
Educational Software for Study the Performances of Some Known
Parallel and Sequential Algorithms

MANUELA PANOIU, IONEL MUSCALAGIU, CAIUS PANOIU, MARIA RAICH

Electrical Engineering and Industrial Informatics Department
Polytechnic University of Timisoara, Engineering Faculty of Hunedoara

Revolutiei Street, no 5 Hunedoara, cod 331128
ROMANIA

{m.panoiu, mionel, c.panoiu }@fih.upt.ro

Abstract: - The paper presents an educational software package, implemented in Java which shows and
analyzes through visual simulation some well known sequential and parallel algorithms. It was study the
memory access for PRAM model and some known algorithms for PRAM model. It was analyze also the most
know sorting algorithms and the main graph algorithms in both variants sequential and parallel. It was also
performed a comparative study between a classic sequential algorithm and a parallel algorithm in terms of
execution times. The software is very useful to both students and teachers because the computer science
especially computer programming is difficult to understand for most students.

Key-Words: - Java, educational software, parallel algorithms, Parallel sorting algorithms, performance analysis,
simulation software

1 Introduction

Today, the computers are used in many areas,
including in education, from the elementary school
to the universities. The purpose of using computers
in education can be realized by using new didactical
teaching methods based on educational software that
is programs useful in teaching-learning process [1],
[2].

The advantages of using computers in education
are obviously: the students have the possibility to
interact with virtual environment, this method being
preferred in comparison with lecturing of a classic
material. By using the computer in didactical
activity the learning productivity is increased: the
necessary information is faster and accurate
obtained, process and sends, by eliminate
unnecessary time delay. It can be showing to the
student some information which is inaccessible
otherwise: dynamic diagrams, moving images,
sounds.

Teaching computers to novices has proven to be
a challenge for both teachers and students. Many
students find the computers programming module
difficult and disheartening and this could have an
impact on their attitude to software development
throughout the course and as a career choice. For
staff involved in teaching computers programming it
can also be very disheartening when student
apparently fail to understand and be able to use even
the basic data structures [2].

In computer science, a parallel algorithm, as
opposed to a traditional sequential (or serial)
algorithm, is an algorithm which can be executed a
piece at a time on many different processing
devices, and then put back together again at the end
to get the correct result.

Most of today’s algorithms are sequential, that is,
they specify a sequence of steps in which each step
consists of a single operation. These algorithms are
well suited to today’s computers, which basically
perform operations in a sequential fashion.
Although the speed at which sequential computers
operate has been improving at an exponential rate
for many years, the improvement is now coming at
greater and greater cost. As a consequence,
researchers have sought more cost-effective
improvements by building “parallel” computers –
computers that perform multiple operations in a
single step [3].

In order to solve a problem efficiently on a
parallel machine, it is usually necessary to design an
algorithm that specifies multiple operations on each
step, i.e., a parallel algorithm. The designer of a
sequential algorithm typically formulates the
algorithm using an abstract model of computation
called the random-access machine (RAM). In this
model, the machine consists of a single processor
connected to a memory system [3].

Modeling parallel computations is more
complicated than modeling sequential computations

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1271 Issue 10, Volume 7, October 2010

mailto:c.panoiu%20%7D@fih.upt.ro�

because in practice parallel computers tend to vary
more in organization than do sequential computers
[8]. As a consequence, a large portion of the
research on parallel algorithms has gone into the
question of modeling, and many debates have raged
over what the “right” model is, or about how
practical various models are [3], [8].

A multiprocessor model is a generalization of
the sequential RAM model in which there is more
than one processor. Multiprocessor models can be
classified into three basic types: local memory
machine models, modular memory machine
models, and parallel random-access machine
(PRAM) models. The purpose of the theoretical
models for parallel computation is to give
frameworks by which we can describe and analyze
algorithms. These ideal models are used to obtain
performance bounds and complexity estimates.
One of the models that have been used extensively
is the parallel random access machine (PRAM)
model [3].

2 The informatics system design

In this paragraph will be presented the
elaboration of an educational informatics system for
study the performance and functionality of some
know parallel and sequential algorithms.

