
Implementation and evaluation methodology for the asynchronous
search techniques in DisCSP-NetLogo

IONEL MUSCALAGIU, MANUELA PANOIU, DIANA MARIA MUSCALAGIU, CAIUS PANOIU
The ”Politehnica” University of Timisoara
The Faculty of Engineering of Hunedoara

Revolutiei, 5, Hunedoara
ROMANIA

mionel@fih.upt.ro, m.panoiu@fih.upt.ro, dianamariamuscalagiu@yahoo.com, c.panoiu@fih.upt.ro

Abstract: The implementation and evaluation of asynchronous search techniques can be done in any programming
language allowing a distributed programming. Nevertheless, for the study of such techniques and for their eval-
uation, it is easier and more efficient to implement the techniques under certain distributed environments, which
offer various facilities, such as NetLogo and are open-source. This article proposes a solution of evaluation for the
asynchronous search techniques in NetLogo. This model will allow the use of the NetLogo environment as a basic
simulator for the evaluation of asynchronous search techniques. Starting from the proposed evaluation model, we
obtain one multi-agent system which can be used for implementing and evaluating the asynchronous search tech-
niques, that can run on a single computer. In this paper there is presented a methodology of implementation and
evaluation for the asynchronous search techniques in NetLogo, using the proposed evaluation model.

Key–Words: constraints programming, distributed problems, asynchronous searching techniques, multi-agent sys-
tems.

1 Introduction

Constraint programming is a programming approach
used to describe and solve large classes of problems
such as searching, combinatorial and planning prob-
lems. Lately, the AI community has shown increasing
interest in the distributed problems that are solvable
through modeling by constraints and agents. The idea
of sharing various parts of the problem among agents
that act independently and collaborate in order to find
a solution by using messages proves itself useful. It
has also lead to the formalized problem known as the
Distributed Constraint Satisfaction Problem (DisCSP)
[5].

There exist complete asynchronous searching
techniques for solving the DCSP, such as the
ABT (Asynchronous Backtracking) and DisDB (Dis-
tributed Dynamic Backtracking) [1, 5]. There is
also the AWCS (Asynchronous Weak-Commitment
Search) [5] algorithm which records all the nogood
values. The ABT algorithm has also been generalized
by presenting a unifying framework, called ABT ker-
nel [1]. From this kernel two major techniques ABT
and DisDB can be obtained.

The asynchronous search techniques, existent for
the DisCSP modeling, are within the framework of
distributed programming. The agents can be pro-
cesses residing on a single computer or on several

computers, distributed within a network or Internet.
The implementation of any asynchronous search tech-
niques supposes building the agents and the existing
constraints, the implementation of the links between
the agents and the communication channels between
them. The implementation can be done in any pro-
gramming language allowing a distributed program-
ming, such as Java, C, C++. Nevertheless, for the
study of such techniques, for their analysis and evalu-
ation, it is easier and more efficient to implement the
techniques under a certain distributed environment,
which offers such facilities (NetLogo [6], [9]).

NetLogo, is a programmable modeling environ-
ment, which can be used for simulating certain natu-
ral and social phenomena [6]. It offers a collection of
complex modeling systems, developed in time. The
models could give instructions to hundreds or thou-
sands of independent agents which could all operate in
parallel. NetLogo is the next generation in a series of
modelling languages with agents that began with Star-
Logo [6]. It is a environment written entirely in Java,
therefore it can be installed and activated on most of
the important platforms.

The aim of this article is to introduce an model
of evaluation for the asynchronous search techniques
in NetLogo, by extending the model in [3] and [4],
model calling DisCSP-NetLogo. This model can be
used in the study of agents behavior in several situ-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1261 Issue 10, Volume 7, October 2010

ations, like the priority order of the agents, the syn-
chronous and asynchronous case, leading, therefore,
to identifying possible enhancements of the perfor-
mances of asynchronous search techniques. We ex-
tend the model in [3] and [4] with support for the eval-
uation of the performances of asynchronous search
techniques and multi variable per agent. In this paper
there is presented a methodology of implementation
and evaluation for the asynchronous search techniques
in NetLogo, using the proposed evaluation model.

Starting from the proposed implementation and
evaluation model, we obtain one multi-agent system
which can be used for implementing and evaluating
the asynchronous search techniques. Implementation
examples for the ABT family and the AWCS family
can be found on the website [9].

