
Knowledge coding methods for rule-based expert systems 
 

PETR POLACH, JAN VALENTA, VACLAV JIRSIK 

Department of Control and Instrumentation 

Brno University of Technology 

Kolejni 2906/4, 612 00 Brno 

CZECH REPUBLIC 

polachpetr@phd.feec.vutbr.cz, jirsik@feec.vutbr.cz 

 http://www.uamt.feec.vutbr.cz 
 

 

Abstract: This paper gives an overview of knowledge representation methods that are currently being implemented for 

use in a hybrid expert  system shell that has been under development at the Department of Control and Instrumentation, 

BUT. Two approaches are discussed – a diagnostic and a planning expert system knowledge base coding. A new 

method suitable for diagnostic rule-based expert systems with automated weight tuning, deriving from neural networks, 

is proposed. Next, an approach to modeling knowledge bases using Petri Nets is discussed and inference engine 

operations are compared for both diagnostic and planning expert system. 
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1   Introduction 
Expert systems are interactive computer programs for 

decision support. With the goal of reducing costs, 

speeding up the decision making process and making it 

available no matter what the time or place used, they 

substitute human experts [12], [14]. Expert systems (ES) 

in general utilize numerous methods for representing 

expert knowledge – that is acquiring the problem-solving 

heuristic from the actual human expert, coding it in a 

proper way and of course using it later for the expert 

system operation. Every knowledge base needs to be 

thoroughly tuned and verified so that the results given in 

any computer consultation session are as coherent with 

the human expert advice as possible [3], [5], [17]. 

     Even though the basic structure of the knowledge 

base can be built quite easily (it is usually not difficult to 

determine the basic terms of the problem domain and to 

link them up based on mutual dependencies), common 

sense or even expert knowledge may not be enough to 

set up the weights of such links or may not lead to 

finding all the necessary connections. The process of 

creating and tuning a knowledge base can therefore be 

very long, costly and it is not guaranteed that the results 

will be satisfactory. Many times this leads into limited 

use of expert systems. 

     Our goal is to aid the process of knowledge base 

creation, tuning and deployment by presenting 

appropriate SW tools and methods. During our previous 

work we created an experimental modular expert system 

shell [17] and we will now describe the basics of 

knowledge representation methods that are implemented 

(or are currently being implemented) into it. Section 2 of 

this papers deals with a new methods for diagnostic 

systems – RESLA [25]. This method stems from the 

similarities between rule networks and artificial neural 

networks. An algorithm for network result error 

propagation thus tuning the network‟s weights is 

introduced. Sections 4 and 5 deal with the usage of Petri 

nets in expert systems. The inference engine based on 

Petri nets operation is described and examples are given 

therein.  

 

 

2   RESLA method 
Here we propose a knowledge base structure that allows 

for direct tuning of rule weights using a modified back-

propagation algorithm. The knowledge base is created in 

a form of an oriented acyclic graph where the first layer 

nodes stand for user responses (inputs from an analyzed 

process), the intermediate layer nodes are used for 

expressing mutual dependencies and supportive 

hypothesis (i.e. intermediate consultations results) and 

the output layer members represent the consultation 

result-hypothesis. 

     The RESLA method is a supervised learning 

algorithm that uses the error function gradient for 

modifying rule weights. As with neural network back-

propagation algorithm, it is necessary to have a set of 

patterns with a set of relevant responses. Different are 

the “transfer” functions of the rules (1). The condition of 

rule transfer function differentiability applies. 
n

jy  is the 

output of the jth rule in the nth layer,
n

jw  is its weight, x 

is the rule antecedent vector and )(x is the AND/OR 

function.  
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     The standard AND, OR functions are non 

differentiable, therefore we replace them with the t-norm 

(2) or s-norm (3) respectively. y is the function output, xi 

are input variables. 
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     The rules used within a knowledge base are defined 

as follows:  

 

      Logical product (4)  
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where 
n

jw  is the weight of jth rule in the nth layer, 1n

iy  

is the output of the ith rule in the (n – 1)th layer, N is the 

number of jth rule inputs and xn

j 1  for a negated 

link; xn

j   otherwise. 

 

      Logical sum (5) 
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where  x
N

i
OR
1

 is a recursive function 
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     The aggregation function (7) provides for the 

composition of individual rule- sub-tree influences into 

the probability values of the goal node (goal hypothesis). 
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where 
n

jy  is the output of the jth rule in the nth (output) 

layer. xn

j  , for a negated link; xn

j   otherwise. 