2.1 System analysis

The informatics system will be described by
presenting the use cases, using the UML (unified
modeling language) [13].

Representation of the uses cases’ diagram is
shown in figure 1.

For each use case presented in the previous
diagram we’ll build activity diagram. Each diagram
will specify the processes or algorithms which are
behind the analysed use case. Figure 2 will present
two of these diagrams. Fig. 2 a illustrate the activity
diagram for the use case “EREW” from fig. 1 and
fig 2b illustrate the activity diagram for the use case
“Dijkstra - Analyse”, also from fig.1.

Activity diagrams [14] are used:
- To capture actions to be performed when an

operation is executing (most common purpose);
- To capture the internal work in an objects;
- To show how a set of related actions may be

performed;

- To show how an instance of s use-case may be
performed;

- To show a business works in terms of actors,
workflows, organization, and objects.

2.2. System design

The conceptual modeling allows the
identification of the most important concepts for the
informatics system [17]. The existing inheritance
relationships between the classes previously
presented can be represented by means of
relationship diagrams between classes. In fig. 3 is
illustrating the class diagram for “Graphs” part of
the software package.

For describe the flow of messages between
objects it was use the sequence diagrams which
focus on the order in which the messages are sent.
They are very useful for describing the procedural
flow through many objects. They are also quite
useful for finding race conditions in concurrent
systems.

In fig. 4 is illustrate such a sequence diagram for
the use case “Analyze Prim Kruskal”.

The sequence diagrams for this software are
made with ArgoUML.

Collaboration diagram [15], on the other hand,
focus upon the relationships between the objects.
They are very useful for visualizing the way several
objects collaborate to get a job done and for
comparing a dynamic model with a static model.

Collaboration and sequence diagrams describe
the same information, and can be transformed into
one another without difficulty. The choice between
the two depends upon what the designer wants to
make visually apparent. In figure 5, and 6 are
illustrates collaboration diagrams.

In fig. 7 is show the state diagram for sorting part
of the software for graph part of the software.

2.3. The component diagram

A component represents a modular, replaceable
piece in the system [16]. Of primary importance are
two well-defined interfaces: The required interface
specifies formally which functionality the
component expects from its environment. The
provided interface specifies the functionality the
component is able to provide (to other components).
In fig. 8 is shown the component diagram for the
software package.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1272 Issue 10, Volume 7, October 2010

Fig. 1. The use case diagram

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1273 Issue 10, Volume 7, October 2010

a) The activity diagram for “EREW”

b) Activity diagram for “Dijkstra analyse”

Fig 2. Activity diagrams

Fig. 3. The class diagram for “Graphs”

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1274 Issue 10, Volume 7, October 2010

Fig. 4. The sequence diagram for the use case “Analyze Prim Kruskal”

Fig. 5. The collaboration diagram for the use case “EREW”

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1275 Issue 10, Volume 7, October 2010

Fig. 6. The collaboration diagram for the use case “Analyze Prim Kruskal”.

Fig. 7. The state diagrams for sorting algorithms and for graphs algorithms

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1276 Issue 10, Volume 7, October 2010

Fig. 8. The component diagram for the software package

3 The software implementation
The target of this application is to help students

in understanding the parallel and sequential
algorithms. Another goal for this paper is to show a
comparative study between a classic sequential
algorithm and a parallel algorithm in terms of
execution times.

The application was implemented in Java as
independent application. The application can easily
convert in a Java applet.

The main options of the application are: Parallel
algorithms simulation for the PRAM model, Sorting
algorithms (sequential and parallel) and Graphs
algorithms. For parallel execution simulation we
implement a class Processor:

class Procesor extends Thread {

Procesor(String name) { super(name
); }

public void run() {}

 int sum(int x,int y,int z,int w)
 { return x+y+z+w; }

 int sumP(int a, int b)
 { return a+b; }

 long prodP(long a, long b)
 { return a*b; }
 int product(int x, int y)
 { return x*y; }
 int compP1(int a, int b)
 { if (a>=b) { return 1; }
 else return -1;
 }

 int compP2(int a, int b)
 { if (a<=b) { return 1; }
 else return -1;
 }

}

3.1 The Graphical User Interface for study
PRAM model of parallel processing

This option present several algorithms developed
for the theoretical PRAM model: EREW PRAM
model, the CRCW PRAM model, the CREW
PRAM model. The main interface is show in fig. X.
Figure 9 show the simulation for the algorithm that
calculates the sum of the elements of an array using

