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Abstract: The aim of this work is the depth of the snow cover computing in the desired point based on the 
geographical characteristics of a specific geographical point in a modeled area. The measured data are known 
on few places. These places are coincident with raingauge stations. These data have been collected by many 
continuous observations and measurements at the specific climatologic raingauging stations of Slovak 
Hydrometeorogical Institute. An interpolation method is necessary to obtain a representation of real situation 
about whole surface. The main characteristic of the interpolation computing is the fact that it is time-
consuming. In paper, we present two cheap approaches of HPC. The first solution is a utilization of graphics 
processing units (GPUs) where the availability of enormous computational performance of easily 
programmable GPUs can rapidly decrease time of computing. The second one is a utilization of multi-thread 
CPUs. In our article we demonstrate how to deploy the CUDA architecture, which utilizes the powerful parallel 
computation capacity of GPU, to accelerate computational process of snow cover depth using the inverse-
distance weighting (IDW) method. The performance of GPU we face with OpenMP implementation of IDW 
method. We consider variable number of threads per CPU. The outputs are visualized by the GIS Grass tool. 
 
 
Key-Words: GPGPU, CUDA, Multi-core processor, OpenMP, Snow cover depth, Interpolation 
 

1 Introduction 
A big attention in the world is given to the research 
of prognosis if the depth of snow cover depends on 
influence of global warming. The high performance 
computing resources (supercomputers, computer 
grids ....) are used for this purpose [1,2,6]. In most 
cases, the processing relates to a much larger area 
than continents or countries [2,3,4,5]. Determination 
of the snow cover depth in a defined territory seems 
to be problematic because of absence of raingauge 
stations. Therefore, the computationally time-
consuming interpolation methods for determination 
of the snow cover depth are necessary where the 
data from nearby raingauge stations are used. A 
hardware development allows achieving good result 
and low cost. 

Our objective in this paper is to compare two 
possibilities to obtain computation acceleration. The 

aim of method is to develop GPGPU (General-
Purpose computing on Graphics Processing Units) 
and multi-core CPU design that can be used for 
implementation of snow cover modeling and for 
acceleration of the computing. The utilization of 
GPGPU and multi-core CPU will be tested for one 
method used to use them for the interpolation in 
geographical information systems (GIS). The 
method is inverse-distance weighting method 
(IDW). 

GPGPU is the method of using the graphical 
processing unit (GPU) to process programs that are 
normally executed by CPUs. This has been possible 
with the addition of programmable stages to the 
GPUs and with development toolkits and libraries 
from the vendors [15]. 

Graphics Processing Units (GPUs) are widely 
used among researchers and developers as 
accelerators for applications outside the domain of 
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traditional computer graphics. This trend largely 
results from the great improvements in GPU 
programmability [7]. CUDA (Compute Unified 
Device Architecture) is a parallel computing 
architecture developed by NVIDIA which presents 
to the programmer a fairly generic abstraction of a 
manycore architecture supporting fine-grained 
parallelism. CUDA and the GPU therefore provide 
massive, general purpose parallel computation 
resources with the potential for speedups of data 
processing. 

The multi-core processors are ordinary used in 
the high-performance computing (HPC). Our aim of 
the experiment has been to utilize the multi-core 
CPUs, which are used ordinary in personal 
computers, in the effective and the simplest way. 
The program executed by single core CPU has been 
remade into a parallel program with OpenMP 
library. 

In our article the processed data by GPGPU is 
climatologic data. For the Slovak Republic are 
available widely relevant data monitored by Slovak 
Hydrometeorological Institute, which has been 
recording the trends of snow conditions on the 
specific hydro-meteorological stations for at least 20 
years. Using these data, we have tried to generate 
computer models of the depth of snow cover for a 
defined area during the period of time and to 
visualize the data by geographic information 
systems. 

The rest of the paper is organized as follows. 
First we review the CUDA and OpenMP 
programming models briefly in section 2. Section 3 
introduces the background of snow cover modeling. 
Section 4 describes the algorithms and their 
mapping on the GPU and multi-core CPU with 
experimental results. The conclusion comes in 
section 5 with an outlook to further work. 