2 Modeling and implementing of the
agents’ execution process

In this section we present a solution of modeling
and implementation for the existing agents’ process
of execution in the case of the asynchronous search
techniques [3], [4]. This solution, calling DisCSP-
NetLogo will be extended with support for the evalua-
tion of the performances of asynchronous search tech-
niques.

This modeling can also be used for evaluation
of the asynchronous search techniques, such as those
from the AWCS family [5], ABT family [1], DisDB
[1]. Implementation examples for these techniques
can be found on the NetLogo site ([7]) and in [8], [9].

The modeling of the agents’ execution process
will be structured on two levels, corresponding to the
two stages of implementation. The definition of the
way in which asynchronous techniques will be pro-
grammed so that the agents will run concurrently and
asynchronously will be the internal level of the model.
The second level refers to the way of representing the
NetLogo application. This is the exterior level. The
first aspect will be treated and represented using turtle
type objects. The second aspect refers to the way of
interacting with the user, the user interface. Regard-
ing that aspect, NetLogo offers patch type objects and
various graphical controls.

2.1 The NetLOGO objects

The NetLogo world is made of agents. Each agent
carries out a task, all the agents execute simultane-
ously and concurrently. The NetLogo language allows
three types of agents: turtles, patches and the observer.
The turtle type objects are agents that can move on in

the NetLogo world, which is bidimensional and is di-
vided in a grid of patches. Each patch is a square piece
that represents the support on which turtle objects can
move. The observer doesn’t have a fixed location, it
can be imagined as being situated above the world of
turtles and patches objects. The observer can be re-
garded as a system agent that can initiate various op-
erations for the other agents.

A set of agents can be grouped in an agentset. An
agentset can contain any of the objects of the turtles
or patches type, but not both. The concept of the set of
the agents was introduced in order to apply commands
or properties.

NetLogo allows the defining of different ”types”
of turtles, called breeds. Once a breed has been de-
fined, we ca establish a different behavior for it. Those
objects are used for simulating various objects exis-
tent in DCSP problems. For example, the agents from
the n queens problem can be defined using breed type
objects (a construction of type breeds [queens]). That
thing allows the fixing of a special behavior for each
agent-queen. When breed type objects are defined, au-
tomatically there is created an agentset for each breed.

2.2 Agents’ simulation and initialization

First of all, the agents are represented by breed type
objects (those are of turtles type objects). Fig. 1 shows
the way the agents are defined together with the global
data structures owned by the agents.

breeds [agents]
globals[variables that simulate the memory shared by all the agents]
agent-own [message-queue current-view MyValue
nogoods messages-received-ok messages-received-nogood]
;message-queue contains the received messages.
;current-view is a list indexed on the agent’s number:[v0 v1...],
;vi = -1 if we don’t know the value of that agent.
;nogoods is the list of inconsistent positions [0 1 1 0 ...]
where 0 is a good position, and 1 is inconsistent.
;messages-received-ok and messages-received-nogood count
the number of messages received by an agent.

Figure 1: Agents’ definition in the case of the asyn-
chronous search techniques

The initialization of the agents supposes build-
ing the agents and initialization of the necessary data
structures for the agents’ operation. For initialization
there is proposed an initialization procedure for each
agent, procedure presented in [3], [4].

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1262 Issue 10, Volume 7, October 2010

2.3 Representation and manipulation of the
messages

Any asynchronous search technique is based on the
use by the agents of some messages for communicat-
ing various information needed for obtaining the so-
lution. The manipulation of the messages supposes
first of all message representation. This thing can be
achieved in Netlogo by using some indexed lists. The
way of representation of the main messages encoun-
tered at the asynchronous search techniques is pre-
sented as follows:

• set message (list ”ok” agent value agent-costs) - messages
of the ok or info type;

• set message (list ”nogood” agent current-view agent-costs)
- messages of the nogood or back type;

• set message (list ”addl” agent1 agent2 agent-costs);

• set message (list ”removel” agent1 agent2 agent-costs);

We can remark the fact that the definition of a
message contains the message type, the agent that has
transmitted and the informations corresponding to the
type of message.

The agents’communication is done according to
the communication model introduced in [5]. The
communication model existing in the DisCSP frame
supposes first of all the existence of some channels
for communication, of the FIFO type, that can store
the messages received by each agent. The simulation
of the message queues for each agent can be done us-
ing Netlogo lists, for whom we define treatment rou-
tines corresponding to the FIFO principles. In the pro-
posed model in this article, that structure will be called
message-queue. This structure proper to each agent
will contain all the messages received by that agent.