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1277 Issue 10, Volume 7, October 2010

the most restrictive PRAM algorithm, i.e. EREW
algorithm. The algorithm is [3]:

Algorithm EREW

for i=1 to log n do
forall Pj, where 21 nj ≤≤ do in
parallel

if (2j modulo 2i)=0 then
A[2j] ← A[2j] + A[2j-2i-1]
endif
endfor

endfor

The algorithm complexity can be characterized by:

− Run time, T(n) = O(log n).
− Number of processors, P(n) = n/2.
− Cost, C(n) = O(n log n).

The students can see which processors works at the
time and how the sum (or product, or minimum or
maximum) of the elements of an array is
determined. The animation can be stooped and
restart. For a better accuracy the processors are
displayed with different colors.

Fig. 9. The visual simulation for the parallel
algorithm for EREW PRAM model

Another option of the application is for the CRCW
PRAM model and simulates an algorithm for
obtaining maximum (or minimum) element from an
array. The Graphical User Interface presenting this
option is show in figure 10. It can be seeing the
active processors (n2 in this case). These processors
can determine the maxim (or minim) in only three
steps regardless of the array length.
The algorithm used here for simulation is show
bellow:

n←length[A]
 for i ←1 to n, do in parallel

 m[i] ←true

 for i ←1 to n and j ←1 to n, do
in parallel

 if A[i] < A[j]
 then m[i] ←false

 for i ←1 to n, do in parallel
 if m[i] =true
 then max ← A[i]

 return max

The algorithm complexity can be characterized by:

− Run time, T(n) = O(1).
− Number of processors, P(n) = n x n.
− Cost, C(n) = n2 × O(1) =O(n2).

Fig. 10. The visual simulation for the parallel
algorithm for CRCW PRAM model

Figure 11 show the simulation for the matrix
multiplication for the CREW PRAM model. The
algorithm used for simulation here is:

/* Step 1 */
forall Pi,j,k where nkji ≤≤ ,,1
 do in parallel

],[],[],,[jkBkiAkjiC ∗←
endfor
/* Step 2 */
for l =1 to log n do
forall Pi,j,k, where nkji ≤≤ ,,1 &

21 nk ≤≤ do in parallel
if () 02mod2 =⋅ lk then

]22,,[]2,,[]2,,[1−−+← lkjiCkjiCkjiC
endif
endfor
/* The output matrix is stored in
locations njinjiC ≤≤ ,1],,,[*/

The algorithm complexity can be characterized by:
− Run time, T(n) = O(log n).
− Number of processors, P(n) = n3.
− Cost, C(n) = O(n3 log n).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1278 Issue 10, Volume 7, October 2010

Fig. 11. The visual simulation for the matrix

multiplication for CREW PRAM model

3.2 The Graphical User Interface for analyzing
sorting algorithms
Since the dawn of computing, the sorting problem
has attracted a great deal of research, due to the
complexity of solving it efficiently despite its
simple, familiar statement [10]. For example, bubble
sort was analyzed as early as 1956. Although many
consider it a solved problem, useful new sorting
algorithms are still being invented (for example,
library sort was first published in 2004). Sorting
algorithms are prevalent in introductory computer
science classes, where the abundance of algorithms
for the problem provides a gentle introduction to a
variety of core algorithm concepts, such as divide
and conquer algorithms, data structures, randomized
algorithms, best, worst and average case analysis,
time-space tradeoffs, and lower bounds.
Sorting is one of the fundamental problems of
computer science, and parallel algorithms for
sorting have been studied since the beginning of
parallel computing [5], [6], [7], and [11]. For
parallel implementation of the sort algorithms was
implement a class. So each processor is represented
here by a separate java class, extended from Thread
class:

public class ThreadSort extends
Thread{
 Color cf;
public ThreadSort (Color cf) {
 this.cf = cf; }
int compare(int a,int b)
{ if (a>b) { return 1; }
else return -1;
}