     At the beginning of weight optimization, all the 

weights w are set randomly from 1;0 . In every step, 

one model input is submitted. The knowledge base as a 

whole executes projection yx : .  xy  , 

where y is the output vector, x is the input vector, 
  is the knowledge base system function. The error 

function is then 

 

  xdyde  .                      (8) 

 

d is the vector of desired outputs. The immediate 

quadratic error for one rule output (from (1) and (8)) is 

then  
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where M is the number of examples belonging to the jth 

output, p is the respective sample.  Similarly, the error 

for the aggregation rule can be determined. The quality 

criterion is  

 
jeE .                                     (10) 

 

     The weights are set according to the delta rule  

 

ekk k )()1( ww ,                       (11) 

 

k  is the learning constant (determining the speed of 

adaptation process), k is step index. (12) shows the rule 

(11)  rewritten for individual knowledge base 

components 
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     Since the rule function is  xj
n

j

n

j wy  , we can 

express the gradient of the error function according to 

the respective weight w as  
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here 
n

j  denotes the rule‟s inner “potential”. For the 

output layer, we have 
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     Similarly, the gradients can be expressed for the 

aggregation rules and for intermediate layers (15) 
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     The rule weights for the nth (output) layer are set 

according to (16), for intermediate layers according to 

(17). 
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     For individual rule and link types, substitute 

expressions for 
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      The AND rule with a positive (non-negated) link 

to its input variable 
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      The AND rule with a negated link to its input 

variable 
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      The OR rule with a positive link to its input 

variable 
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      The OR rule with a negated link to its input 

variable 
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     The adaptation algorithm executes as follows: 

 

1. Initialize weights. Set weights nww 1  

randomly for all nodes in the knowledge base. 

2. Load pattern. Pick a previously unused pattern 

and set it on the net input layer. 

3. Compute error value. Using (8) compute the 

error value of each output. Using (10) compute 

the overall error of the network. 

4. Adapt the weights. Using (16) compute new 

weight values for the output layer. Compute new 

weight values for the intermediate layers 

according to (17). 

5. Repeat steps 2 to 4 for each individual pattern in 

the pattern set. 

6. Exit if the overall error value is lesser than 

required or maximum step count is reached. 

 

 

2.1   RESLA experimental results 
The method was tested on a knowledge base executing 

three logical functions. The output knowledge base 

nodes Yand, Yor, Yxor modeled three logical functions, each 

of them having three input arguments X1, X2, X3: 

 

     321and XXXY   

     321or XXXY   

     
     

     32121

32121xor

XXXXX

XXXXXY




 

 

     Figure 1 shows the graphical representation of the 

experimental knowledge base. 

 

 
 

Fig. 1 Knowledge base for YAND, YOR and 

YXOR 

 

 

     The following figures show the development of the 

rule weights in the adaptation process. 
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Fig. 2 1,0k  
 

 

 

Fig. 3 4,0k  

 

    Figures 4 and 5 compare the development of the 

global average error for the knowledge base weights. 

 

 

 

Fig. 4 1,0k  

 
Fig. 5 4,0k  

 
 

3   Petri Nets 
Petri Nets (PN) are a significant tool for modeling 

parallel systems and discrete time systems. Thanks to 

their ability to express parallelism, synchronicity and 

event causality they are fit for modeling systems such as 

communication protocols, computer and database 

systems etc. Petri nets are a class of mathematical 

models that enable us to describe control flows and 

information dependencies inside any modeled system 

[3], [5]. They provide a basis for variant purposes in 

knowledge engineering: knowledge representation, 

reasoning engines, knowledge acquisition and 

verification [13]. Using Petri Nets the structuring of 

knowledge within the rule bases is achieved. It helps to 

clearly express the relationships among individual rules 

thus helping the experts and knowledge engineers in 

creating and modifying (tuning) the knowledge bases. 

They allow for design of an efficient inference 

algorithm. In  applications where real-time performance 

is of crucial importance, the concurrency among rules 

activation (that Petri nets naturally model) may be a 

great advantage. 