The manipulation of these channels can be man-
aged by a central agent (which in NetLogo is called
observer) or by the agents themselves. In this purpose
we propose the building of a procedure called update
for global manipulation of the message channels. It
will also have a role in detecting the termination of
the asynchronous search techniques’ execution. That
update procedure is some kind of a ”main program”, a
command center for agents. In such a procedure, that
needs to run continuously (until emptying the message
queues) for each agent, the message queue is verified
(to detect a possible break in message transmitting).
The procedure should also allow the operation with
messages that are transmitted by the agents. The pro-
cedure needs to call for each agent another procedure
which will treat each message according to its type.
This procedure will be called handle-message, and
will be used to handle messages specific to each asyn-
chronous search technique. In figures 2 and 3 there are
presented the two main procedures for handling and
treating messages, update and handle-message. The

two procedures are the most important from the point
of view of their messages handling way asynchronous
or synchronous (way of work that defines the asyn-
chronous techniques).

to update
set no-more-messages true
ask agents [

if (not empty? message-queue)[set no-more-messages false]]
;if all queues are empty, the algorithm can be stopped
if (no-more-messages) [

if (Solution)
[WriteSolution]

else [WriteNoSolution]
stop]

;the procedure for handling messages from the
;message queues is called, for each agent.
ask agents [handle-message]
set nr-cycles nr-cycles + 1
ask agents [...

plot messages-received-nogood]
;graphical representations can be made after various parameters
. . .

end

Figure 2: The NetLogo update-1 procedure

In the update procedure from fig. 2, can be no-
ticed the call ”ask agents”, which allows the exe-
cution of the computations for each agent, but with a
synchronization after each run of the agents. In fig.
3, where the procedure for message handling is pre-
sented, it can be observed the fact that each agent ex-
tracts a message at a time from the message queue,
identifies the message type and calls the appropriate
procedure for handling that type of message.

;the message from the queue is handled and its type is
identified(ok, nogood, etc.) calling the handling procedure
to handle-message

if (empty? message-queue) [stop]
set msg retrieve-message
if (first msg = ”ok”)[

set messages-received-ok messages-received-ok + 1
handle-ok-message msg
;it’s called the procedure of handling the messages ok]

if (first msg = ”nogood”)[
handle-nogood-message msg
;it’s called the procedure of handling the messages nogood
set messages-received-nd messages-received-nd + 1]

....
end

Figure 3: The message handling-1 procedure

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1263 Issue 10, Volume 7, October 2010

2.4 Termination detection for the asyn-
chronous search techniques

For most of the asynchronous search techniques, the
solution is generally detected only after a break period
in sending messages (this means there is no message
being transmitted, state called quiescence). This situa-
tion can be resolved by checking the message queues,
queues that need to be empty. In [3] two detection
solutions for the execution termination of the asyn-
chronous search techniques are presented.

The first solution of termination detection is based
on some of the facilities of the NetLogo environment:
the ask command that allows the execution of the
computations for each agent and the existence of the
central observer agent. The handling of the communi-
cation channels will be realized by this central agent.
For this purpose, the building of an ”update” pro-
cedure is proposed for global handling the message
channels. In such a procedure, that must run continu-
ously (until the message queues are emptied) the ob-
server agent verifies any break in message transmis-
sion has been detected. These elements will lead to a
variant of implementation in which the synchronizing
of the agents’ execution is done. This method allows
obtaining a multi-agent system with synchronization
of the agents’ execution.

The second method allows us to obtain imple-
mentations with a completely asynchronous behav-
ior of the agents [3]. In this case, each agent exe-
cutes asynchronously and concurrently its computa-
tions, having no synchronization. This situation is
solved by introducing indicators, which retain at each
moment the status of the communication channels for
each agent.

The second method of detection starts from re-
nouncing the role of the ”observer” to detect the ap-
parition of a break in message transmission and ex-
ecution of the update procedure by each agent. The
detection will be made by the first agent that detects
its apparition. To each agent will be attached an in-
dicator detecting its local status. The detecting of the
algorithm’s termination is done using these indicators
that will store at any time the status of the communi-
cation channels for each agent. If, at a given time, all
the indicators are true, we can stop the algorithm. In
fig. 4(a) the code of the update procedure is presented.