The application presented here show in an
interactive way, both sequential and parallel sorting
algorithms. The algorithm for parallel BubbleSort
is:
int aux,i,i1,i2,j=-1,cmp=0,chng=0,nf;
boolean ok;
ThreadSort f[] = new ThreadSort[nf];
for(i=0;i<nf;i++) {
 f[i] = new ThreadSort(null);
 f[i].start();
}
do {
 ok=true;
 j=-1;
 for (i1=0;i1<(n-1);i1++,i1++)
 { cmp++;
 j++;
 if(f1[j].compare(a[i1],a[i1+1])>0)
 { ok=false; chng++;
 aux=a[i1]; a[i1]=a[i1+1];
 a[i1+1]=aux;
 }
 if(j==(nf-1)||j!=(nf-1)&&i1==(n-2))
 j=-1;
 j1=-1;
 for (i2=1;i2<(n-1);i2++,i2++)
 { cmp++; j++;
 if f1[j].compare(a[i2],a[i2+1])>0)
 { ok=false; chng++;
 aux=a[i2]; a[i2]=a[i2+1];
 a[i2+1]=aux;
 }
 if(j==(nf-1)||j!=(nf-1)&&i2==(n-3))
 j=-1;
 }
} while(!ok);

In figure 12 is show the GUI for visual simulation
for parallel BubbleSort algorithm.

Fig 12. The visual simulation for parallel BubleSort
algorithm.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1279 Issue 10, Volume 7, October 2010

The visualization can be performed with a certain
animation speed or step by step. It could be observe
that the students have the opportunity to see each
step of the algorithm by using the button “step by
step” or the algorithm can be run with an animation
speed. It is possible also to choose the number of
processors before starting the algorithm. Each
processor and the operation performed by this
processor are represented with a different color for a
better understanding. In the same manner are
implemented another two sort algorithms
(sequential and parallel).
For comparing these sort algorithms another option
was implemented. This option of the program allow
to students to see the simulation for the three sorting
algorithms in parallel. The GUI-s for this option is
showing in figure 13, for sequential algorithms and
in fig. 14 for parallel algorithms. It can be see and
compare the algorithms performances, i.e. number
of comparisons, number of assignments.
The comparative analyze is made both for
sequential and parallel algorithms.

Fig. 13. The simulation for the three sequential

sorting algorithms in parallel

For comparing the order of complexity of these
algorithms was made another option. In this case,
the students can choose the numbers of the
elements, as can be seen in fig. 15. To compare the
execution time is recommended to use a large
number of elements. Here, the students can generate
random a list of integer numbers to be sorted, or the
numbers can be provided sorted or reverse sorted. In

this case the algorithms are in background running
using different threads and then their performances
are displayed.

Fig. 14. The simulation for the three parallel sorting

algorithms in parallel

Fig. 15. The statistical analyze for the three

sequential sorting algorithms

It was made such an options for statistical analyze
of parallel sorting algorithms also. By running the
application for several random data sets the students
can better analyze the performance of these
algorithms. In the table 1, 2 and 3 the performances
are shown for randomly generating data and for 10
respectively 50 threads. For each case are shown the
running time, the number of comparisons and the
number of interchanges for a certain number of
elements.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1280 Issue 10, Volume 7, October 2010