 
 

1 CUDA and OpenMP programming 
models 

In paper, we consider three computer 
architectures according to Flynn’s taxonomy. The 
first one is SISD computer architecture represented 
with usual processor for PC. The second one is 
SIMD computer architecture represented with 
graphic card. And the last one is MIMD architecture 
represented with the usual multi-core processor for 
PC. The SIMD and MIMD belong in the part of 
parallel architectures, but programming style is 
pretty different. The MIMD architecture has got a 
variety of implementations. Most often they are 
multiprocessors and multicomputers. The 

programming style is in either event different. The 
multiprocessors allow using automatic 
parallelization unlike multicomputers. The 
automatic parallelization is applicable on multi-core 
processors so as for the multiprocessors. An 
utilization of OpenMP libraries in an initial 
sequential program is easy way to do that. 

Graphic cards, especially GPUs, represent quite 
new possibility for HPC. Parallel computing 
architecture developed by NVIDIA named CUDA 
allows programmers to use the graphic cards for 
parallel programming. 

 
 

2.1 CUDA 
The Compute Unified Device Architecture (CUDA) 
allows developers to use the C programming 
language for the development of general-purpose 
applications using fine-grain parallelism. CUDA is 
currently supported only on NVIDIA GPUs, but 
recent work has shown the viability of compiling 
CUDA programs for performance on multi-core 
processors [8]. A simple extension to C had invoked 
that more non-graphics developers port their 
existing applications to CUDA. CUDA consists of a 
runtime library and an expanded version of C. 
CUDA gives developers access to the native 
instruction set and memory of the parallel 
computational elements in CUDA GPUs. It includes 
the CUDA Instruction Set Architecture (ISA) and 
the parallel compute engine in the GPU [9].  

A single source program contains both the host 
(CPU) code and the device (GPU) code which are 
automatically separated and compiled by the CUDA 
compiler tool chain, Figure 1. 

 

 
Fig. 1 Heterogeneous Programming in CUDA 

 
CUDA is based on the notion of a kernel 

function, which is a single routine that is invoked 
concurrently across many thread instances; a 
software controlled scratchpad, which CUDA calls 
the “shared memory”, in a Single Instruction 
Multiple Data (SIMD) fashion for each SIMD core; 
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and barrier synchronization. Each GPU thread is a 
fully independent, scalar, and can execute arbitrary 
code and access arbitrary addresses. Moreover, each 
of the GPU threads is given a unique ID that is 
accessible within the kernel through the built-in 
threadIdx variable [10,11,13]. 

CUDA presents a virtual machine consisting of 
an arbitrary number of streaming multiprocessors 
(SMs), which appear to be 32-wide SIMD cores 
with a total of up to 512 thread contexts. Kernels are 
applied to a 2D grid that is divided into as many as 
64K 3D thread blocks. Each thread block is mapped 
in its entirety and executes to completion on an 
arbitrary SM. All thread blocks in a kernel run to 
completion before a subsequent kernel may start, 
offering a global memory fence. Data in the GPU is 
stored in special structure. Each group of data is 
called a texture [10,11,13,14]. 

 
 

2.2 OpenMP 
OpenMP (Open Multi-Processing) is an 

application programming interface (API) that 
supports shared-memory multiprocessors 
programming in C, C++ and Fortran. The interface 
consists of a set of compiler directives, library 
routines, and environment variables that influence 
run-time behavior. OpenMP is a portable, scalable 
model that gives shared-memory parallel 
programmers a simple and flexible interface for 
developing parallel applications for platforms 
ranging from the desktop to the supercomputer [22]. 
It is useful programming tool to develop parallel 
programs for desktops equipped with some multi-
core processor. 

The interface allows dividing a code into two 
inconsequent parts. The first part of code is 
executable parallel and the second part contains the 
part of non-parallelized (sequential) code, Figure 2.  

 

 
Fig. 2 Master thread forks off a number of threads  
 

The code for parallel execution is enclosed into 
compiler directives of OpenMP #pragma omp 
<rest of pragma> .  

Programmers have to find out the parts, which 
are suitable for parallelization, place 
synchronization, locate place of variables in 
memories (shared, local), set appropriate number of 
threads, etc. The allocation of threads is not so 
important task for programmers. Using OpenMP in 
this way we can achieve task and data parallelism. 
 
 
3 Snow Cover Modeling and 
Interpolation 

The depth of the snow cover is a very variable 
meteorological element in the landscape. It depends 
on many factors, mainly on snow precipitation, 
altitude, air temperature, profile of the relief, solar 
power, cloudiness, air temperature inversion, etc. 
The measurement of the snow cover is taken by 
meteorological, climatologic and precipitation 
stations. The total depth of snow is measured and 
stored, i.e. the depth of snow and the depth of new 
snow cover. We are able to analyze the depth of the 
snow cover in detail. 

