Two of them
ran on dual-core CPU and other three ran on quad-
core CPU with Hyper-Threading Technology.

The first couple of experiments were executed on
dual-core processor Intel Core 2 Duo CPU E7400 @
2.80GHz (C2D E7400). In this case the OpenMP
program was executed as single-thread application
and then as two-threads application. The second
approach allowed to use full computing power of
this CPU.

The second triplet of experiments was executed
on quad-core processor Intel Core i7-920 2.66GHz
(Core i7-920). In this case the OpenMP program
was executed as:
1. single-thread application,
2. four-thread application,
3. eight-thread application.

The third approach allowed to use full computing
power of this CPU.

All experiments on CPUs were compared to the
second experiment on the GPU. Run times for GPU
implementation was measured on the dual-core
machine, where the first couple of experiments were
executed. This machine was equipped with two a
NVIDIA GeForce 9800 GT graphic cards. These
cards offer 112 CUDA cores, 512 MB RAM and
CUDA compute capability 1.1.

The computers were installed with operating
system Linux Ubuntu, version 9.04. The NVIDIA
driver of graphic cards had a version 195.36.15. The
C code was compiled using GCC, version 4.3.3. The
CUDA code was compiled using NVCC, version
0.2.1221, CUDA Toolkit, version 3.0.

The speed-up of computing was detected on ten
kinds of raster. The two-dimensional raster differed
in pixel density. One-dimensional matrices
represented each raster, because of format of GIS
Grass input file. The sizes of the matrices had got
ten values from 1000 × 1000 to 10 000 × 10 000,
Table 1.

In case of the OpenMP program we modified the
type of processor and then the number of used
threads for each type of them. We used OpenMP
command omp_set_num_threads(n) for that.
Because OpenMP is dedicated for numbers of
threads, we had to set schedule on 500. It was the
best value to reach desired execution time. We used
directive of compiler #pragma omp parallel
for firstprivate(raster,data)
private(i, j, sum_up, sum_down,
distance) schedule(dynamic, 500) .
The value was founded by experimentation.

We obtained fifty results of measured time. The
results are figured in columns: C2D E7400, C2D
E7400 (2 threads), Core i7-920 (1 thread), Core i7-
920 (4 threads), Core i7-920 (8 threads), Table 1.

We made a couple experiments to fine set block
size. The first of all we tried to use maximum
threads per block, Figure 6. Finally, in experiment
with CUDA, we used CUDA Occupancy Calculator
to set up two parameters: number of block (grid)
and number of threads per block (blocksize). These
parameters are important in command, which calls
kernel function:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1290 Issue 10, Volume 7, October 2010

…
dim3 dimBlock(blocksize);
dim3 dimGrid(grid);
cudaIDSKernel<<<dimGrid,
dimBlock>>>(d_x, d_y, d_values,
sendBlockSize, d_data, d_data_x,
d_data_y, data->_data);
…
Tab. 1 Execution time in seconds.

N

C
2D

 E
74

00
 (

1
th

re
ad

)

C
2D

 E
74

00
 (

2
th

re
ad

s)

C
or

e
i7

-9
20

 (
1

th
re

ad
)

C
or

e
i7

-9
20

 (
4

th
re

ad
s)

C
or

e
i7

-9
20

 (
8

th
re

ad
s)

G
eF

or
ce

 9
80

0
G

T
51

2M
B

1.00E+06 0.1779 0.0892 0.2079 0.0695 0.0550 0.0500

4.00E+06 0.7117 0.3557 0.8311 0.2771 0.2089 0.1947

9.00E+06 1.6000 0.7996 1.8687 0.6231 0.4687 0.4345

1.60E+07 2.8450 1.4840 3.3215 1.1114 0.8321 0.7738

2.50E+07 4.4430 2.2210 5.1892 1.7305 1.2976 1.2065

3.60E+07 6.3970 3.1960 7.4727 2.4913 1.8692 1.7425

4.90E+07 8.7040 4.3510 10.1710 3.3907 2.5473 2.3637

6.40E+07 11.3700 5.6830 13.2830 4.4284 3.3192 3.0826

8.10E+07 14.3900 7.1920 16.8009 5.6045 4.2036 3.8956

1.00E+08 17.7700 8.8780 20.7525 6.9194 5.1861 4.8208

Fig. 6 CUDA Visual Profiler: grid size, block size,
shared memory per block and register per threads

According to the results of the CUDA
Occupancy Calculator we chose 128 threads per
block. The number of block varied according to size
of computed matrix. The program used 12 registers
per thread and 76 B shared memory per block.

These values yielded optimal results using the
graphic card GeForce 9800 GT. These
specifications of GPU (compute capability 1.1)
enable 83% utilization of the multiprocessors, only.

The size of block has some limits. In case of
huge matrices we had to divide them. We could use
2D array, but we preferred one-dimensional array
solution.