Table 1. The sorting algorithms performances for 1000
randomly elements

Sorting
method

Number of
threads

Run
time

Number of
comparisons

Number of
interchanges

Bubble
Sort 10 46 ms 488.511 251.081

Shake
Sort 10 39 ms 488.511 251.081

Quick
Sort 10 0 ms 7.327 2.722

Bubble
Sort 50 78 ms 492.517 257.813

Shake
Sort 50 72 ms 492.517 257.813

Quick
Sort 50 0 ms 7.586 2.839

Table 2. The sorting algorithms performances for 10000
randomly elements

Sorting
method

Number
of threads Run time Number of

comparisons
Number of

interchanges
Bubble

Sort 10 2.324 ms 49.335.066 25.025.395

Shake
Sort 10 2.315 ms 49.335.066 25.025.395

Quick
Sort 10 15 ms 107.726 34.743

Bubble
Sort 50 2.813 ms 49.625.391 23.916.405

Shake
Sort 50 2.806 ms 49.625.391 23.916.405

Quick
Sort 50 16 ms 116.359 36.815

Table 3. The sorting algorithms performances for 100000
randomly elements

Sorting
method

Number
of threads

Run
time

Number of
comparisons

Number of
interchanges

Bubble
Sort 10 263.344

ms 4.994.850.051 2.496.049.103

Shake
Sort 10 249.577

ms 4.994.850.051 2.496.049.103

Quick
Sort 10 172 ms 1.310.092 430.877

Bubble
Sort 50 596.284

ms 4.987.536.709 2.514.037.442

Shake
Sort 50 574.328

ms 4.987.536.709 2.514.037.442

Quick
Sort 50 164 ms 1.289.530 429.563

By analyze these results the students can see that the
Quicksort method has been performing better. The
run time increases with increasing the number of
threads because of using a single processor
computer. If the application is running to a

multiprocessor computer, the run time decrease with
the increasing of threads number. The students can
run the application for a large number of elements
or for other cases.

3.3. The Graphical User Interface for analyzing
graph algorithms
Graphs and graph algorithms are at the centre of the
solutions to many real-world problems. Graph
algorithms have been studied extensively for many
years [12].
The application present here show a visual
simulation of some classic, well know graph
algorithms like Prim algorithm, Kruskal algorithm
and Dijkstra’s algorithm. It was made visual
simulation for sequential algorithms. For Prim’s
algorithm and Djikstra’s algorithm was made visual
simulation also for parallel algorithm.
Fig. 16 shows the visual simulation of the Prim’
algorithm and fig 17 show the visual simulation of
the Kruskal’ algorithm. The algorithms can be
seeing in two ways: step by step or by using
animation with a choose animation speed.
In this way the students can understand better each
algorithm step and how it is implemented.

Fig. 16. The visual simulation for Prim’s algorithm

The graphs nodes can be build by mouse click and
drag in the left panel. The edges can be built by
click in the start node, then drag to the end node.
The steps of algorithm can be seeing in the right
panel by using step and step option or by using an
animation speed.
For study the graphs algorithms it was implement an
option presented in fig. 18. In this window the
students can see the run time and the total cost of
the entire graph or of the minimum spanning tree in
case of both algorithms, Prim and Kruskal.
In table 4 and 5 are shown some results obtained by
using this option.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1281 Issue 10, Volume 7, October 2010

Fig. 17. The visual simulation for Kruskal’s

algorithm

Fig. 18 Analyze of performances of Prim and

Kruskal algorithm
.

Table 4. The algorithms results for 500 nodes, 500 edges
and 10 threads

The
algorithm Run time Total cost

The cost of
minimum

spanning tree
Prim

sequential 38.734 ms 25.219 2.854

Prim parallel 30.281 ms 25.219 2.854
Kruskal

sequential 2.609 ms 25.219 5.411

Table 5. The algorithms results for 100 nodes, 1000
edges and 10 threads

The
algorithm Run time Total cost

The cost of
minimum

spanning tree
Prim

sequential
2.110 ms 48.633 343

Prim parallel 1.625 ms 48.633 343
Kruskal

sequential
375 ms 48.633 462

In the same way it was implemented an option for
study the performances of Dijkstra algorithm both
for sequential and parallel implementation. In fig.

19 is show the window for study the performance of
of Dijkstra algorithm both for sequential and
parallel implementation.

Fig. 19 Analyze of performances Dijkstra

algorithms

In case of running application to an multiprocessor
computer, the parallel implementation has better
performances.

4. Conclusion
By using visual simulations in computer assisted
learning the efficiency of learning is increased.
There are some subjects in fundamentals of
computer science like sorting algorithms, parallel
algorithms that are very difficult to learn and
understand for some students. By using educational
software these concepts are showing to the students
in an attractive way, visually using animation and
having the opportunity to interact with the
application [9].
The best option is to use graphical and interactive
interface of the software in two ways. On one hand,
these software help the teacher in the classroom,
while on the other hand, the students can work and
experiment with them making their own examples,
out the classroom.
In general, interactive educational software is very
good aids for learning algorithms and data
structures, as they improve comprehension and the
satisfaction of the students, as well as the interest
and motivation amongst students when the teacher
makes use of them [4].