 

 

3.1   PN definition 
     The basic elements of any basic or high-level (i.e. 

colored, timed or synchronized [2]) Petri nets are: 

     Places (in graphical representation usually 

denoted by circles) representing conditions 

     Transitions (rectangles or  strokes) representing 

events 

     Oriented arcs connecting places and transitions 

     Tokens 

    A Petri net is a directed bi-parite graph with two types 

of vertices – places and transitions. The immediate state 
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of the system is represented by its marking, i.e. the 

number of tokens in each place. 

    We describe a Petri Net as a sextuplet N (22)  

 

 ),,,,,( 0MKWFTPN   ,              (22) 

 

where P and T are disjoint PT  sets of places and 

transitions respectively.  )()( PTTPF   is 

a binary relation – flow relation of the net N denoting the 

position and orientation of the arcs. Notation 

 ,3,2,1: FW
 
rates the arcs in the graph denoting 

their weights,     ,3,2,1,0:PK  specifies the 

capacities of places and     ,3,2,1,0:0 PM
 
is 

the initial marking denoting the state of the network 

before the execution (firing) of any transition, 

)()(: 0 pKpMPp  . All the sets in the sextuplet N 

in (22) will be considered ordered so that e.g. the first 

place p1 from the set of all places P has its capacity 

denoted by the first cell of vector K(p1). 

    Similarly,  ,,, 321 iiii pppM 
 

is a vector of 

numbers stating the token count in each place of the 

network in its i-th state. It is the marking of the Petri net 

in the i-th state. 
    A Petri net incidence matrix A (23) describes the 

relation between the net‟s initial state M0 and its final 

state Mf by denoting the influence of firing transitions on 

net places‟ token counts. A cell axy in (23) shows the 

change of number of tokens px in place X after executing 

(firing) the transition ty.    
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    Consider a net shown in Fig. 6. Here 

 321 ,, pppP  ,   ,,K ,  21,ttT  , 

 ],[],,[],,[],,[],,[],,[ 221231231211 ptptpttptptpF   

 1,2,1,1,1,3W ,  0,1,40 M
 
and A is (24).     
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    Figure 6 shows the net in its initial state M0 and in two 

subsequent states M1 and M2 after firing the transitions t1 

and t2 respectively. Firing an enabled (executable) 

transition carries the network into a new state removing 

tokens from the transition‟s input places, adding tokens 

into the output places. This is expressed as (25) and (26)  

 

 210
21 MMM
tt
                  (25) 
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Fig. 6 A simple Petri Net in three 

consequent states 
     

    A transition t is enabled and can be fired when the 

condition (27) holds true.   

 

   
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    Just like in Boolean rule systems, it may be 

convenient to use a negation of a rule antecedent in Petri 

net-based system as well. Condition (27) says that a 

transition is enabled  all the input places hold at least 

the number of tokens denoted by the input arc weight. 

The „negation‟ of a rule antecedent then requires that the 

place holds fewer tokens than denoted by the input arc 

weight. In Petri Nets, this is indicated by the presence of 
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an inhibitor. In order to use inhibitors we need to extend 

the definition of Petri Nets (22) so that all transition 

input arcs Fjp yx ],[  carry the information about the 

type of arc actually used. We do that by denoting them 

as triplets ],,[ bjp yx
, where 1b  indicates the 

presence of an inhibitor, while 0b  indicates the 

presence of a regular arc. 

 

p1

t1

3

 
 

Fig. 7 A transition disabled by an inhibitor 
 

    For Petri Nets with inhibitors, condition (27) extends 

to (28). Fig. 7 shows a part of a Petri Net that is 

described by the following: Pp 1 ,  Tt 1 ,  

Ftp ]1,,[ 11 , 3)( 1 pM , 3])1,,([ 11 tpW . 
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    For the examples presented in this paper we will stick 

to definition (22) for a Petri Net without inhibitors. 

Nevertheless, it is trivial to extend our considerations 

using (28). Note that every state Mi  shown in Fig. 8 has 

only one transition enabled. Note also that, unlike 

regular arcs, inhibitors do not remove any tokens from 

the input place when the respective transition is fired 

     2,1,0,01,0,1,31,1,0,1 12 
tt

. 

    The following sections 4 and 5 deal with usage of 

Petri Nets in the different cases of diagnosis and 

planning. The task of a diagnostic expert system is to 

effectively interpret the data (facts) in order to provide 

an evaluation of a set of given final hypotheses thus 

selecting the likeliest, i.e. the one the corresponds the 

best with the real data (facts). It is the process of re-

evaluation of partial and goal hypotheses (stored in the 

knowledge base as a fixed problem-model) that the Petri 

Nets may be used for in this case. 