The results of experiments with GPU are figured
in column: GeForce 9800 GT512MB, Table 1. GPU
implementation has got one stumbling block. The
data have to be moved from a host (CPU) to (GPU).
This fact could be have significant computing time
overhead. We used the CUDA Visual Profiler to
clarify this problem. The profiler showed in all
cases, that the overhand had been no more than
30 % of the executing time, Figure 7. This
communication overhead plays no significant role in
execution in comparison with other observed
execution times, Figure 9.

Fig. 7 CUDA Visual Profiler: Computing time –
data transfer and kernel execution

The summary of the computing times for all 10

experiments on GPU is showed on Figure 8. The
bars of the data transfers are severalfold smaller
then the bars of kernel executions. The first five
triplets of bars described one execution time of
matrices computation with size (in stages): from
1000 × 1000 to 5000 × 5000. The next two triples of
bars represent execution time of matrix with size
6000 × 6000. The matrix was divided into two parts,
because of the block size limit mentioned above.
The same occurred in case of matrix with size
7000 × 7000. The matrices with larger size then
7000 × 7000 were divided onto three parts and
computed consequently.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1291 Issue 10, Volume 7, October 2010

Fig. 8 CUDA Visual Profiler: Computing time plot
of 10 experiments on GPU

Results of our experiments are matched in the
chart, Figure 9. The executing time sunk in
dependence on number of used threads. The dual-
core CPU returned better execution time than quad-
core CPU in case of one used thread. GPU achieved
the best result, however quad-core processor Intel
Core i7-920 achieved comparable results, if all 8
threads were used. The determining factor could be
a price of hardware. We used run-out model of
graphic card (4 years old). Its price is around 90.21
€ (current price). The price of Intel Core i7-920
2.66GHz is 272.63 € (current price).

Fig. 9 Chart of execution time depending up
problem size (raster size)

For our experiments we chose data from January,

the 5th 2000, collected by the 17 gauge stations
mentioned above, Figure 4. Outputs of our
experiments were visualized by the GIS Grass
(Geographic Resources Analysis Support System)
version 6.4.0. Figure 10 shows an example of

graphical output of our experiment when the depth
of snow cover is visualized in centimeters.

Fig. 10 Visualized depth of snow cover of Zvolenská
kotlina

6 Conclusion
In our article we have shown that snow cover
computing benefit from using CUDA GPUs. or
multi-core CPU. For computing of non-cover points
we have used an inverse-distance-weighting
algorithm and we process meteorological data of
twenty years period. The CUDA implementation
provides significant speedups on the C
implementation.

Overall, our experiences with CUDA show the
power of the GPU as a parallel platform, and help
demonstrate how to utilize the GPGPU
programming for geographic data processing. The
same was showed in case of multi-core processors.
Furthermore, the both GPU and multi-core CPU
offer comparable computing performance. The
determining factor to use one or other method is the
price of hardware.

In the future, we are going to implement more
efficient algorithms via implementing other
interpolation methods where we suggest more
rapidly speed-up of the GPGPU programming.
Moreover, we also plan to transform the
computation from GPGPU programming to Grid
Computing.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1292 Issue 10, Volume 7, October 2010

References:
[1] Shukinov, A. I., Butenkov, S. A., Zhukov, A.

L..: Blanket of Snow State Physical Model For
Clustering Calculations Based on Information
Granulation. In: Izvesťja JUFU. Techničskie
nauki. Vol. 97, No. 8, 2009, pp. 213-223, ISSN
1999-9429.X2. Author, Title of the Book,
Publishing House, 200X.

[2] Šmakin, A. B., Turkov, D. B., Michjlov, A. J.:
Modeľ snežnogo pokrova s učetom sloistoj
struktury i eeevoľucii. In: Kriosfera Zemli. Vol.
XIII, No. 4, pp. 69-79, ISSN 1560-7496.

[3] Zhiming, L., Chunxiao, Z., Jianxia, S., YE, W.:
The Extraction of Snow Cover Information
Based on MODIS Data and Spatial Modeler
Tool. In: Proceedings of the 2008 International
Workshop on Education Technology and
Training & 2008 International Workshop on
Geoscience and Remote Sensing. Vol. 1, 2008,
pp. Printed: 29. 4. 2010 9:48:53 VEGA/A- 2 0
1 1 /3 (item - continued) 836-839, ISBN:978-0-
7695-3563-0 .

[4] Takala, M., Pullainen, J.: Detection of Snow
Melt Using Different Algorithms in Global
Scale. In: Proceedings of 2008 IEEE
International Geoscience & Remote Sensing
Symposium, July 6-11, 2008, Boston,
Massachusetts, U.S.A.

[5] Klaes, K.D.: The EPS/Metop System as a
contribution to Operational Meteorology and
Earth System Monitoring, In: 2005 WSEAS Int.
Conf. on REMOTE SENSING, Venice, Italy,
November 2-4, 2005 (pp.43-48)

[6] Kirk, D., Hwu, W.: Programming Massively
Parallel Processors. A Hands-on Approach.
Burlington: Morgan Kaufmann Publishers,
2010, ISBN: 978-0-12-381472-2.