The analysis is based on many continuous 
observations and measurements at the specific 
climatologic stations. Geographically we can strictly 
characterize all these gauging places by the altitude, 
latitude and longitude, as well as by the detailed 
characteristics of the relief shape. 
 

 
Fig. 3 Location of the 17 meteorological stations [20] 
 

The aim of this work is the depth of the snow 
cover computing in the arbitrary point based on the 
geographical characteristics of a specific 
geographical point in a modeled area. The result is 
derived from the available data, which have been 
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obtained from metrological stations, climatologic 
stations and rain gauge stations from a defined 
landscape area [17, 18]. 

As an example of the application of our designed 
method the geomorphological entity Zvolenská 
kotlina as a part of Slovak Republic has been 
chosen, which is exactly defined by its borders. We 
use the digital terrain model of this entity, which has 
been done. The 17 meteorological stations of Slovak 
Hydrometeorogical Institute are situated in this 
defined area and their long-term measurements are 
available for our research, Figure 3. We decided for 
the period of years 1990–2009. 

The input data are stored in the large matrices. 
The output values depend on the time-consuming 
computing process and CUDA and OpenMP were 
deployed to accelerate these operations. 

In addition, the problem of used coordinates 
system has to be solved, because the coordinates 
system used in Czech Republic and Slovak Republic 
was another than the coordinates system used in GIS 
Grass. Data provided by Slovak Hydrometeorogical 
Institute have coordinates (latitude, longitude) 
measured in WGS-84 coordinates system and on the 
other hand data visualized in GIS Grass has been 
coded in S-JTSK [19]. The S-JTSK coordinates 
system was implemented and the conversion of 
coordinates from WGS-84 into S-JTSK was 
necessarily performed [21]. This data transformation 
was applied during computing only once to 
transform WGS-84 coordinates of the 17 raingauge 
stations into S-JTSK coordinates system. The 
consequent computations were performed in the S-
JTSK coordinates system. 

 
 

3.1 Interpolation Methods 
A couple of interpolation methods are used in GIS 
to obtain required data from measured data. We 
experimented with three of them: 
1. Triangular linear interpolation method, 
2. Kriging interpolation method, 
3. Inverse-distance Weighting Method. 
 

In our experiment we have to model 3D space. 
However, we use 2D data in the interpolation 
methods. The altitude is omitted. The little change 
would be made in the distance computation if the 
altitude was considered. This simplification does not 
have an essential influence on examined comparison 
of the computing performance. 

The triangular method offers an estimation of the 
unknown value by linear interpolation. The missing 
climatologic value in known point, given by the 
coordinates, is calculated from data of the three 

closest points. Point lies within the area bounded by 
three lines (triangle). Each line passes through the 
two points, Figure 4. This method is relatively 
simple. It is suitable for basic geographical tasks. In 
relation to the time complexity of computing is this 
method relatively fast and it can be implemented 
and performed on weaker computers. For the 
modeling of complex situations is necessary to 
choose more efficient and accurate method, e.g. 
kriging. 
 

 
Fig. 4 Linear interpolation method for one point in 
the location with 17 raingauge stations [20] 
 

Kriging belongs to the family of linear least 
squares estimation method. This method has been 
used in geography and in hydrogeography, too. It is 
one of the frequently used methods to obtain the 
reliable estimations (local or global) of observed 
values. Despite of exact results this method uses 
more complex mathematical apparatus and it is very 
time consuming.  

We decided to use an inverse-distance-weighting 
(IDW) algorithm to interpolate the snow cover 
measurements, as a compromise between time 
complexity and accuracy. 

 
 

3.2 Inverse-distance Weighting Method 
This deterministic model is relatively fast and easy 
to compute, and straightforward to interpret. The 
IDW method as a deterministic spatial interpolation 
model is one of the more popular methods adopted 
by geoscientists and geographers partly because it 
has been implemented in many GIS tools [12]. The 
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general assumption of this method is that the 
attribute values of any given pair of points are 
related to each other, but their similarity is inversely 
related to the distance between the two locations. 
The general idea of IDW is that the attribute value 
of an un-sampled point is the weighted average of 
known values within the neighborhood, and the 
weights are inversely related to the distances 
between the location of un-sampled point and the 
location of its neighbors. The value of inverse-
distance weight is modified by a constant power 
with increasing distance. This dependence can be 
expressed by the relationship (1). 
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Where y0 is value of un-sampled point; di denotes 
the distance between un-sampled point and sampled 
location i and yi is given value at sampled locations 
i, Figure 5. 
 
 

 
Fig. 5 IDW method for one point in the location with 
17 raingauge stations [20] 
 
 

4 Sequential and Parallel 
Implementation of IDW Method 

To write a CUDA program and an OpenMP 
program, we designed the sequential version of 
program. Our implementation was written in 
language C, because the code was easier modifiable 
on code for GPU and multi-core CPU. In addition to 
the changes in the program code, the time 

calculating commands had to be changed for each 
programming model. We used the header file 
time.h: 

 
#include <time.h> 
… 
clock_t start = clock(); 
… 
printf("Elapsed time: %f\n", 
((double)clock() -
 start) / CLOCKS_PER_SEC); 

 
A tendency to use these commands suitable for 

the sequential program made towards incorrect 
results in the parallel programs. These commands 
had to be overridden with related commands from 
the corresponding OpenMP or CUDA libraries. We 
used header file omp.h in the OpenMP 
implementation: 
 
#include <omp.h> 
… 
double startomp = omp_get_wtime(); 
… 
double endomp = omp_get_wtime(); 
printf("Elapsed time openmp: 
%.4g\n",endomp - startomp); 
 

Similarly, we used header file omp.h in the 
CUDA implementation: 
 
… 
cudaEvent_t c_start,c_stop; 
cudaEventCreate(&c_start); 
cudaEventCreate(&c_stop); 
cudaThreadSynchronize(); 
cudaEventRecord(c_start,0); 
 
//copying data from host to device 
//call of kernel 
//copying data from device to host 
… 
cudaEventRecord(c_stop,0); 
cudaThreadSynchronize(); 
cudaEventElapsedTime(&memsettime, 
c_start, c_stop); 
cudaEventDestroy(c_start); 
cudaEventDestroy(c_stop); 
printf("Cas vypoctu raster [CUDA - 
cudaEventElapsedTime]: %.4f\n", 
memsettime / 1000.0); 
 

The change of the sequential program code to the 
multi-core CPU’s program was simpler than the 
change to the CUDA implementation. In addition, 
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we had to provide a data transfer from the host 
(CPU) to the device (GPU – graphic card) and vice-
versa in the CUDA implementation. 
 
 
4.1. Sequential Program 

The sequential program consists of several 
functions. The function IDW has got significant 
position, because it is the implementation of the 
IDW method. This function (and whole program) 
uses common programmer-defined data-type 
RASTER. This data-type contains all values needed 
for GIS Grass visualization (location of map 
segment, number of raster columns, number of 
raster rows, array of visualized values, etc.). The 
function IDW computes absent data from measuring 
data. The measuring data are stored in data-type 
DATA. This data-type keeps data from raingauge 
stations. The code of IDW method in language C 
has this representation: 

 
RASTER* IDW(RASTER* raster, DATA* 
data) 
{ 
 int i,j; 
 float sum_up; 
 float sum_down; 
 float distance; 
 for(i=0;i<raster->points_count; 
i++) 
 { 
  sum_up = 0; 
  sum_down = 0; 
  for(j =0; j < data->_data; 
j++) 
  { 
   distance = SQR(raster-
>x[i] - data->x[j]) + SQR(raster-
>y[i] - data->y[j]); 
   sum_up += (data-
>value[j]/distance); 
   sum_down += 
(1.00/distance); 
  } 
  raster->value[i] = 
sum_up/sum_down; 
 } 
 return raster; 
} 

 
 

4.2. Parallel Program for GPU 
To write a CUDA program, we obeyed the 
following steps from [7] starting from a sequential 
version and proceeds through: 

4. Identify the kernel and package it as a separate 
function. 

5. Specify the GPU threads’ grid and partition the 
computation among these threads. 

6. Manage data transfer between the memory of 
host and GPU memories before and after the 
kernel invocation. 

7. Make memory optimizations in the kernel. 
8. Make further optimizations in the kernel for 

optimizing the single thread performance and 
the level of parallelism. 