References:
[1] Glenn, W., Rowe, Gregor, P., „A computer

based learning system for teaching computing:
implementation and evaluation" Computer and
Education, Elsevier Science, 1999.

[2] Khamis N, Idris S, Issues and Solutions in
Assessing Object-oriented Programming Skills

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1282 Issue 10, Volume 7, October 2010

http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=Z16cKlMMc3e7oaam9ib&page=4&doc=31�
http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=Z16cKlMMc3e7oaam9ib&page=4&doc=31�

in the Core Education of Computer Science and
Information Technology, 12th WSEAS
International Conference on Computers, JUL
23-25, 2008 Heraklion, GREECE, Pages: 458-
463, 2008

[3] Hesham El-Rewini, Mostafa Abd-El-Barr,
Advanced Computer Architecture and Parallel
Processing, Wiley-Interscience, A Son Wiley
&Sons Inc Publication, 2005

[4] L. M. Carmona, C. Escribano, A. Giraldo, M.
A. Sastre, Interactive Web Tutorial for Integer
and Modular Arithmetic and its Applications.
Proceedings of the 6th WSEAS International
Conference on Education and Educational
Technology (EDU'07), Venice, Italy,
November 2007

[5] Alak Kumar Dattaa, Ranjan Kumar Sen,
O(log4 n) time parallel maximal matching
algorithm using linear number of processors,
Parallel Algorithms and Applications, Vol. 19
(1) March 2004, pp. 19–32

[6] Nancy M. Amato Ravishankar Iyer Sharad
Sundaresan Yan Wu, A Comparison of Parallel
Sorting Algorithms on Different Architectures,
Technical Report 98-029 Department of
Computer Science Texas A&M University,
January 1996

[7] Robert Rönngren, Rassul Ayani, A
Comparative Study of Parallel and Sequential
Priority Queue Algorithms, ACM Transactions
on Modeling and Computer Simulation, Vol. 7,
No. 2, April 1997, Pages 157–209.

[8] Guy E. Blelloch, Vector Models for Data-
Parallel Computing, The MIT Press
Cambridge, Massachusetts

[9] Zamfir PDA, Impact of using computer
applications in education on teaching-learning
process, 7th WSEAS International Conference
on Applied Computer and Applied
Computational Science, Hangzhou, Pages:
684-688, 2008

[10] D. E. Knuth, The Art of Computer
Programming, Volume 3: Sorting and
Searching.

[11] http://www.sorting-algorithms.com/
[12] [12] Michael J. Quinn, Narsingh Deo, Parallel

graph algorithms, ACM Computing Surveys,
Volume 16 , Issue 3 (September 1984), Pages:
319 - 348 , 1984

[13] G. Booch, J. Rumbaugh, I. Jacobson, The
Unified Modeling Language User Guide,
Addison Wesley, 1999

[14] R. Eshuis, R. Wieringa, A formal semantics for
UML activity diagrams – Formalising

workflow models, University of Twente,
Departament of Computer Science, 2001

[15] D. Rosenberg, K. Scott, Use case Driven
Object Modeling with UML, Addison Wesley,
1999

[16] J. Odell, Advanced Object Oriented Analysis&
Design using UML, Cambrige University
Press, 1998

[17] Iordan Anca, Development of Interactive
Software for Teaching Three-Dimensional
Analytic Geometry, 9th WSEAS International
Conference on Distance Learning and WEB
Engineering, Budapest, Hungary, 3-5 Sept,
2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Manuela Panoiu, Ionel Muscalagiu, Caius Panoiu, Maria Raich

ISSN: 1790-0832 1283 Issue 10, Volume 7, October 2010

http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=Z16cKlMMc3e7oaam9ib&page=5&doc=50�
http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=Z16cKlMMc3e7oaam9ib&page=5&doc=50�
http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=Z16cKlMMc3e7oaam9ib&page=5&doc=50�

