
Knowledge coding methods for rule-based expert systems

PETR POLACH, JAN VALENTA, VACLAV JIRSIK

Department of Control and Instrumentation

Brno University of Technology

Kolejni 2906/4, 612 00 Brno

CZECH REPUBLIC

polachpetr@phd.feec.vutbr.cz, jirsik@feec.vutbr.cz

 http://www.uamt.feec.vutbr.cz

Abstract: This paper gives an overview of knowledge representation methods that are currently being implemented for

use in a hybrid expert system shell that has been under development at the Department of Control and Instrumentation,

BUT. Two approaches are discussed – a diagnostic and a planning expert system knowledge base coding. A new

method suitable for diagnostic rule-based expert systems with automated weight tuning, deriving from neural networks,

is proposed. Next, an approach to modeling knowledge bases using Petri Nets is discussed and inference engine

operations are compared for both diagnostic and planning expert system.

Key-Words: Expert systems, Knowledge Engineering, Knowledge base tuning, Resla, Petri Nets

1 Introduction
Expert systems are interactive computer programs for

decision support. With the goal of reducing costs,

speeding up the decision making process and making it

available no matter what the time or place used, they

substitute human experts [12], [14]. Expert systems (ES)

in general utilize numerous methods for representing

expert knowledge – that is acquiring the problem-solving

heuristic from the actual human expert, coding it in a

proper way and of course using it later for the expert

system operation. Every knowledge base needs to be

thoroughly tuned and verified so that the results given in

any computer consultation session are as coherent with

the human expert advice as possible [3], [5], [17].

 Even though the basic structure of the knowledge

base can be built quite easily (it is usually not difficult to

determine the basic terms of the problem domain and to

link them up based on mutual dependencies), common

sense or even expert knowledge may not be enough to

set up the weights of such links or may not lead to

finding all the necessary connections. The process of

creating and tuning a knowledge base can therefore be

very long, costly and it is not guaranteed that the results

will be satisfactory. Many times this leads into limited

use of expert systems.

 Our goal is to aid the process of knowledge base

creation, tuning and deployment by presenting

appropriate SW tools and methods. During our previous

work we created an experimental modular expert system

shell [17] and we will now describe the basics of

knowledge representation methods that are implemented

(or are currently being implemented) into it. Section 2 of

this papers deals with a new methods for diagnostic

systems – RESLA [25]. This method stems from the

similarities between rule networks and artificial neural

networks. An algorithm for network result error

propagation thus tuning the network‟s weights is

introduced. Sections 4 and 5 deal with the usage of Petri

nets in expert systems. The inference engine based on

Petri nets operation is described and examples are given

therein.

2 RESLA method
Here we propose a knowledge base structure that allows

for direct tuning of rule weights using a modified back-

propagation algorithm. The knowledge base is created in

a form of an oriented acyclic graph where the first layer

nodes stand for user responses (inputs from an analyzed

process), the intermediate layer nodes are used for

expressing mutual dependencies and supportive

hypothesis (i.e. intermediate consultations results) and

the output layer members represent the consultation

result-hypothesis.

 The RESLA method is a supervised learning

algorithm that uses the error function gradient for

modifying rule weights. As with neural network back-

propagation algorithm, it is necessary to have a set of

patterns with a set of relevant responses. Different are

the “transfer” functions of the rules (1). The condition of

rule transfer function differentiability applies.
n

jy is the

output of the jth rule in the nth layer,
n

jw is its weight, x

is the rule antecedent vector and)(x is the AND/OR

function.

)(x n

j

n

j wy (1)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1101 Issue 8, Volume 7, August 2010

 The standard AND, OR functions are non

differentiable, therefore we replace them with the t-norm

(2) or s-norm (3) respectively. y is the function output, xi

are input variables.


i

ixy (2)

  212121, xxxxxxy  (3)

 The rules used within a knowledge base are defined

as follows:

 Logical product (4)

  



N

i

n

i

n

j

n

j

n

j ywy
1

1 , (4)

where
n

jw is the weight of jth rule in the nth layer, 1n

iy

is the output of the ith rule in the (n – 1)th layer, N is the

number of jth rule inputs and xn

j 1 for a negated

link; xn

j  otherwise.

 Logical sum (5)

  1
1




 n

i

n

j

N

i

n

j

n

j yORwy  , (5)

where  x
N

i
OR
1

 is a recursive function

        ii

N

i
xxxxOR ,,, 121

1



x . (6)

 The aggregation function (7) provides for the

composition of individual rule- sub-tree influences into

the probability values of the goal node (goal hypothesis).

  



N

i

n

i

n

i

n

j

n

j ywy
1

1 , (7)

where
n

jy is the output of the jth rule in the nth (output)

layer. xn

j  , for a negated link; xn

j  otherwise.