    On the other hand, by planning we understand solving 

a problem where there is no set of hypotheses to be 

evaluated (proven or rejected). Usually, an initial state of 

a system is given together with a desired goal. The Petri 

Nets can here be used for finding a sequence of 

operations taking the system from its initial state to the 

desired one. 

     For many applications the modern expert systems 

don‟t rely on purely simple Boolean rules. They do 

handle the uncertainty simple production rules cannot 

cope with. Among the advantages that support the use of 

Petri Nets in expert systems (good analysis methods, 

attractive graphical formalism, structured representation, 

…) is also the fact that many researchers have dealt with 

the extension of Petri Nets formalisms in order to 

incorporate a way to handle the uncertainty directly. 

Fuzzy Petri Nets were introduced in several suitable 

modifications [4], [13], [24]. 
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Fig. 8 A Petri Net with an inhibitor 
     

    

4   Petri Nets in diagnostic expert systems 
Here we propose a method for creating diagnostic expert 

system knowledge bases using a modified Petri net. The 

task of a diagnostic expert system is, given a set of goal 

hypotheses (i.e. a set of possible diagnosis conclusions), 

to find the one that is true for the examined problem case 

(i.e. to find a conclusion that corresponds to the facts 

ascertained during the consulting session). 

    Each place in the Petri net models a hypothesis that 

can be proven (tokens present) or rejected. Firing a 

transition means validating a rule. We take advantage of 
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the Petri net capability to express control flows and 

construct the knowledge bases so that only those rules 

that directly influence the inference process at a given 

moment are examined. We achieve that by structuring 

the knowledge base so that the inference control 

information is an integral part of rule antecedents. The 

inference engine (its operation is outlined in Fig. 12) 

then examines only antecedents (or antecedent sub-trees) 

of those rules which have previously been activated by 

the presence of an inference control token in one of the 

input places. 

    A general production rule IF a THEN c, where a is the 

rule antecedent and c is the rule consequent, can be 

modeled with a Petri net as shown in Fig. 9. 

pA

t
pC

 
 

Fig. 9 A simple production rule in PN 

 

    For each rule:   PppP n  AA1A ,,  is the set of 

rule antecedents and   PppP m  CC1C ,,  is the set 

of consequents. Validating a rule means firing the 

transition t (i.e. removing tokens from input places, 

adding tokens to output places). 

   Using a weighted Petri net we can model the following 

types of rules. AND (Fig. 10 left), OR (Fig. 10 right). 

Clearly, constructing an OR rule means creating a 

structure of n transitions each with one input place 

AA Pp i  thus creating a sub-net of n AND rules each of 

them having one antecedent and a full set of consequents 

PC. 

 

pA1 pAn

...

pC1 pCm

...

tAND

pA1 pAn

...

pC1 pCm

...

tOR1 tORn

wA1 wAn

wC1 wCm

wA1 wAn

wC1

wC1 wCm

wCm

 
 

Fig. 10 AND, OR rules in PN 

 

 

    When validating a rule, we follow this procedure (29) 

for modifying the net‟s (marking): 

 

 

   

   
jjjj

iiii

iii

wpMpMPp

wpMpMPp

wpMPp

CCCCC

AAAAA

AAAA

:

:

:







THEN

IF

        (29) 

    For OR rules in a net where    pKPp :  this 

approach leads to accumulating individual antecedent 

contributions to the validation of the consequent – if 

more than one antecedent hold true, firing all enabled 

OR rule sub-transitions results into addition of a number 

of tokens denoted by the sum of weights of arcs 

connecting all enabled sub-transitions with the 

respective consequent place. This feature can be used for 

constructing weighted OR rules and can be extended 

further by introducing limited place capacities and 

transition priorities. 

 

pA1 pAn

...

pcon

tcon1 tconn

wA1 wAn

wcon1 wconn

wsuf

tC

pC

wC

 
 

Fig. 11 A weighted OR rule 

 

    Consider a rule modeled by the net shown in Fig. 11. 

Here, the consequent pC is confirmed when all the token 

count contributions from antecedents holding true 

collected in intermediate place pcon sum up to a count 

equal or greater than the value of sufficiency threshold 

wsuf. 

 

suf

)(:

con

AA

wwp
ii wpMi

iC  


                   (30) 

 

    The described structure may be useful when a 

diagnosis needs to be made based on various symptoms 

or attributes and it is known that the symptoms may be 

present in various combinations (and even various 
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strengths or severities). Each symptom/attribute that is 

observed (i.e. the corresponding M(pA) > 0) causes an 

addition of wA tokens into the intermediate place (pcon in 

Fig. 11). When enough symptoms are present, i.e. the 

total number of generated tokens exceeds the sufficiency 

threshold, the consequent is confirmed.     

     If it is known that only a certain number of symptoms 

needs to be present in order to be able to conclude the 

diagnosis with pC and it is costly to perform all the tests 

needed for verifying the validity of all antecedents, we 

introduce transition priorities so that the least costly 

verifiable antecedents get examined first. If the rule is 

constructed so that sufcon ww
i

i   then the inference 

engine stops examining the antecedents as soon as 

sufcon )( wpM 

 

omitting the verification of antecedents 

with the lowest priority if higher priority antecedents 

have been observed as holding true. 

 

 

       
 

Fig. 12 The inference process during diagnosis 
     

     The rule base can easily be extended so that more 

complex reasoning is possible. If an attribute/symptom 

must be present in order to be able to conclude with pC 

although the presence of the attribute itself is not 

sufficient enough, we simply create a direct arc 

connecting the necessary antecedent place and the 

consequent transition tC. Similarly, when a symptom 

(possibly from a different part of the knowledge base) 

must not be present, we create an inhibitor. Consider the 

case shown in Fig. 13. Here, pA1, pA2, pA3, pA4 are 

symptoms supporting the diagnosis pC. pA1 must be 

observed if pC is to be confirmed. Also pA2 must hold 

true or both of pA3 and pA4 must hold true. pD1 must be 

rejected. 

 

pA1

pcon

3

tC

pC

pA2 pA3 pA4

2

pD1

 
 

Fig. 13 On the use of a weighted rule 

     
   Note that the place pA1 represents a fireability 

condition for two different transitions. It is therefore 

required that this place has at least as many tokens as the 

sum of all weights of outgoing arcs when the statement 

pA1 holds true. This can be achieved by setting a correct 

weight of arcs connecting into this place. 
    In order to speed up the reasoning process, for each 

unexamined transition the depth of every antecedent sub-

tree is calculated and the shallowest trees (possibly 

consisting of just one place) are examined first. 

 

 

4.1   Place associated actions 
The expert system requires gathering data (facts) during 

the inference process so that it can assess rule 

antecedents. We therefore extend the definition (22) of a 

Petri Net so that each place can be associated with an 

action. Among these actions are: 

 

     ask a question, 

     query a database, 

     collect data from a measuring system, 

     etc. 
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    When a certain step in the reasoning process is 

reached (a place receives tokens) the corresponding 

action is executed and a list of potentially firable 

(currently blocked) transitions is created. The transitions 

from this list are blocked due to the absence of tokens in 

input places (rule antecedents). The inference engine 

examines these places executing associated actions. 

Based on the callback data (e.g. user responds „yes‟ and 

a token is placed) the inference process moves on along 

the knowledge base network. 

 

 

4.2   A diagnosis example 
In Fig. 14 we demonstrate the use of Petri nets for 

creating a knowledge base. The aim is to reason about 

the cause of a TV set malfunction. The knowledge base 

consists of 5 goal hypotheses and a number of 

intermediate places used for step-by-step evaluation of 

the problem case. The possible conclusions (and 

respective places in the knowledge base) are: 

 

     screen is defective (pscreen) 

     antenna is not connected (pantenna) 

 sound processing circuits are defectional (psound) 

 power cord is unplugged (pcord) 

 fuse is blown (pfuse) 

 

    Among the places are also antecedents of the 

production rules. In this case, each of the antecedent 

places has a possible user response associated with it. 

When the reasoning branches (inference engine 

examines the blocking conditions as shown in Fig. 12) 

the user is presented with a question (associated to the 

inference flow control places) and a list of these 

responses and is asked to pick one. Based on this pick a 

token is placed into the respective place thus releasing 

the blocking condition and enabling the respective 

transition. The inference flow control places and 

questions associated with them are: 

 

 pq1 : „Does the TV set work at all when switched 

on?‟ 

 pq2 : „Is the power cord plugged into the socket 

properly?‟ 

 pq3 : „Does the screen show anything at all?‟ 

 pq4 : „Do you hear any sound?‟ 

 

    All of these are yes/no questions. The place pq1Y 

models the user‟s response „yes‟ to the question from 

pq1. The place pq1N is the „no‟ answer. When an answer 

is picked by the user, the respective place receives a 

token. 