The use of the second method of detection of
termination requires the adaptation of the message
manipulation routine, obtaining the routine from fig.
4(b). The second solution allows the building of
another type of evaluation system in NetLogo, with
agents, without synchronization for the agents’ execu-
tion. This system allows studying the agents’ behavior
in conditions closer to the real ones.

to update
; the procedure for handling messages
; from the message queues is called
handle-message
;the first agent that notices that all
;queues are empty will stop the algorithm
if (sum from agents [gt])=num-agents)

[set no-more-messages true]
if (no-more-messages) [

if (Solution)
[WriteSolution]

else [WriteNoSolution]
stop]

end
(a) The update-2 procedure

to handle-message
if (empty?message-queue) [set gt 1

stop]
set msg retrieve-message
set gt 0
if (first msg = ”ok”)[

set messages-ok messages-ok + 1
handle-ok-message msg]

if (first msg = ”nogood”)[
handle-nogood-message msg]

....
end
(b) The handle-message-2 procedure

Figure 4: The new procedure (version 2)

Starting from the modeling of the process of the
agents’ execution proposed in the previous paragraph,
applying a method for the detection of the termination
of this process, we can obtain two multi-agent systems
that can be used to evaluate the asynchronous search
techniques [3].

3 The evaluation of the asyn-
chronous search techniques

Another important thing that can be achieved in Net-
Logo is related to the evaluation of the asynchronous
algorithms.

The evaluation of the asynchronous search tech-
niques depends on at least two factors: the types of
problems used at the evaluation and the units of mea-
surement used. Each problem can be used with a
certain efficiency of a certain technique, depending
on the problem’s difficulty. For the CSP modeling
there were used some types of classic problems: the
n queens problem, the m coloring of a graph prob-
lem or the SAT problem. These problems were taken
over for the analysis of the DisCSP techniques in the
distributed formulation in which the variables where

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1264 Issue 10, Volume 7, October 2010

taken over by agents. For these problems there are a
few parameters that define them. The most important
are the dimension of the problem and the density of
the constraints graph associated to the DisCSP prob-
lem.

To evaluate these techniques there are many ways
of measuring that ensure a certain independence from
the programming languages used to implement them.
These measurement units allow the evaluation of
asynchronous search techniques according to many
criteria, such as local and global effort of the agents,
network loading due to the message exchange.

3.1 Types of problems used in evaluation
There a few types of problems about the evaluation in
the DisCSP literature:

• the distributed problem of the n queens, character-
ized by the number of queens (constant density for
the constraints graph equal to n*(n-1)/2).

• the distributed problem of the m-coloring of a ran-
domly generated graph, characterized by the number
of nodes/agents, k=3 colors and the m-number of con-
nections between the nodes/agents. There are defined
two types of graphs: graphs with few connections
(known as sparse problems, having m=n x 2 connec-
tions) and graphs with a special number of connec-
tions (known as dense problems, m=n x 2.7).

• The randomly generated (binary) CSPs are charac-
terised by the 4-tuple (n, m,p1,p2), where: n is the
number of variables; m is the uniform domain size;
p1 is the portion of the n * (n - 1) /2 possible con-
straints in the constraint graph; p2 is the portion of
the m*m value pairs in each constraint that are disal-
lowed by the constraint. That is, p1 may be thought
of as the density of the constraint graph, and p2 as the
tightness of constraints.

There should be mentioned that the problem of the
coloring of a graph and the randomly generated bi-
nary are the most suitable for the evaluation, because
they allow different densities for the constraints graph
and they have many direct applications in real prac-
tice. Therefore, a correct evaluation supposes the se-
lection of a varied class of problems, the more dimen-
sions, the more sets of data chosen randomly, or the
choosing of sets of data which allow varied densities
for the constraints graph.

Unfortunately, each asynchronous running of the
same problem can give different results. This problem
is solved by multiple runnings of the same problem,
for the same set of data, by selecting the arithmetic
average and the dispersion.

For the types of problems chosen for the evalua-
tion of the asynchronous search techniques there will

breeds [nodes]
;edges are represented in a list of lists:a 2D array indexed by ”who”.
globals [edges domain no-more-messages done nr-cycles]
;domain is the list of allowed colors;
nodes-own [message-queue current-view MyValue nogoods
messages-received-ok,..., the-neighbors, the-links]
;;the-neighbors is a list of the initial neighbors nodes
;message-queue contains the input messages.
;current-view is a list indexed by agent number [c0 c1...]
;nogoods is the list of inconsistent positions [0 1 1 0 ...]
where 0 is a good position and 1 is inconsistent.
;messages-received-ok count the number of ok messages
received by an agent.