 
The CUDA kernel is written below: 
 

__global__ void cudaIDWKernel(float 
*raster_x, float *raster_y, float 
*raster_values, int points_count, 
float *data, float *data_x, float 
*data_y, int data_count) 
{ 
 unsigned int inx = blockDim.x * 
blockIdx.x + threadIdx.x;  
 unsigned int j; 
  
 float sum_up; 
 float sum_down; 
 float distance; 
 if (inx < points_count) 
 { 
  sum_up = 0; 
  sum_down = 0; 
  for(j =0; j < data_count; 
j++) 
  { 
   distance = 
SQR(raster_x[inx] - data_x[j]) + 
SQR(raster_y[inx] - data_y[j]); 
   sum_up += (data[j] / 
distance); 
   sum_down += (1.0f / 
distance); 
  } 
  raster_values[inx] = sum_up / 
sum_down; 
 } 
} 
 
4.3. Parallel Program for Multi-core 
processor 
The parallelization of the sequential program is not 
difficult. OpenMP directives of C compiler are 
placed into previous sequential program code. A 
separation of variables (firstprivate, private, shared) 
is made by programmer, only. The adapted program 
code is written belowe: 
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RASTER* IDW_OMP(RASTER* raster, 
DATA* data) 
{ 
 int i,j; 
 float sum_up; 
 float sum_down; 
 float distance; 
 omp_set_num_threads(n); 
 #pragma omp parallel for 
firstprivate(raster,data) 
private(i, j, sum_up, sum_down, 
distance) schedule(dynamic, 500) 
 for(i=0;i<raster->points_count; 
i++) 
 { 
  sum_up = 0; 
  sum_down = 0; 
  for(j =0; j < data->_data; 
j++) 
  { 
   distance = SQR(raster-
>x[i] - data->x[j]) + SQR(raster-
>y[i] - data->y[j]); 
   sum_up += (data-
>value[j]/distance); 
   sum_down += 
(1.00/distance); 
  } 
  raster->value[i] = 
sum_up/sum_down; 
 } 
 return raster; 
} 
 
 
5 Solution and Performance 
Evaluation 
In the experimental evaluation of our computing we 
focused on the performance improvements from 
CUDA implementation and multi-core 
implementation. We used two computers and 
investigated two likely scenarios of use: 
1. CPU 
2. GPU. 

 
We made five experiments on CPU. Two of them 
ran on dual-core CPU and other three ran on quad-
core CPU with Hyper-Threading Technology. 

The first couple of experiments were executed on 
dual-core processor Intel Core 2 Duo CPU E7400 @ 
2.80GHz (C2D E7400). In this case the OpenMP 
program was executed as single-thread application 
and then as two-threads application. The second 
approach allowed to use full computing power of 
this CPU. 

The second triplet of experiments was executed 
on quad-core processor Intel Core i7-920 2.66GHz 
(Core i7-920). In this case the OpenMP program 
was executed as: 
1. single-thread application, 
2. four-thread application, 
3. eight-thread application. 
 
The third approach allowed to use full computing 
power of this CPU. 

All experiments on CPUs were compared to the 
second experiment on the GPU. Run times for GPU 
implementation was measured on the dual-core 
machine, where the first couple of experiments were 
executed. This machine was equipped with two a 
NVIDIA GeForce 9800 GT graphic cards. These 
cards offer 112 CUDA cores, 512 MB RAM and 
CUDA compute capability 1.1. 

The computers were installed with operating 
system Linux Ubuntu, version 9.04. The NVIDIA 
driver of graphic cards had a version 195.36.15. The 
C code was compiled using GCC, version 4.3.3. The 
CUDA code was compiled using NVCC, version 
0.2.1221, CUDA Toolkit, version 3.0. 

The speed-up of computing was detected on ten 
kinds of raster. The two-dimensional raster differed 
in pixel density. One-dimensional matrices 
represented each raster, because of format of GIS 
Grass input file. The sizes of the matrices had got 
ten values from 1000 × 1000 to 10 000 × 10 000, 
Table 1. 

In case of the OpenMP program we modified the 
type of processor and then the number of used 
threads for each type of them. We used OpenMP 
command omp_set_num_threads(n)  for that. 
Because OpenMP is dedicated for numbers of 
threads, we had to set schedule on 500. It was the 
best value to reach desired execution time. We used 
directive of compiler #pragma omp parallel 
for firstprivate(raster,data) 
private(i, j, sum_up, sum_down, 
distance) schedule(dynamic, 500) . 
The value was founded by experimentation. 

We obtained fifty results of measured time. The 
results are figured in columns: C2D E7400, C2D 
E7400 (2 threads), Core i7-920 (1 thread), Core i7-
920 (4 threads), Core i7-920 (8 threads), Table 1. 