 

 

pstart

pq1pq1N

pq1Y

pq2pq2N pq2Y

pcord pfuse

pq3pq3N pq3Y

p3N p3Y

pq4pq4Y pq4N

p4Y p4N

pscreen pantenna psound

 
 

Fig. 14 A knowledge base for TV set malfunction diagnosis 
 

    The goal hypotheses places are printed in bold in Fig. 

14. The inference process starts by placing a token into 

the place pstart and continues by firing transitions 

following the rules as discussed in section 3 and 4 and 

resolving the blocking conditions using the place 

associated actions. 

    When a token is present in one of the goal hypothesis 

places and no more transitions can be fired, the 

consultation ends. 
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5   Petri Nets for planning 
By planning we understand finding a way (a path) that, 

when followed, transforms a system from its initial state 

to a desired state. A path is a sequence of actions 

(applied operators). The role of a human expert here is 

to provide the set of valid operators/actions that can be 

applied onto the system (any individual part or a group 

of parts) and specify the conditions under which the 

operators may be used. 

    During planning (i.e. state search) we examine the 

incidence matrix A. Following the rules for Petri nets [2] 

the algorithm looks for executable transitions and fires 

them  in each „current‟ planning step c thus transforming 

the network into state c+1, i.e. from marking Mc into 

Mc+1. The inference engine compares the resulting state 

Mc+1 with the desired final state Mf (ending the process if 

Mf is reached) and with the members of the set of 

previously achieved states – the history MH
*
 (going back 

to last branching in order to prevent deadlocks if 

necessary). 

    The knowledge base contains a set of transitions 

representing operations that may be applied on 

individual parts of the system (places of the Petri Net) in 

order to achieve the desired state Mf. The system 

(problem task) itself is modeled as a set of Petri Net 

places. The expressing capabilities of such a model are 

given by the type of Petri Net used. In the simplest case 

of a P/T Petri Net, the only attribute of any part of the 

system (and the only condition that limits the possibility 

to use an operation selected from the knowledge base) is 

a positive integer denoting the count of tokens. I.e. the 

system is described by the marking M of the net. The 

employability of operations proposed by an expert in the 

knowledge base is purely dependant on the rules for 

firing transitions. The inference is error-trial driven. If a 

need for modeling more complex systems arises, higher 

lever Petri Nets (e.g. colored) may be used. 

 

 

5.1   The knowledge base 
In the current version of our expert system, the 

knowledge base is a plain text file that holds the list of 

allowed operations. They are, in fact, transitions written 

in an expected format. 

    At the start of the inference process (planning), the 

expert systems parses the knowledge base file and 

generates a Petri Net from the set of places P describing 

the examined problem by generating the sets of 

transitions T and arcs F so that in each planning step, 

i.e. marking Mc, all operations may be executed (all 

kinds of transitions may be fired). The knowledge base 

records determine the number of input places for a 

transition, the number of output places and individual arc 

weights. A knowledge base KB is a set of operations OP 

defined as (31), (32). 

 

 

 
    Fig. 15 The inference process during planning 

 

 

    ),,,( poutpinpoutpin WWnnOP                      (31) 

},,{ 1 OPOPKB                                      (32) 

 

    Where npin and npout are the numbers of input and 

output places respectively, Wpin and Wpout are the vectors 

of arc weights,  ,3,2,1, poutpin nn ,  

 

pinpin nW   .                            (33) 
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(33) applies for npout and Wpout similarly. The Petri Net 

model is generated as follows: 

 

1. load operation KBOP , 

2. given the npin, generate set IN of all npin-

variations of P, 

 

 bal ppPpppIN ininininin1 ,:],,[  
 
  (34) 

 

3. given the npout, generate set OUT of all npout-

variations of P,  

 

 bam ppPpppOUT outoutoutoutout1 ,:],,[  
   

(35) 

 

4. create a net where each individual npin-tuplet 

INpp l ],,[ inin1  is connected  to each     

npout-tuplet OUTpp m ],,[ outout1  through 

a separate transition tOP modeling the operation 

OP via npin input arcs with weights Wpin and npout 

output arcs with weights Wpout.  