Figure 5: NetLogo agents in the case of the graph col-
oring problem

breeds [nodes]
;nodes = agents
globals [edges domain no-more-messages done nr-cycles]
;domain is the list of allowed colors;
nodes-own [message-queue current-view MyValue nogoods
messages-received-ok,..., the-neighbors, the-links, Forbidden-Pairs]
;the-neighbors is a list of the initial neighbors nodes
;message-queue contains the input messages.
;current-view is a list indexed by agent number [c0 c1...]
;nogoods is the list of inconsistent positions [0 1 1 0 ...]
where 0 is a good position and 1 is inconsistent.
;messages-received-ok count the number of ok messages
received by an agent.
;Forbidden-Pairs is a list of conflicting pairs of values

Figure 6: NetLogo agents in the case of the randomly
generated (binary) CSPs problem

be defined agents using constructions of the breeds
type. That thing will allow programming each DCSP
agent according to the chosen asynchronous search
techniques. Defining the agents in the case of the two
classic problems used for evaluation (the problem of
graph coloring and the randomly generated (binary)
CSPs) is presented in figures 5 and 6. When the agents
are defined, the proprietary data structures are also de-
fined.

3.2 Costs due to the communication

The first criterion is that of the costs due to the com-
munication of information between different parts of
the algorithm. The asynchronous behavior that we’ve
met in the asynchronous searching techniques is influ-
encing in a substantial way the communication costs.
The asynchronous algorithms are characterized by the
usage of messages from the agents during the solution
seeking time. The monitoring of the received mes-
sages allows the evaluation of global charging of the
network. It’s important to analyze for distributed en-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1265 Issue 10, Volume 7, October 2010

vironments that use Internet or Ethernet networks.
The model presented within this paper allows the

monitoring of the various types of messages used
by the asynchronous search techniques. This can
be done by using a few global variables that are at-
tached to agents. For instance, for the model pre-
sented, there can be used a variable proprietary to each
agent (messages-received), variable that must be in-
cremented when generating and sending a message.
This variable is incremented in the routine of manipu-
lation of the messages of the type handle message (fig.
2 and fig. 3(b)).

3.3 Time costs

The time complexity is given by the time that is nec-
essary for calculating, and it is expressed in the terms
of the message with the longest treating time that the
computation involves. This time complexity is com-
parable to the time complexity of the algorithm for
the sequential classic case, but this is not really a time
measurement.

The asynchronous search techniques are evalu-
ated by certain authors [5], using for the time com-
plexity, as a measurement unit, the cycle. A cycle
consists in the necessary activities that all the agents
need in order to read the incoming messages, to exe-
cute their local calculations and send messages to the
corresponding agents. This measurement unit assures
a certain independence to the local conditions and the
ones existing in the distributed environment, impossi-
ble to be influenced by the delays that occur. This is a
very good measurement unit for the environments that
simulate a real distributed environment. For the model
featured in this study, the number of cycles can be de-
termined by using a global NetLogo variable (without
being proprietary to the agents). This variable will be
incremented in the update routine. In fact, the num-
ber of calls for the Update procedure represents the
number of cycles executed by the agents to obtain the
solution, or the non-existence of the solution. The
number of cycles can be determined only in the case
of the multi-agent system with the agents’ execution
synchronized (fig. 3).

The time complexity can be also evaluated by us-
ing the total number of constraints verified by each
agent. There is a measurement of the global time con-
sumed by the agents involved. It allows the evalu-
ation of the local effort of each agent. The number
of constraints verified by each agent can be moni-
tored using the variables proprietary to each agent (nr-
constraintc). A counter like that is incremented within
the routines check-agent-view, for verifying the con-
sistency of agent’s value.