 At the beginning of weight optimization, all the

weights w are set randomly from 1;0 . In every step,

one model input is submitted. The knowledge base as a

whole executes projection yx : .  xy  ,

where y is the output vector, x is the input vector,
 is the knowledge base system function. The error

function is then

  xdyde  . (8)

d is the vector of desired outputs. The immediate

quadratic error for one rule output (from (1) and (8)) is

then

   
2

1

1

1

2

,,

2

1

2

1
1





























 

M

p

n

jp

n

jjp

n

jpjp

M

p

jp

n

jpjpj

ywd

ywde
j

j

n

jpj



yw

 , (9)

where M is the number of examples belonging to the jth

output, p is the respective sample. Similarly, the error

for the aggregation rule can be determined. The quality

criterion is

 
jeE . (10)

 The weights are set according to the delta rule

ekk k )()1(ww , (11)

k is the learning constant (determining the speed of

adaptation process), k is step index. (12) shows the rule

(11) rewritten for individual knowledge base

components

)()()1(k
w

e
kwkw

n

j

k

n

j

n

j



  . (12)

 Since the rule function is  xj
n

j

n

j wy  , we can

express the gradient of the error function according to

the respective weight w as

n

jn

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

yw

y

yw























, (13)

here
n

j denotes the rule‟s inner “potential”. For the

output layer, we have

        002
2

1 n

j

n

jjjjjjn

j

n

j
ydwd

w








xx (14)

 Similarly, the gradients can be expressed for the

aggregation rules and for intermediate layers (15)

  












 













n
j

n
jy

n

j

n

j

n

j

n

jn

jn

j

n

j

n

j

n

j

y

y
w

yy 1
1

1

1

1 
. (15)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1102 Issue 8, Volume 7, August 2010

 The rule weights for the nth (output) layer are set

according to (16), for intermediate layers according to

(17).

  00000)()1(
n

j

n

j

n

jt

n

j

n

j dytwtw   (16)

  












 











n
j

n
jy

n

j

n

j

n

j

n

jn

jn

j

n

jn

jt

n

j

n

j

y

y
w

y
tw

tw

1
1

1

11

1

)(

)1(




 (17)

 For individual rule and link types, substitute

expressions for
  
1

1








n

j

n

j

n

j

n

j

y

y
 were found.

 The AND rule with a positive (non-negated) link

to its input variable

  

  












 N

ji
i

n

j

n

jn

j

n

j

n

j

n

j
y

y

y

0

1

1

1




 (18)

 The AND rule with a negated link to its input

variable

  
  













 N

ji
i

n

j

n

jn

j

n

j

n

j

n

j
y

y

y

0

1

1

1




 (19)

 The OR rule with a positive link to its input

variable

  
  

N

ji
i

n

i

n

in

j

n

j

n

j

n

j
y

y

y















0

1

1

1

1 


 (20)

 The OR rule with a negated link to its input

variable

  
   1

0

1

1

1
















N

ji
i

n

i

n

in

j

n

j

n

j

n

j
y

y

y



 (21)

 The adaptation algorithm executes as follows:

1. Initialize weights. Set weights nww 1

randomly for all nodes in the knowledge base.

2. Load pattern. Pick a previously unused pattern

and set it on the net input layer.

3. Compute error value. Using (8) compute the

error value of each output. Using (10) compute

the overall error of the network.

4. Adapt the weights. Using (16) compute new

weight values for the output layer. Compute new

weight values for the intermediate layers

according to (17).

5. Repeat steps 2 to 4 for each individual pattern in

the pattern set.

6. Exit if the overall error value is lesser than

required or maximum step count is reached.

2.1 RESLA experimental results
The method was tested on a knowledge base executing

three logical functions. The output knowledge base

nodes Yand, Yor, Yxor modeled three logical functions, each

of them having three input arguments X1, X2, X3:

 321and XXXY 

 321or XXXY 


     

     32121

32121xor

XXXXX

XXXXXY





 Figure 1 shows the graphical representation of the

experimental knowledge base.

Fig. 1 Knowledge base for YAND, YOR and

YXOR

 The following figures show the development of the

rule weights in the adaptation process.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1103 Issue 8, Volume 7, August 2010

Fig. 2 1,0k

Fig. 3 4,0k

 Figures 4 and 5 compare the development of the

global average error for the knowledge base weights.

Fig. 4 1,0k

Fig. 5 4,0k

3 Petri Nets
Petri Nets (PN) are a significant tool for modeling

parallel systems and discrete time systems. Thanks to

their ability to express parallelism, synchronicity and

event causality they are fit for modeling systems such as

communication protocols, computer and database

systems etc. Petri nets are a class of mathematical

models that enable us to describe control flows and

information dependencies inside any modeled system

[3], [5]. They provide a basis for variant purposes in

knowledge engineering: knowledge representation,

reasoning engines, knowledge acquisition and

verification [13]. Using Petri Nets the structuring of

knowledge within the rule bases is achieved. It helps to

clearly express the relationships among individual rules

thus helping the experts and knowledge engineers in

creating and modifying (tuning) the knowledge bases.

They allow for design of an efficient inference

algorithm. In applications where real-time performance

is of crucial importance, the concurrency among rules

activation (that Petri nets naturally model) may be a

great advantage.

3.1 PN definition
 The basic elements of any basic or high-level (i.e.

colored, timed or synchronized [2]) Petri nets are:

 Places (in graphical representation usually

denoted by circles) representing conditions

 Transitions (rectangles or strokes) representing

events

 Oriented arcs connecting places and transitions

 Tokens

 A Petri net is a directed bi-parite graph with two types

of vertices – places and transitions. The immediate state

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1104 Issue 8, Volume 7, August 2010

of the system is represented by its marking, i.e. the

number of tokens in each place.

 We describe a Petri Net as a sextuplet N (22)

),,,,,(0MKWFTPN  , (22)

where P and T are disjoint PT sets of places and

transitions respectively.)()(PTTPF  is

a binary relation – flow relation of the net N denoting the

position and orientation of the arcs. Notation

 ,3,2,1: FW

rates the arcs in the graph denoting

their weights,     ,3,2,1,0:PK specifies the

capacities of places and     ,3,2,1,0:0 PM

is

the initial marking denoting the state of the network

before the execution (firing) of any transition,

)()(: 0 pKpMPp  . All the sets in the sextuplet N

in (22) will be considered ordered so that e.g. the first

place p1 from the set of all places P has its capacity

denoted by the first cell of vector K(p1).

 Similarly,  ,,, 321 iiii pppM 

is a vector of

numbers stating the token count in each place of the

network in its i-th state. It is the marking of the Petri net

in the i-th state.
 A Petri net incidence matrix A (23) describes the

relation between the net‟s initial state M0 and its final

state Mf by denoting the influence of firing transitions on

net places‟ token counts. A cell axy in (23) shows the

change of number of tokens px in place X after executing

(firing) the transition ty.

























nmn

m

m

n aa

a

aaa

ttt

p

p

p

A

.........

::

::

:

......

......

:

:

1

21

11211

21

2

1

 (23)

 Consider a net shown in Fig. 6. Here

 321 ,, pppP  ,   ,,K ,  21,ttT  ,

 ],[],,[],,[],,[],,[],,[221231231211 ptptpttptptpF 

 1,2,1,1,1,3W ,  0,1,40 M

and A is (24).

























11

11

23

A

 (24)

 Figure 6 shows the net in its initial state M0 and in two

subsequent states M1 and M2 after firing the transitions t1

and t2 respectively. Firing an enabled (executable)

transition carries the network into a new state removing

tokens from the transition‟s input places, adding tokens

into the output places. This is expressed as (25) and (26)

 210
21 MMM
tt
 (25)

     0,1,31,0,10,1,4 21 

tt
 . (26)

p1

p2

t1 p3

t2

2

3

p1

p2

t1 p3

t2

2

3

p1

p2

t1 p3

t2

2

3

M0:

M1:

M2:

Fig. 6 A simple Petri Net in three

consequent states

 A transition t is enabled and can be fired when the

condition (27) holds true.

   
]),([)()(

]),([)(:,,,

outoutout

ininoutin

ptWpMpK

tpWpMFpttp





(27)

 Just like in Boolean rule systems, it may be

convenient to use a negation of a rule antecedent in Petri

net-based system as well. Condition (27) says that a

transition is enabled  all the input places hold at least

the number of tokens denoted by the input arc weight.

The „negation‟ of a rule antecedent then requires that the

place holds fewer tokens than denoted by the input arc

weight. In Petri Nets, this is indicated by the presence of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1105 Issue 8, Volume 7, August 2010

an inhibitor. In order to use inhibitors we need to extend

the definition of Petri Nets (22) so that all transition

input arcs Fjp yx ],[carry the information about the

type of arc actually used. We do that by denoting them

as triplets],,[bjp yx
, where 1b indicates the

presence of an inhibitor, while 0b indicates the

presence of a regular arc.

p1

t1

3

Fig. 7 A transition disabled by an inhibitor

 For Petri Nets with inhibitors, condition (27) extends

to (28). Fig. 7 shows a part of a Petri Net that is

described by the following: Pp 1 , Tt 1 ,

Ftp ]1,,[11 , 3)(1 pM , 3])1,,([11 tpW .

   

 ]),([)()(

]),,([)(:1

]),,([)(:0

:,,,,

outoutout

inin

inin

outin

ptWpMpK

btpWpMb

btpWpMb

Fptbtp


















 (28)

 For the examples presented in this paper we will stick

to definition (22) for a Petri Net without inhibitors.

Nevertheless, it is trivial to extend our considerations

using (28). Note that every state Mi shown in Fig. 8 has

only one transition enabled. Note also that, unlike

regular arcs, inhibitors do not remove any tokens from

the input place when the respective transition is fired

     2,1,0,01,0,1,31,1,0,1 12 
tt

.

 The following sections 4 and 5 deal with usage of

Petri Nets in the different cases of diagnosis and

planning. The task of a diagnostic expert system is to

effectively interpret the data (facts) in order to provide

an evaluation of a set of given final hypotheses thus

selecting the likeliest, i.e. the one the corresponds the

best with the real data (facts). It is the process of re-

evaluation of partial and goal hypotheses (stored in the

knowledge base as a fixed problem-model) that the Petri

Nets may be used for in this case.

 On the other hand, by planning we understand solving

a problem where there is no set of hypotheses to be

evaluated (proven or rejected). Usually, an initial state of

a system is given together with a desired goal. The Petri

Nets can here be used for finding a sequence of

operations taking the system from its initial state to the

desired one.

 For many applications the modern expert systems

don‟t rely on purely simple Boolean rules. They do

handle the uncertainty simple production rules cannot

cope with. Among the advantages that support the use of

Petri Nets in expert systems (good analysis methods,

attractive graphical formalism, structured representation,

…) is also the fact that many researchers have dealt with

the extension of Petri Nets formalisms in order to

incorporate a way to handle the uncertainty directly.

Fuzzy Petri Nets were introduced in several suitable

modifications [4], [13], [24].

p1

p2

t1

p3

t23

M0: p4

p1

p2

t1

p3

t23

M1: p4

2

2

p1

p2

t1

p3

t23

M2: p4

2

2

2

2

Fig. 8 A Petri Net with an inhibitor

4 Petri Nets in diagnostic expert systems
Here we propose a method for creating diagnostic expert

system knowledge bases using a modified Petri net. The

task of a diagnostic expert system is, given a set of goal

hypotheses (i.e. a set of possible diagnosis conclusions),

to find the one that is true for the examined problem case

(i.e. to find a conclusion that corresponds to the facts

ascertained during the consulting session).

 Each place in the Petri net models a hypothesis that

can be proven (tokens present) or rejected. Firing a

transition means validating a rule. We take advantage of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1106 Issue 8, Volume 7, August 2010

the Petri net capability to express control flows and

construct the knowledge bases so that only those rules

that directly influence the inference process at a given

moment are examined. We achieve that by structuring

the knowledge base so that the inference control

information is an integral part of rule antecedents. The

inference engine (its operation is outlined in Fig. 12)

then examines only antecedents (or antecedent sub-trees)

of those rules which have previously been activated by

the presence of an inference control token in one of the

input places.

 A general production rule IF a THEN c, where a is the

rule antecedent and c is the rule consequent, can be

modeled with a Petri net as shown in Fig. 9.

pA

t
pC

Fig. 9 A simple production rule in PN

 For each rule:   PppP n  AA1A ,, is the set of

rule antecedents and   PppP m  CC1C ,, is the set

of consequents. Validating a rule means firing the

transition t (i.e. removing tokens from input places,

adding tokens to output places).

 Using a weighted Petri net we can model the following

types of rules. AND (Fig. 10 left), OR (Fig. 10 right).

Clearly, constructing an OR rule means creating a

structure of n transitions each with one input place

AA Pp i  thus creating a sub-net of n AND rules each of

them having one antecedent and a full set of consequents

PC.

pA1 pAn

...

pC1 pCm

...

tAND

pA1 pAn

...

pC1 pCm

...

tOR1 tORn

wA1 wAn

wC1 wCm

wA1 wAn

wC1

wC1 wCm

wCm

Fig. 10 AND, OR rules in PN

 When validating a rule, we follow this procedure (29)

for modifying the net‟s (marking):

 

   

   
jjjj

iiii

iii

wpMpMPp

wpMpMPp

wpMPp

CCCCC

AAAAA

AAAA

:

:

:







THEN

IF

 (29)

 For OR rules in a net where    pKPp : this

approach leads to accumulating individual antecedent

contributions to the validation of the consequent – if

more than one antecedent hold true, firing all enabled

OR rule sub-transitions results into addition of a number

of tokens denoted by the sum of weights of arcs

connecting all enabled sub-transitions with the

respective consequent place. This feature can be used for

constructing weighted OR rules and can be extended

further by introducing limited place capacities and

transition priorities.

pA1 pAn

...

pcon

tcon1 tconn

wA1 wAn

wcon1 wconn

wsuf

tC

pC

wC

Fig. 11 A weighted OR rule

 Consider a rule modeled by the net shown in Fig. 11.

Here, the consequent pC is confirmed when all the token

count contributions from antecedents holding true

collected in intermediate place pcon sum up to a count

equal or greater than the value of sufficiency threshold

wsuf.

suf

)(:

con

AA

wwp
ii wpMi

iC  


 (30)

 The described structure may be useful when a

diagnosis needs to be made based on various symptoms

or attributes and it is known that the symptoms may be

present in various combinations (and even various

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1107 Issue 8, Volume 7, August 2010

strengths or severities). Each symptom/attribute that is

observed (i.e. the corresponding M(pA) > 0) causes an

addition of wA tokens into the intermediate place (pcon in

Fig. 11). When enough symptoms are present, i.e. the

total number of generated tokens exceeds the sufficiency

threshold, the consequent is confirmed.

 If it is known that only a certain number of symptoms

needs to be present in order to be able to conclude the

diagnosis with pC and it is costly to perform all the tests

needed for verifying the validity of all antecedents, we

introduce transition priorities so that the least costly

verifiable antecedents get examined first. If the rule is

constructed so that sufcon ww
i

i  then the inference

engine stops examining the antecedents as soon as

sufcon)(wpM 

omitting the verification of antecedents

with the lowest priority if higher priority antecedents

have been observed as holding true.

Fig. 12 The inference process during diagnosis

 The rule base can easily be extended so that more

complex reasoning is possible. If an attribute/symptom

must be present in order to be able to conclude with pC

although the presence of the attribute itself is not

sufficient enough, we simply create a direct arc

connecting the necessary antecedent place and the

consequent transition tC. Similarly, when a symptom

(possibly from a different part of the knowledge base)

must not be present, we create an inhibitor. Consider the

case shown in Fig. 13. Here, pA1, pA2, pA3, pA4 are

symptoms supporting the diagnosis pC. pA1 must be

observed if pC is to be confirmed. Also pA2 must hold

true or both of pA3 and pA4 must hold true. pD1 must be

rejected.

pA1

pcon

3

tC

pC

pA2 pA3 pA4

2

pD1

Fig. 13 On the use of a weighted rule

 Note that the place pA1 represents a fireability

condition for two different transitions. It is therefore

required that this place has at least as many tokens as the

sum of all weights of outgoing arcs when the statement

pA1 holds true. This can be achieved by setting a correct

weight of arcs connecting into this place.
 In order to speed up the reasoning process, for each

unexamined transition the depth of every antecedent sub-

tree is calculated and the shallowest trees (possibly

consisting of just one place) are examined first.

4.1 Place associated actions
The expert system requires gathering data (facts) during

the inference process so that it can assess rule

antecedents. We therefore extend the definition (22) of a

Petri Net so that each place can be associated with an

action. Among these actions are:

 ask a question,

 query a database,

 collect data from a measuring system,

 etc.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1108 Issue 8, Volume 7, August 2010

 When a certain step in the reasoning process is

reached (a place receives tokens) the corresponding

action is executed and a list of potentially firable

(currently blocked) transitions is created. The transitions

from this list are blocked due to the absence of tokens in

input places (rule antecedents). The inference engine

examines these places executing associated actions.

Based on the callback data (e.g. user responds „yes‟ and

a token is placed) the inference process moves on along

the knowledge base network.

4.2 A diagnosis example
In Fig. 14 we demonstrate the use of Petri nets for

creating a knowledge base. The aim is to reason about

the cause of a TV set malfunction. The knowledge base

consists of 5 goal hypotheses and a number of

intermediate places used for step-by-step evaluation of

the problem case. The possible conclusions (and

respective places in the knowledge base) are:

 screen is defective (pscreen)

 antenna is not connected (pantenna)

 sound processing circuits are defectional (psound)

 power cord is unplugged (pcord)

 fuse is blown (pfuse)

 Among the places are also antecedents of the

production rules. In this case, each of the antecedent

places has a possible user response associated with it.

When the reasoning branches (inference engine

examines the blocking conditions as shown in Fig. 12)

the user is presented with a question (associated to the

inference flow control places) and a list of these

responses and is asked to pick one. Based on this pick a

token is placed into the respective place thus releasing

the blocking condition and enabling the respective

transition. The inference flow control places and

questions associated with them are:

 pq1 : „Does the TV set work at all when switched

on?‟

 pq2 : „Is the power cord plugged into the socket

properly?‟

 pq3 : „Does the screen show anything at all?‟

 pq4 : „Do you hear any sound?‟

 All of these are yes/no questions. The place pq1Y

models the user‟s response „yes‟ to the question from

pq1. The place pq1N is the „no‟ answer. When an answer

is picked by the user, the respective place receives a

token.

pstart

pq1pq1N

pq1Y

pq2pq2N pq2Y

pcord pfuse

pq3pq3N pq3Y

p3N p3Y

pq4pq4Y pq4N

p4Y p4N

pscreen pantenna psound

Fig. 14 A knowledge base for TV set malfunction diagnosis

 The goal hypotheses places are printed in bold in Fig.

14. The inference process starts by placing a token into

the place pstart and continues by firing transitions

following the rules as discussed in section 3 and 4 and

resolving the blocking conditions using the place

associated actions.

 When a token is present in one of the goal hypothesis

places and no more transitions can be fired, the

consultation ends.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1109 Issue 8, Volume 7, August 2010

5 Petri Nets for planning
By planning we understand finding a way (a path) that,

when followed, transforms a system from its initial state

to a desired state. A path is a sequence of actions

(applied operators). The role of a human expert here is

to provide the set of valid operators/actions that can be

applied onto the system (any individual part or a group

of parts) and specify the conditions under which the

operators may be used.

 During planning (i.e. state search) we examine the

incidence matrix A. Following the rules for Petri nets [2]

the algorithm looks for executable transitions and fires

them in each „current‟ planning step c thus transforming

the network into state c+1, i.e. from marking Mc into

Mc+1. The inference engine compares the resulting state

Mc+1 with the desired final state Mf (ending the process if

Mf is reached) and with the members of the set of

previously achieved states – the history MH
*
 (going back

to last branching in order to prevent deadlocks if

necessary).

 The knowledge base contains a set of transitions

representing operations that may be applied on

individual parts of the system (places of the Petri Net) in

order to achieve the desired state Mf. The system

(problem task) itself is modeled as a set of Petri Net

places. The expressing capabilities of such a model are

given by the type of Petri Net used. In the simplest case

of a P/T Petri Net, the only attribute of any part of the

system (and the only condition that limits the possibility

to use an operation selected from the knowledge base) is

a positive integer denoting the count of tokens. I.e. the

system is described by the marking M of the net. The

employability of operations proposed by an expert in the

knowledge base is purely dependant on the rules for

firing transitions. The inference is error-trial driven. If a

need for modeling more complex systems arises, higher

lever Petri Nets (e.g. colored) may be used.

5.1 The knowledge base
In the current version of our expert system, the

knowledge base is a plain text file that holds the list of

allowed operations. They are, in fact, transitions written

in an expected format.

 At the start of the inference process (planning), the

expert systems parses the knowledge base file and

generates a Petri Net from the set of places P describing

the examined problem by generating the sets of

transitions T and arcs F so that in each planning step,

i.e. marking Mc, all operations may be executed (all

kinds of transitions may be fired). The knowledge base

records determine the number of input places for a

transition, the number of output places and individual arc

weights. A knowledge base KB is a set of operations OP

defined as (31), (32).

 Fig. 15 The inference process during planning

),,,(poutpinpoutpin WWnnOP  (31)

},,{ 1 OPOPKB  (32)

 Where npin and npout are the numbers of input and

output places respectively, Wpin and Wpout are the vectors

of arc weights,  ,3,2,1, poutpin nn ,

pinpin nW  . (33)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1110 Issue 8, Volume 7, August 2010

(33) applies for npout and Wpout similarly. The Petri Net

model is generated as follows:

1. load operation KBOP ,

2. given the npin, generate set IN of all npin-

variations of P,

 bal ppPpppIN ininininin1 ,:],,[ 

 (34)

3. given the npout, generate set OUT of all npout-

variations of P,

 bam ppPpppOUT outoutoutoutout1 ,:],,[ 

(35)

4. create a net where each individual npin-tuplet

INpp l ],,[inin1  is connected to each

npout-tuplet OUTpp m ],,[outout1 through

a separate transition tOP modeling the operation

OP via npin input arcs with weights Wpin and npout

output arcs with weights Wpout.

5. repeat for all operations from the knowledge

base

 It is clear that this „blind‟ approach is an open end in

the current implementation. It poses a combinatory

problem since OUTIN  transitions must be

generated for each operation in the knowledge base.

Loading a knowledge base KB generates  (36) new

transitions in the model.

)!()!(

!!

poutpin nPnP

PP









(36)

 For simple reasoning algorithms that work with a

model constructed using just low level P/T nets with

weighted arcs where there are no other limiting

conditions that could drive the process of generating

transitions, it is useful to extend (34) and (35) so that

only such transitions get generated that can at all be

fired during the session. Obviously, the relation between

the place capacities and arc weights can be used here.

We extend (34) with the condition (37) so that we can

write (38) for input places and arcs and similarly (39)

for output places and arcs.

)()(:],,[

)()(:],,[

outoutoutout1out

inininin1in

bWpKppp

aWpKppp

bm

al









(37)

)}()(

,:],,{[

inin

inininin1

cWpK

ppppIN

c

bal



 
 (38)

)}()(

,:],,{[

outout

outoutoutout1

cWpK

ppppOUT

c

bam



 

(39)

 Generally, each operation OP can be extended by

adding a set of conditions C that limit the generation of

transitions e.g. based on properties of places so that

),,,,(OPpoutpinpoutpin CWWnnOP  and transition tOP is

generated if  ],,[],,,[outout1inin1COP ml ppppfC 

holds true. We will demonstrate this on an example in

the following section 5.2.

 In order to maintain the generality of the inference

engine it may be useful to implement the set KB in terms

of function objects so that the inference engine (of a

presumably empty expert system) does not need to deal

with a complicated proprietary syntax. The knowledge

engineer may then as well use the respective standard

high level programming language to formulate

transition-generation conditions COP for each operation.

 Another way of optimizing the transition generation is

regarding the cells of the vectors of arc weights Wpin,

Wpout as functions  )(),(, cw pMpKpfw  . The

feature for blocking the generation of dead transitions

(37 to 39) is obviously disabled for these transitions as at

the moment of transition generation the generating

engine cannon assess the attribute)(c pM . Not only

does this approach reduce the number of generated

transitions, for some task it may be useful for describing

the problem domain in a simpler and readable way.

5.2 A planning problem example
Let us consider the following problem: We are given a

set of jars with known capacities and with a known

amount of water pre-filled in them. Our task is to fill the

jars with a given amount of water. We are not given

anything to use for measuring the water volumes, the

only information is the full capacity of the jars and the

volumes of pre-filled water. At any time we can pour out

all the water from any of the jars or can fill up any of the

jars from the tap or can pour the water over from one jar

to another. For simplicity, we will reduce this task to a

specific example. Two jars are given, one with the

capacity of 5 liters, 3 liters for the other one. The desired

volumes of water left in the jars after the task has been

solved are 3 and 2 liters. Jar 1 is empty, Jar 2 is filled

with 3 liters.

 Considering the previous we can model this problem

for solving in our expert system by introducing:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1111 Issue 8, Volume 7, August 2010

 
 
 

 







,,3,2

,,3,0

,,3,5

,,,

f

0

sinksourcejar2jar1

M

M

K

ppppP

 (40)

 Note that the places psource and psink exist too. Since the

current state of the system is denoted by its marking

(section 3) and the observed state of the system of jars is

actually given by the number of liters in each jar, it is

clear that the number M(p) of tokens in each place

corresponds to the amount of water in each respective

jar. psource is where we take our water from, psink is where

we dispose of it.

 Given the allowed operations from the problem

assignment, we could describe the knowledge base as

(41).

 
PourOverFillUpPourOut ,, OPOPOPKB  (41)

 OPPourOut represent the operation of pouring out all the

water from a specified jar, OPFillUp stands for filling the

jar up from a water source, OPPourOver represents pouring

over a beforehand unspecified amount of water between

two jars based on the remainder of water in one jar and

the capacity left in the other jar.

  

 

  



































out1COP

pout

in1w1pin

pout

pin

PourOut

,1

,)(

,1

,1

pfC

W

pMfW

n

n

OP (42)

.  

  

  



































in1COP

out1out1w1pout

pin

pout

pin

FillUp

,(),(

,1

,1

,1

pfC

pKpMfW

W

n

n

OP

 (43)

  
































pinpout

out1out1in1w1pin

pout

pin

PourOver

,)(),(),(

,1

,1

WW

pKpMpMfW

n

n

OP

 (44)

 We can only fill up the jars from the water source,

therefore   source1in1inC pppf  and we can dispose

of the water only in a place „out of the modeled

system‟,   sink1out1outC pppf  .

 The operation OPPourOut can be described as: Take all

the water and remove it from the jar. I.e. the current

number of tokens needs to be removed. Thus

)(in1w1 pMf  .

 The operation OPFillUp means: Whatever the current

volume of water in a respective jar is, fill it up. Thus we

add as many tokens as it is needed to use up the whole

capacity of the modeling PN place,

)()(out1out1w1 pMpKf  .

 For OPPourOver,  )()(),(min out2out2in1w1 pMpKpMf  ,

as we can only pour over as much water as it is available

in the jar we pour from. At the same time we can only

pour as much water as the capacity left in the jar we pour

the water to.

 Since the state of source and sink places are not

significant, we can model both of those as having

unlimited capacity as well as unlimited stock of tokens.

This way we do not run into any problems and may pick

an arbitrary weight for the arcs leading to/from them.

Here we set w = 1.

 Fig. 16 shows the model after knowledge base has

been loaded and transitions have been generated – initial

state M0.

Fig. 16 The inference process during planning

 The generated relation F is (45), PN vector W (46) and

incidence matrix for this Petri Net is (47).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1112 Issue 8, Volume 7, August 2010

]},[],,[],,[

],,[],,[],,[

],,[],,[],,[

],,[],,[],,{[

jar1PourOver2PourOver2jar2jar2PourOver1

PourOver1jar1jar2FillUp2FillUp2source

jar1FillUp1FillUp1sourcesinkPourOut2

PourOut2jar2sinkPourOut1PourOut1jar1

pttppt

tppttp

pttppt

tppttpF 

(45)

 
 )()(),(min

)()(),(min

),()(

),()(

,1

),(),(

),

,,,,,,,,,,(

out1out1in21211

out2out2in1109

jar2jar28´

jar1jar16

7542

jar23jar11

1211

10987654321

pMpKpMww

pMpKpMww

pMpKw

pMpKw

wwww

pMwpMw

ww

wwwwwwwwwwW















 (46)



























000011

001100

00

00

111283

10961

wwww

wwww

A (47)

5.3 Planning sequence and optimality
From (46) and since K is constant, it is clear that

)(MfA  . In each step c we:

 compute)(cc MfA  as a means to look for

possible changes in the states of the system

 build the set  ,e1,ee ,, ccc ttT 

of all

transitions that are enabled and their firing may

transform the state of the system into one of

eT

future states 1,1cM that are

collected

 ,11,1 ,,e

 cc

T

c MMM c 

in a

separate set.

  ,11,1,1 ,,   ccic MMM  branch the search

and continue in one path until another branch or

fM or an previously examined state
*

Hh MM 

is reached.

 For each marking Mh that is reached during the

planning process, the depth denoting the number of steps

the inference engine needed for reaching Mh is also

stored. In case a marking Mh is reached that had already

been reached previously during the planning process,

further planning is stopped. Stored and current depth

values are compared and if the current depth is lower

(i.e. the last sequence leading into the particular state is

shorter than the one previously found) then the

previously found sequence leading into Mh is forgotten.

 This behavior leads to finding the shortest sequence of

operations for transforming the system from M0 to Mf.

Applying other optimality criterions is an open end at the

moment. One could replace the „shortest path‟ rule by

e.g. evaluation of a cost function assigned to each

transition.

 The result of the planning process is a firing sequence

sp denoting the sequence of operations taken from the

knowledge base. If no solution was found (i.e. all the

possible marking development paths were examined

without having reached the fM), then ps .

 In the case of the planning problem described in this

example, the resulting planning sequence could be (48).

f210p
PourOver1FillUp1PourOut2: MMMMs
ttt

    (48)

 

 

 

 







,,3,2

,,0,5

,,0,0

,,3,0

f

2

1

0

M

M

M

M

(49)

 There are other possible outcomes even for this simple

case, the resulting sequence is dependent on the order of

operations as they are defined in KB for this

implementation.

6 Conclusion
In this paper we have proposed a method suitable for

automatic tuning of rule weights in network-based

knowledge bases for diagnostic expert systems (section

2).

 We have also discussed the usage of Petri Nets in both

diagnostic and planning expert systems and shown an

approach for using them to code knowledge. Reasoning

algorithms were described as well. Simple examples

were given in sections 4 and 5. The use of Petri nets for

diagnostic expert systems does not bring many assets

unless high level Petri nets are used. For planning expert

systems they seem to be a very promising tool.

 Future research will be focused on extending the

expert planning Petri net based approach, especially on

optimal planning.

Acknowledgement
This work has been supported by the Czech Republic

Ministry of Education under the project

No. MSM0021630529.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1113 Issue 8, Volume 7, August 2010

References:

[1] Brachman R. J., Levesque H. J., Knowledge

representation and reasoning, Morgan Kaufmann,

San Francisco, 2004, ISBN 1-55860-932-6

[2] David R., Alla H., Discrete, Continuous and Hybrid

Petri Nets, Springer – Verlag, Berlin, 2005, 524p,

ISBN 3-540-22480-7

[3] Faltus V.: Petri Nets for dynamic crossroad control

modeling, Automatizace, vol. 02-48, 2005, pp 88 –

91, ISSN 0005-125X

[4] Chen S., Weighted fuzzy reasoning using weighted

fuzzy Petri nets, IEEE Transactions on knowledge

and data engineering, vol. 14, no. 2, IEEE, 2002, pp

386-397, ISSN 1041-4347

[5] Fischer Michael D., Expert systems and

anthropological analysis, University of Kent,

Canterbury UK, 2007, [cited on May 15, 2010],

available from

<http://lucy.ukc.uk/bicaweb/b4_/expert.html>

[6] Geva S., Wong M.T., Orlovski M., Rule extraction

from trained artificial neural network with functional

dependency, First International Conference on

Knowledge-based Intelligent Electronic Systems,

Adelaide, Australia, 1997, pp 559-564, ISBN 0-

7803-3755-7

[7] Giarratano J., Riley G., Expert systems – principles

and programming (third edition), PWS Publishing,

Boston, ISBN 0-534-95053-1

[8] Jackson P., Introduction to Expert Systems. Pearson

Addison Wesley, 1999, ISBN 0-201-87686-8

[9] Jirsík V., Valenta J., Expert system for vehicle

selection, Automatizace, vol. 5, 2006, ISSN 0005-

125X

[10] Kamruzzaman S. M., Islam M., Extracting

symbolic rules from artificial neural networks,

Proceedings of world academy of science,

engineering and technology, vol. 10, 2005, ISSN

1307-6884

[11] Kasabov N., Foundations of neural networks, fuzzy

systems and knowledge engineering, MIT Press,

London, 1996, ISBN 0-262-11212-4

[12] Koutsojannis C., Tsimara M., Nabil E.

HIROFILOS: A Medical Expert System for Prostate

Diseases, Proceeding of the 7
th
 WSEAS International

Conference on Computational Intelligence, Man-

Machine Systems and Cybernetics, WSEAS,

Wisconsin, USA, 2008, pp 254-259, ISBN 978-960-

474-049-9

[13] Lee J., A Fuzzy Petri Net-based expert system and

its application to damage assessment of Bridges,

IEEE Transactions on systems, man and cybernetics

– Part B, vol. 29, no. 3, IEEE, 1999, ISSN 1083-

4419

[14] Matamaros A. et al., Expert System for the

Preeclampsia Prevention Program, Proceedings of

the 4
th
 WSEAS International Conference on

Computational Intelligence, Man-Machine Systems

and Cybernetics, WSEAS, Wisconsin, USA, 2005,

pp 146-149, ISBN 960-8457-38-6

[15] Million P., Petri nets for expert systems, thesis,

Brno University of Technology, Czech rep., 2010, 74

pgs.

[16] Polách P., Knowledge representation methods for

expert systems, Proceedings of the IEEE Workshop

Kraliky 2009, VUT, Brno, pp 213-216, ISBN 978-

80-214-3938-5

[17] Polách P., Valenta J., Jirsík V., Hybrid Expert

System Shell, Proceedings of the 4
th
 European

Computing Conference, WSEAS Press, USA, 2010,

pp 148-153, ISBN 978-960-474-178-6

[18] Polách P., Jirsík V., Expert system knowledge base

creation and tuning support – NPS32 graphical add-

on, Inteligentní systémy pro praxi, AD&M, Ostrava,

2007, pp 43-46, ISBN 978-80-239-8245-9

[19] Prapakorn N., Chittayasothorn S., An RDF-based

Distributed Expert Systems, WSEAS Transactions on

Computers, vol. 8, no. 5, WSEAS, USA, 2009, pp

788-798, ISSN 1109-2750

[20] Rattanaprateep C., Chittayasothorn S., A Frame-

based Object-Relational Database Expert System

Architecture and Implentation, Proceedings of the 5
th

WSEAS International Conference on Artificial

Intelligence, Knowledge Engineering and Data

Bases, WSEAS, Wisconsin, USA, 2006, pp 327-332,

ISSN 1790-5109

[21] Rogulj N., Papić V., Pleština V., Development of

the Expert System for Sport Talents Detection,

Proceedings of the 7
th
 WSEAS International

Conference on Automation & Information, Budapest,

Hungary, 2006, pp 7-10, ISBN 960-8457-46-7

[22] Turban E., Aronson J. E., Decision support systems

and intelligent systems (sixth edition), Prentice Hall,

New Jersey, 2001, ISBN 0-13-089465-6

[23] Said A. F., Rafea A., El-Beltagy S. R., Hassan H.,

Automatic Generation of Explanation for Expert

Systems Implemented with Different Knowledge

Representations, WSEAS Transactions on Systems,

vol. 8, no. 1, WSEAS, USA, 2009, pp 55-64, ISSN

1109-2777

[24] Scarpelli H., Gomide F., Yager R. R., A reasoning

algorithm for high-level fuzzy Petri Nets, IEEE

Transactions on fuzzy systems, vol. 4, no. 3, IEEE

1996, pp 282-294, ISSN 1063-6706

[25] Valenta J., Automated weight tuning for rule-based

knowledge bases, doctoral thesis, VUT, BRNO, 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Petr Polach, Jan Valenta, Vaclav Jirsik

ISSN: 1790-0832 1114 Issue 8, Volume 7, August 2010