 

5. repeat for all operations from the knowledge 

base 

 

    It is clear that this „blind‟ approach is an open end in 

the current implementation. It poses a combinatory 

problem since  OUTIN   transitions must be 

generated for each operation in the knowledge base. 

Loading a knowledge base KB generates  (36) new 

transitions in the model. 

 

)!()!(

!!

poutpin nPnP

PP









                
(36) 

 

    For simple reasoning algorithms that work with a 

model constructed using just low level P/T nets with 

weighted arcs where there are no other limiting 

conditions that could drive the process of generating 

transitions, it is useful to extend (34) and (35) so that 

only such transitions get generated that can at all be 

fired during the session. Obviously, the relation between 

the place capacities and arc weights can be used here. 

We extend (34) with the condition (37) so that we can 

write (38) for input places and arcs and similarly (39) 

for output places and arcs. 

 

)()(:],,[

)()(:],,[

outoutoutout1out

inininin1in

bWpKppp

aWpKppp

bm

al









     
(37) 

 

)}()(

,:],,{[

inin

inininin1

cWpK

ppppIN

c

bal



 
           (38) 

)}()(

,:],,{[

outout

outoutoutout1

cWpK

ppppOUT

c

bam



 

          
(39) 

 

    Generally, each operation OP can be extended by 

adding a set of conditions C that limit the generation of 

transitions e.g. based on properties of places so that  

),,,,( OPpoutpinpoutpin CWWnnOP   and transition tOP is 

generated if  ],,[],,,[ outout1inin1COP ml ppppfC   

holds true. We will demonstrate this on an example in 

the following section 5.2. 

    In order to maintain the generality of the inference 

engine it may be useful to implement the set KB in terms 

of function objects so that the inference engine (of a 

presumably empty expert system) does not need to deal 

with a complicated proprietary syntax. The knowledge 

engineer may then as well use the respective standard 

high level programming language to formulate 

transition-generation conditions COP for each operation. 

    Another way of optimizing the transition generation is 

regarding the cells of the vectors of arc weights Wpin, 

Wpout as functions  )(),(, cw pMpKpfw  . The 

feature for blocking the generation of dead transitions 

(37 to 39) is obviously disabled for these transitions as at 

the moment of transition generation the generating 

engine cannon assess the attribute )(c pM . Not only 

does this approach reduce the number of generated 

transitions, for some task it may be useful for describing 

the problem domain in a simpler and readable way. 

 

 

5.2   A planning problem example 
Let us consider the following problem: We are given a 

set of jars with known capacities and with a known 

amount of water pre-filled in them. Our task is to fill the 

jars with a given amount of water. We are not given 

anything to use for measuring the water volumes, the 

only information is the full capacity of the jars and the 

volumes of pre-filled water. At any time we can pour out 

all the water from any of the jars or can fill up any of the 

jars from the tap or can pour the water over from one jar 

to another. For simplicity, we will reduce this task to a 

specific example. Two jars are given, one with the 

capacity of 5 liters, 3 liters for the other one. The desired 

volumes of water left in the jars after the task has been 

solved are 3 and 2 liters. Jar 1 is empty, Jar 2 is filled 

with 3 liters. 

    Considering the previous we can model this problem 

for solving in our expert system by introducing: 
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 
 
 

 







,,3,2

,,3,0

,,3,5

,,,

f

0

sinksourcejar2jar1

M

M

K

ppppP

               (40) 

 

    Note that the places psource and psink exist too. Since the 

current state of the system is denoted by its marking 

(section 3) and the observed state of the system of jars is 

actually given by the number of liters in each jar, it is 

clear that the number M(p) of tokens in each place 

corresponds to the amount of water in each respective 

jar. psource is where we take our water from, psink is where 

we dispose of it. 

    Given the allowed operations from the problem 

assignment, we could describe the knowledge base as 

(41).  

 

 
PourOverFillUpPourOut ,, OPOPOPKB               (41) 

 

    OPPourOut represent the operation of pouring out all the 

water from a specified jar, OPFillUp stands for filling the 

jar up from a water source, OPPourOver represents pouring 

over a beforehand unspecified amount of water between 

two jars based on the remainder of water in one jar and 

the capacity left in the other jar.  

 

  

 

  






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
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W
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n

n
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
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


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


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
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,1
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W

n

n

OP
   

 (43) 
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






























pinpout

out1out1in1w1pin

pout

pin

PourOver

,)(),(),(

,1

,1
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pKpMpMfW

n

n

OP

   (44) 

 

    We can only fill up the jars from the water source, 

therefore   source1in1inC pppf   and we can dispose 

of the water only in a place „out of the modeled 

system‟,   sink1out1outC pppf  .  

    The operation OPPourOut can be described as: Take all 

the water and remove it from the jar. I.e. the current 

number of tokens needs to be removed. Thus 

)( in1w1 pMf  . 

    The operation OPFillUp means: Whatever the current 

volume of water in a respective jar is, fill it up. Thus we 

add as many tokens as it is needed to use up the whole 

capacity of the modeling PN place, 

)()( out1out1w1 pMpKf  . 

    For OPPourOver,  )()(),(min out2out2in1w1 pMpKpMf  , 

as we can only pour over as much water as it is available 

in the jar we pour from. At the same time we can only 

pour as much water as the capacity left in the jar we pour 

the water to. 

    Since the state of source and sink places are not 

significant, we can model both of those as having 

unlimited capacity as well as unlimited stock of tokens. 

This way we do not run into any problems and may pick 

an arbitrary weight for the arcs leading to/from them. 

Here we set w = 1. 

    Fig. 16 shows the model after knowledge base has 

been loaded and transitions have been generated – initial 

state M0. 

 
 

Fig. 16 The inference process during planning 

    The generated relation F is (45), PN vector W (46) and 

incidence matrix for this Petri Net is (47).  
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]},[],,[],,[

],,[],,[],,[
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],,[],,[],,{[
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 (46) 
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5.3   Planning sequence and optimality 
From (46) and since K is constant, it is clear that 

)(MfA  . In each step c we: 

 compute )( cc MfA   as a means to look for 

possible changes in the states of the system 

 build the set   ,e1,ee ,, ccc ttT 
 

of all 

transitions that are enabled and their firing may 

transform the state of the system into one of 
 

eT
 

future states 1,1cM  that are 

collected
 

 ,11,1 ,,e

 cc

T

c MMM c 
 

in a 

separate set. 

  ,11,1,1 ,,   ccic MMM   branch the search 

and continue in one path until another branch or 

fM or an previously examined state 
*

Hh MM   

is reached. 

 

    For each marking Mh that is reached during the 

planning process, the depth denoting the number of steps 

the inference engine needed for reaching Mh is also 

stored. In case a marking Mh is reached that had already 

been reached previously during the planning process, 

further planning is stopped. Stored and current depth 

values are compared and if the current depth is lower 

(i.e. the last sequence leading into the particular state is 

shorter than the one previously found) then the 

previously found sequence leading into Mh is forgotten. 

    This behavior leads to finding the shortest sequence of 

operations for transforming the system from M0 to Mf. 

Applying other optimality criterions is an open end at the 

moment. One could replace the „shortest path‟ rule by 

e.g. evaluation of a cost function assigned to each 

transition.  

    The result of the planning process is a firing sequence 

sp denoting the sequence of operations taken from the 

knowledge base. If no solution was found (i.e. all the 

possible marking development paths were examined 

without having reached the fM ), then ps . 

    In the case of the planning problem described in this 

example, the resulting planning sequence could be (48). 

 

f210p
PourOver1FillUp1PourOut2: MMMMs
ttt

    (48) 

 

 

 

 







,,3,2

,,0,5

,,0,0

,,3,0

f

2

1

0

M

M

M

M

                        
(49) 

 

    There are other possible outcomes even for this simple 

case, the resulting sequence is dependent on the order of 

operations as they are defined in KB for this 

implementation. 

 

 

6   Conclusion 
In this paper we have proposed a method suitable for 

automatic tuning of rule weights in network-based 

knowledge bases for diagnostic expert systems (section 

2). 

    We have also discussed the usage of Petri Nets in both 

diagnostic and planning expert systems and shown an 

approach for using them to code knowledge. Reasoning 

algorithms were described as well. Simple examples 

were given in sections 4 and 5. The use of Petri nets for 

diagnostic expert systems does not bring many assets 

unless high level Petri nets are used. For planning expert 

systems they seem to be a very promising tool.  

   Future research will be focused on extending the 

expert planning Petri net based approach, especially on 

optimal planning. 
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