1: Each agent initializes the counter variables CounterList with 0.
Also, MaxCounter is initialized with 0.
2: When an agent sends a message it includes in the message
the value of it’s MaxCounter.
3: When an agent receives a outdated nogood value from a

Sender agent, the counter from the CounterList list is updated.
Replace-item Sender CounterList with item Sender CounterList+1

4:if an agent receives a message with a counter SenderMx
then

Set MaxCounter = max { CounterList }
if MaxCounter < SenderMx then

Set MaxCounter = SenderMx
end if

end if

Figure 7: Determining the maximum value received
by each agent

The counting of the concurrent constraints in-
duced in [2] is a more complicated problem. This can
be done by introducing a variable proprietary to each
agent, called AgentC-Cost. This will hold the num-
ber of the constraints concurrent for the agent. This
value is sent to the agents to which it is connected
through the messages. Each agent, when receiving a
message that contains a value SenderC-Cost, will up-
date its own monitor AgentC-Cost with the new value
according to the algorithm in [2].

Performance improvement for the asynchronous
search techniques supposes knowing some informa-
tions by all the agents. It is the case of the nogood
processor techniques or of the limiting of the num-
ber of transmitted messages by each agent. These in-
formations should be known by each agent at a given
time. The presented model allows two solutions. A
first solution consists in using some global variables,
nonproprietary, accessible to all the agents. Such a so-
lution corresponds to the existence of a central agent
that stores these informations. But, such a solution
isn’t close to the practical situation in which the agents
cannot communicate with such a central agent or can
communicate, but the costs for obtaining a solution
increase. The second solution is based on the idea
of the algorithm for determining the number of con-
current constraints. Starting from that idea there is
proposed in figure 7 an algorithm for determining the
maximum/minimum values known by each agent, us-
ing only the messages transmitted by the agents.

Each agent uses a list of counters that store the
values received from each agent (for example the
nogoods received, the number of exchanged values,
etc). Then, each agent computes in a proprietary vari-
able the maximum/the minimum from its data struc-
ture. When receiving a message, it updates that max-
imum/minimum with the value transmitted by an-
other agent. Because the agents have connections

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1266 Issue 10, Volume 7, October 2010

Figure 8: NetLogo implementation and evaluation for
AWCS technique

based the constraints, they will receive the maxi-
mums/minimums from the neighbor agents, and those
from other neighbors, and so on.

Application of the model presented previously al-
lows the implementation and evaluation of any asyn-
chronous search technique. In figure 3.3 there is cap-
tured an implementation for the AWCS technique that
uses the model presented. Implementation examples
for the ABT family and the AWCS family can be
downloaded from the website [9].

4 Implementation and evaluation
methodology for the asynchronous
techniques

In this paragraph there is presented a methodology
of implementation for the asynchronous search tech-
niques in NetLogo, using the model presented in the
proposed evaluation model. That methodology sup-
poses the identification of the application’s objects,
building the agents and of the working surface for the
application. There are also built the communication
channels between agents, routines for message han-
dling and the main program of the application.

The methodology contains more elements spe-
cific to NetLogo necessary for finalizing the imple-
mentation and evaluation of the asynchronous search
techniques. Any implementation based on the pre-
sented model, will require the following of the next
steps.

P1. Defining the DisCSP application’s objects. Start-
ing from the type of problem that is imple-
mented, the objects of the DCSP application will
be defined. In figure 9 there is presented a solu-
tion of agents modelling and also for the working

surface of the application. As in the modelling
examples there are proposed breeds [queens] (for
modelling the agents associated to the queens
from the problem of the n queens) or breeds [ver-
tices] (for modeling the agents associated to each
node from the problem of graph coloring).

Figure 9: Defining the DisCSP application’s objects.

In exchange, to model the surface of the appli-
cation there are used objects of the patches type.
Depending on the significance of those agents,
they are represented on the Netlogo surface. In
figure there are presented two ways in NetLogo
for representing the agents of the queens type,
respectively nodes.

P2. Messages handling. Any agent keeps its work-
ing context at least as two proprietary structures:
current-view and its nogood list. That context
is used to take decisions, inclusively for build-
ing messages. For the proposed model, the data
structures that store the working context of each
agent can be simulated with lists. A representa-
tion solution is presented in figure 10 (a).

Figure 10: Messages handling

Message handling supposes first of all message
representation. That can be realized using in-
dexed lists. For representation of complex mes-
sages, that contain a lot of information, Netlogo
allows using lists of lists (the elements of the list
are also lists). In figure 10(b) there is presented
the way of representation of the main messages
found at the asynchronous techniques.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1267 Issue 10, Volume 7, October 2010

Simulation of message queues for each agent can
be done using Netlogo lists, for which are defined
routines of handling corresponding to FIFO prin-
ciples. These structures keep the messages re-
ceived by each agent.