[7] Han, T.D., Abdelrahman, T. S., “hiCUDA:
High-Level GPGPU Programming,” IEEE
Transactions on Parallel and Distributed
Systems, 31 Mar. 2010, IEEE Computer
Society Digital Library. IEEE
Computer Society,
<http://doi.ieeecomputersociety.org/10.1109/T
PDS.2010.62>.

[8]] Stratton, J. A., Stone , S. S., and Hwu , W.
W., “MCUDA: An efficient implementation of
CUDA kernels for multi-core CPUs,” in
Proceedings of the 21st International
Workshop on Languages and Compilers for
Parallel Computing, Springer-Verlag Berlin
Heidelberg, 2008.

[9] Wang, Y., Feng, Z., Guo, H., Ch. Yang, He, Y.,
“Scene Recognition Acceleration Using CUDA
and OpenMP,” pp.1422-1425, First IEEE

International Conference on Information
Science and Engineering, 2009.

[10] Boyer, M., Tarjan ,D., Acton, S.T., Skadron,
K., “Accelerating leukocyte tracking using
CUDA: A case study in leveraging manycore
coprocessors,” pp.1-12, IEEE International
Symposium on Parallel&Distributed
Processing, 2009.

[11] “NVIDIA CUDA Programming Guide v2.0,”
Availabe on:
http://developer.download.nvidia.com/compute/
cuda/2_0/docs/NVIDIA_CUDA_Programming
_Guide_2.0.pdf , July 2008.

[12] Lu, G. Y., Wong, D. W.: An adaptive inverse-
distance weighting spatial interpolation
technique, In: Computers & Geosciences, Vol.
34, No. 9, September 2008, pp. 1044-1055.X1.

[13] Romero, S., Trenas, M.A., Gutierrez, E.,
Zapata, E.L.: Locality-Improved FFT
Implementation on a Graphics Processor, In:
Proceedings of the 7th WSEAS Int. Conf. on
Signal Processing, Computational Geometry &
Artificial Vision, Athens, Greece, August 24–
26, 2007

[14] Vlček, V.V.: Computation of Filtered Back
Projection on Graphics Cards, In: Proceedings
of the 5th WSEAS Int. Conf. on SIGNAL,
SPEECH and IMAGE PROCESSING, Corfu,
Greece, August 17-19, 2005 (pp 34–39).

[15] Asavei, V., Moldoveanu, A. D. B.,
Moldoveanu, F., Morar, A., Egner A..:
GPGPU for Cheaper 3D MMO Servers. In:
Proceedings of the 9th WSEAS International
Conference on TELECOMMUNICA-TIONS
and INFORMATICS (TELE-INFO '10): New
Aspects of Telecommunications and
Informatics, Catania, Sicily, Italy, May 29-31,
2010, pp. 238-243.

[16] Blišťan, P.: Priestorové modelovanie
geologických objektov a javov v prostredí GIS
systémov, In: Acta Montanistica Slovaca, Vol.
10, No. 3, pp. 296-299, 2005, ISSN 1335-1788.

[17] Polčák, N.: Možnosti spracovania mezoklímy
a miestnej klímy v územiach s chýbajúcou
klimatickou databázou na príklade Biosférickej
rezervácie Východné Karpaty. In. Geografický
časopis. 52.GÚ SAV, Bratislava, 2000, pp.
181–191, ISSN 0016-7193.

[18] Hlásny, T., Polčák, N.: Digitálny model reliéfu
a jeho využitie vo fyzickej geografii. In. Baran,
V. (edit.): Geografické štúdie Nr.8. Premeny
Slovenska v regionálnom a didaktickom
kontexte. FPV UMB, Banská Bystrica, 2001,
pp. 239–245, ISBN 80-8055-583-4.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1293 Issue 10, Volume 7, October 2010

[19] Gábor, T., Danišík, M.: Aproximácia
Křovákovho zobrazenia Lambertovým
konformným kuželovým zobrazením na území
Slovenska pre potreby GIS a GPS. In:
Kartografické listy. Vol. 11, pp. 100–102,
Bratislava, 2003, ISBN 80-89060-04-8.

[20] “Zvolenská kotlina”, 48°34'49.00"N and
19°07'34.00"E. Google Earth. April 15, 2010.

[21] Hrdina, Z: Transformace souřadnic ze systému
WGS-84 do systému S-JTSK. Praha: ČVUT,
1997, p. 21.

[22] “The OpenMP API specification for parallel
programming,” Availabe on:
http://openmp.org/wp/about-openmp/, April
2008.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ladislav Huraj, Vladimir Siladi, Jozef Silaci

ISSN: 1790-0832 1294 Issue 10, Volume 7, October 2010