We made a couple experiments to fine set block 
size. The first of all we tried to use maximum 
threads per block, Figure 6. Finally, in experiment 
with CUDA, we used CUDA Occupancy Calculator 
to set up two parameters: number of block (grid) 
and number of threads per block (blocksize). These 
parameters are important in command, which calls 
kernel function: 
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… 
dim3 dimBlock( blocksize); 
dim3 dimGrid( grid); 
cudaIDSKernel<<<dimGrid, 
dimBlock>>>(d_x, d_y, d_values, 
sendBlockSize, d_data, d_data_x, 
d_data_y, data->_data); 
… 
Tab. 1 Execution time in seconds. 
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Fig. 6 CUDA Visual Profiler: grid size, block size, 
shared memory per block and register per threads 
 

According to the results of the CUDA 
Occupancy Calculator we chose 128 threads per 
block. The number of block varied according to size 
of computed matrix. The program used 12 registers 
per thread and 76 B shared memory per block. 

These values yielded optimal results using the 
graphic card GeForce 9800 GT. These 
specifications of GPU (compute capability 1.1) 
enable 83% utilization of the multiprocessors, only. 
 

The size of block has some limits. In case of 
huge matrices we had to divide them. We could use 
2D array, but we preferred one-dimensional array 
solution. 

The results of experiments with GPU are figured 
in column: GeForce 9800 GT512MB, Table 1. GPU 
implementation has got one stumbling block. The 
data have to be moved from a host (CPU) to (GPU). 
This fact could be have significant computing time 
overhead. We used the CUDA Visual Profiler to 
clarify this problem. The profiler showed in all 
cases, that the overhand had been no more than 
30 % of the executing time, Figure 7. This 
communication overhead plays no significant role in 
execution in comparison with other observed 
execution times, Figure 9. 

 

 
Fig. 7 CUDA Visual Profiler: Computing time – 
data transfer and kernel execution 

 
The summary of the computing times for all 10 

experiments on GPU is showed on Figure 8. The 
bars of the data transfers are severalfold smaller 
then the bars of kernel executions. The first five 
triplets of bars described one execution time of 
matrices computation with size (in stages): from 
1000 × 1000 to 5000 × 5000. The next two triples of 
bars represent execution time of matrix with size 
6000 × 6000. The matrix was divided into two parts, 
because of the block size limit mentioned above. 
The same occurred in case of matrix with size 
7000 × 7000. The matrices with larger size then 
7000 × 7000 were divided onto three parts and 
computed consequently. 
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Fig. 8 CUDA Visual Profiler: Computing time plot 
of 10 experiments on GPU 
 

Results of our experiments are matched in the 
chart, Figure 9. The executing time sunk in 
dependence on number of used threads. The dual-
core CPU returned better execution time than quad-
core CPU in case of one used thread. GPU achieved 
the best result, however quad-core processor Intel 
Core i7-920 achieved comparable results, if all 8 
threads were used. The determining factor could be 
a price of hardware. We used run-out model of 
graphic card (4 years old). Its price is around 90.21 
€ (current price). The price of Intel Core i7-920 
2.66GHz is 272.63 € (current price). 
 

 
Fig. 9 Chart of execution time depending up 
problem size (raster size) 

 
For our experiments we chose data from January, 

the 5th 2000, collected by the 17 gauge stations 
mentioned above, Figure 4. Outputs of our 
experiments were visualized by the GIS Grass 
(Geographic Resources Analysis Support System) 
version 6.4.0. Figure 10 shows an example of 

graphical output of our experiment when the depth 
of snow cover is visualized in centimeters. 

 

 
Fig. 10 Visualized depth of snow cover of Zvolenská 
kotlina 

 

 

6 Conclusion 
In our article we have shown that snow cover 
computing benefit from using CUDA GPUs. or 
multi-core CPU. For computing of non-cover points 
we have used an inverse-distance-weighting 
algorithm and we process meteorological data of 
twenty years period. The CUDA implementation 
provides significant speedups on the C 
implementation. 

Overall, our experiences with CUDA show the 
power of the GPU as a parallel platform, and help 
demonstrate how to utilize the GPGPU 
programming for geographic data processing. The 
same was showed in case of multi-core processors. 
Furthermore, the both GPU and multi-core CPU 
offer comparable computing performance. The 
determining factor to use one or other method is the 
price of hardware. 

In the future, we are going to implement more 
efficient algorithms via implementing other 
interpolation methods where we suggest more 
rapidly speed-up of the GPGPU programming. 
Moreover, we also plan to transform the 
computation from GPGPU programming to Grid 
Computing. 
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