P3. Application initialization. ”The main program”
for the application.

The initialization of the application supposes the
building of agents and of the working surface
for them. When the agents are built the re-
quired initializations are also done. Usually,
there are initialized the working context of the
agent (current-view), the message queues, the
variables that count the effort carried out by the
agent. In figure 11 there are presented the two
routines of the application initialization and of
the agents’ initialization.

Figure 11: Application initialization

The working surface of the application should
contain NetLogo objects through whom the pa-
rameters of each problem could be controlled:
the number of agents, the density of the con-
straints graph, the number of colors. For that
there can be used Netlogo objects of the slider
type. These objects allow the definition and mon-
itoring of each problem parameters.

For the application running there is proposed the
introduction of a graphical object of the button
type and setting the forever property. That way,
the attached code, in the form of a NetLogo pro-
cedure (that is applied on each agent) will run
continuously, until emptying the message queues
and reaching the Stop command (which in Net-
Logo stops the execution of an agent). The solu-
tion presented in figure 12 is based on the utiliza-
tion of the ask command. That NetLogo com-
mand executes a synchronization of each agent’s
execution.

Another important observation is tied to attach-
ing the graphical button to the observer. The

Figure 12: The procedure for running the DisCSP ap-
plication

use of this solution allows obtaining a solution
of implementation with synchronization of the
agents’ execution. In that case, the observer will
be the one that will initiate the stoping of the
DisCSP application execution. In figure 12 the
update procedure is attached and handled by the
observer. These elements lead to the multi-agent
system with synchronization of the agents’ exe-
cution.

If it is desired to obtain a system with asyn-
chronous operation, there will be used the second
method of detection, which supposes another up-
date routine. That new update-2 routine will be
attached to a graphical object of the button type
which is attached and handled by the turtle type
agents (the simulated agents were of the breed
type, which is a particular case of the turtle type).

P4. Monitoring of the evaluation parameters.

The model presented in this chapter allows stor-
ing the costs for obtaining the solution. That
thing can be done using some variables attached
to the agents. For counting the flow of mes-
sages there can be used a variable proprietary
to each agent (messages-received-nogood and
messages-received-ok), variable that needs to be
incremented in the moment of receiving a mes-
sage. That variable is incremented in the rou-
tine of message manipulation handle-message.
For measuring the work effort carried out by the
agents there can also be used two variables nr-
constraintc and concurent-ccks. Those variables
store the costs necessary for each agent. Thus,
those costs should be measured. An example is
presented in figure 13.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1268 Issue 10, Volume 7, October 2010

Figure 13: Monitoring of the evaluation parameters
for the two multi-agent systems

Application of the methodology presented previ-
ously allows the implementation and evaluation of any
asynchronous search technique.

Starting from the modelling of the process of the
agents’ execution proposed in the previous paragraph,
applying a methodology presented previously, we can
obtain two multi-agent systems that can be used to im-
plement and evaluate the techniques of asynchronous
search [3]. The architectures of the two distributed
systems that can be used for the asynchronous search
techniques are presented in figures 14 and 15.

The two systems are characterized by some com-
mon elements. First of all the agents simulation is
made in the same way, each agent being simulated
through the use of breed type objects. Second, we can
attach a general message treating routine to the agents
(in figures 4(a) and 4(b) handle-message). Third, the
message treating procedures (which, usually differen-
tiate each technique) are implemented in the same way
for the two systems.

The main difference between the two systems
consists in the detection of the termination of each
implemented technique. The first multi-agent system
uses the system agent called observator, in the second
one the agents are simulated through breed type ob-
jects.

The first multi-agent system of implementation
and evaluation is obtained by applying the first
method of detection of termination for the asyn-
chronous search techniques[3]. This system will be
called implementation and evaluation system with
synchronization-SIES. The main idea is to use the sys-
tem observer agent for identifying the break in the
message transmission. That thing is done by attaching
the update routine to a button attached to the observer.

The second element that differentiates this system
is that of using the ask command for executing the
handle-message routine of each agent (in the update
routine). That solution leads to the synchronization of
the agents execution. In figure 14 there is presented
this multi-agent system’s architecture.

The second multi-agent system is obtained apply-

Figure 14: Architecture of a multi-agent system with
execution synchronization - SIES

ing the second method of termination detection for the
agents’ execution at the model of implementation and
evaluation proposed previously [3]. That system will
be called implementation and evaluation system with
asynchronous operation of the agents-SIEAS (figures
15). The multi-agent system is remarked by renounc-
ing the observer and attaching the update routine to
each agent of the breed type. That way the execution
of the handle-message routine isn’t done by the ask
command, that being executed for each agent (turtle)
by the turtle type button with ”forever-button” feature
set. Giving up the ask command has the effect of asyn-
chronous run of the agents, each agent processing its
messages without waiting for a synchronization with
the other agents.

Figure 15: Arhitecture of a multi-agent system with
asynchronous agents operation-SIEAS

5 Conclusions

In this article was analyzed the NetLogo environ-
ment with the purpose of building a general model of
implementation and evaluation for the asynchronous

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1269 Issue 10, Volume 7, October 2010

techniques such as they could use the NetLogo en-
vironment as a basic simulator in the study of asyn-
chronous search techniques. The proposed model sup-
posed the identification of NetLogo objects necessary
for implementing the asynchronous search technique
(agents, messages, message queues, agents ordering)
and of the interface of interaction with the user. There
were also proposed solutions for counting the costs for
obtaining a solution using different measuring units.
That thing will allow the evaluation of performances
for asynchronous search techniques and eventual im-
provements for them. We can consider that it is the
first NetLogo model that allows the implementation
and evaluation of the asynchronous search techniques
after many evaluation criteria. The model also allows
the studying of the behavior of the agents for various
techniques, the studying of the costs for each agent.

Another very important facility is connected to
the fact that the NetLogo environment, through the
multi-agent systems defined, also allows the simula-
tion of other practical situations, such as the appari-
tion of delays in message transmission. There can
be introduced breaks in message processing through
handle-message routines and studied the behavior of
the agents in the case of apparition of delays in mes-
sage supplying. There can also be simulated situa-
tions in which there also is necessary the control of the
channels of communications, for example for message
filtering.

Starting from the modelling of the process of the
agents’ execution proposed in this paper, applying a
methodology presented previously, we can obtain two
multi-agent systems that can be used to implement
and evaluate the techniques of asynchronous search.
These multi-agent systems can be used for implemen-
tation, evaluation, analysis and identification of im-
provements for the asynchronous search techniques.

References:

[1] C. Bessiere, I. Brito, A. Maestre,P. Meseguer, Asyn-
chronous Backtracking without Adding Links: A New
Member in the ABT Family. Artificial Intelligence,
161:7-24, 2005.

[2] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing performance of distributed constraints
processing algorithms. Notes of the AAMAS’02 work-
shop on Distributed Constraint Reasoning, pages 86-
93, Bologna, Italy, 2002.

[3] Muscalagiu, I., Jiang, H., Popa, H. E. Implementation
and evaluation model for the asynchronous techniques:
from a synchronously distributed system to a asyn-
chronous distributed system. Proceedings of the 8th In-
ternational Symposium on Symbolic and Numeric Al-

gorithms for Scientific Computing, Timisoara, IEEE
Computer Society Press, 209–216, 2006.

[4] Muscalagiu, I., Iordan , A., Muscalagiu, D., Panoiu,
M. Implementation and evaluation model with syn-
chronization for the asynchronous search techniques.
Proceedings of the 13th WSEAS International Confer-
ence on COMPUTERS(13th WSEAS CSCC), Rhodos
Island, Greece,July 23-25, page 211–216, 2009.

[5] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara. The
distributed constraint satisfaction problem: formaliza-
tion and algorithms. IEEE Transactions on Knowledge
and Data Engineering 10(5), page. 673-685, 1998.

[6] U. Wilensky.NetLogo itself: NetLogo. Available:
http://ccl.northwestern.edu/ netlogo/. Center for Con-
nected Learning and Computer-Based Modeling,
Northwestern University. Evanston, 1999.

[7] MAS NetLogo Models-a. Available:
http://jmvidal.cse.sc.edu/netlogomas/.

[8] MAS NetLogo Models-b. Available:
http://ccl.northwestern.edu/netlogo/models/community.

[9] MAS NetLogo Models-c. Available: http://discsp-
netlogo.fih.upt.ro/.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Ionel Muscalagiu, Manuela Panoiu,
Diana Maria Muscalagiu, Caius Panoiu

ISSN: 1790-0832 1270 Issue 10, Volume 7, October 2010

