
The FAMEtool: an automated supporting tool for assessing
methodology

FILIPPO EROS PANI*, GIULIO CONCAS*, DANIELE SANNA**, LUCA CARROGU**

*Department of Electric and Electronic Engineering, Agile Group

University of Cagliari
Piazza d’Armi, 09123 Cagliari

ITALY
{filippo.pani, concas}@diee.unica.it http://agile.diee.unica.it

**FlossLab Srl

Viale Elmas 142, 09122 Cagliari
ITALY

{daniele.sanna, luca.carrogu}@flosslab.it http://www.flosslab.it

Abstract: The FAMEtool is a support tool for the FAME (Filter, Analyze, Measure and Evaluate)
Methodology, an iterative approach for open source software assessment. The FAMEtool does not replace
evaluation experts, but it serves to improve the productivity of experts in evaluating the different solutions.
The efficacy of the FAMEtool is reported in this paper. Several methods have been created to define a process
for assessing Free/Open Source software. Some focus on some aspects like the maturity, the durability and the
strategy of the organization around the Open Source project itself. Other methodologies add functional aspects
to the assessment process. Only some of these methodologies are supported by specific tools. This paper
describes the FAMEtool that implements the steps of the FAME methodology, particularly in the filtering and
analysis phases, trying to follow the logic of the simplified method that allows a faster application and gives
support to who will be engaged in the selection of the new IT solution. Such a tool is introduced in the form of
Web application and has been developed in Java.

Key-Words: Open Source software, Software evaluation, Technology transfer, Software quality, Assessment
model.

1 Introduction

The choice of technologies for own IT
investment is fundamental for organizations,
because they influence practically all their
businesses processes. Therefore, the optimal choice
of their architecture and software components is of
paramount importance. A wrong choice can lead to
dire consequences and inefficiencies such as
information loss, higher maintenance and redesign
costs, stop of operational activities, and so on.

In recent years, Free/Open Source Software
(F/OSS) emerged as a viable solution for software
applications [1-7].

The increasing interest in F/OSS is patent in
many different contexts like communities of
individual users, private firms focusing their
attention on this kind of approach, and public
institutions.

The European Commission is currently funding
several research projects related to Open Source and
quality, namely, QUALOSS [8] FLOSSMetrics [9],
SQO-OSS [10] and QUALIPSO [11].

It is very difficult to decide which F/OSS
application to adopt inside an organization, because
the number of Open Source projects is strongly
increasing. Some products have their own web site
as the main distribution mechanism for the software.
However, the most F/OSS products are available
through portals, which act as repositories of
projects.

On SourceForge alone, one of the most important
repositories, more than one hundred thousand
projects are hosted. So the myriad of F/OSS
products makes actual adoption a real challenge, and
it is necessary to have methods to assess and
compare these software products [12-17].

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1078 Issue 8, Volume 7, August 2010

In the last few years, many F/OSS evaluation
methodologies have been proposed to address this
issue. All these methodologies have effectiveness as
their main goal, and this goal leads to a hardly
sustainable increase of their complexity, from both
the perspective of their costs and needed
competences. All evaluation frameworks reported in
the literature were devised using an analytic
research approach, trying to analyze many factors
[18-22]. For this reason, such frameworks are often
not easily applicable to real environments,
especially in the case of small organizations.

This paper presents a new tool to support F/OSS
maturity and reliability evaluation methodology,
called FAMEtool for “Filter, Analyze, Measure and
Evaluate”. FAMEtool is aimed to support the use of
FAME approach that reduces the evaluation
complexity in order to be easily usable also by
SMEs and small public bodies.

The FAMEtool has been developed to support
the use of the FAME approach [23] that is a new
light methodology derived from previous studies
performed at the University of Cagliari that are
characterized by a rigorous, but heavyweight
approach to F/OSS selection [18][24][25].

The goals of FAME methodology are to aid the
choice of high-quality F/OSS products, with high
probability for sustainability in the long term, and to
be as simple and user friendly as possible. The
evaluation is not only about technical features of the
product and quality of its development community,
but it also takes into account a cost-benefit analysis
specific of the involved organization.

The article is organized as follows. In Section 2
we briefly analyse the main existing assessing
methodologies with its support tools. In Section 3
we describe the origin and the characteristic of the
FAME approach and analyse its 4 phases. In Section
4 we present and discuss the FAMEtool. Section 5
concludes the paper.

2 Software Assessment Methodologies
and Tools

Many studies [3][12][17] investigated whether
the maturity of the processes employed by
distributed, volunteer projects is linked to their
success. The results of these studies clearly showed
the importance of the maturity, the durability and
the strategy of the organization around the Open
Source project itself. Also the quality of code is a
very important feature. These studies identified the

importance of the use of version control tools,
effective communication through the deployment of
mailing lists, and found several effective strategies
related to testing.

Some studies [26] also analyzed how Knowledge
Management is important in Open Source teams
because of the nature of the communities; these
studies demonstrated that sharing knowledge and
free access to information are fundamental for the
development and the growth of these communities.

Regarding software development, we know that
modern software systems can be composed by tens
of thousands of different files, or modules. To verify
the quality of software very complex approaches
can be used; some studies [27] shows that the fractal
dimension of software networks is a significant
metric to describe the regularity of the software
structure. These approaches need complex analysis
and a recent study [28] analyzes performances with
respect to different values of some parameters
related to the Yule process associated to the
preferential attachment. The assessment
methodologies are neutral with respect to metrics,
they can use complex or simple approaches.

Despite the widespread use of Open Source
products in academic and industrial environments,
only recently first attempts have been made to
evaluate Open Source products. Some significant
contributions are mentioned in this section. All these
methodologies have a common criteria; they also
present various phases and are based on scores.
Some among the main F/OSS evaluation
methodologies are the following.

2.1 OpenBRR

OpenBRR (Open Business Readiness Rating) is
being proposed as a new standard model for rating
Open Source software. It is intended to enable the
entire community (enterprise adopters and
developers) to rate software in an open and
standardized way [25].

The OpenBRR assessment has four phases, as
shown in Fig.1:

1. performing a quick assessment to rule in or
rule out software packages and to create a
short list of viable candidates;

2. assessing the intended use for the software;
3. gathering and processing the relevant data;
4. translating the data into a numeric score from

0 to 5, where a high score represents a greater
business readiness.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1079 Issue 8, Volume 7, August 2010

Fig.1

The assessment process is based on categories

that are important for the Open Source evaluation
process. They use those categories, along with those
found in standard evaluation process documents
(such as ISO/IEC 9126 and the newly released
ISO/IEC 25000), and condensed them down to
seven areas for evaluation:

1. Functionality;
2. Operational software characteristics;
3. Support and Service;
4. Documentation;
5. Software technology attributes;
6. Adoption;
7. Development process.
The Business Readiness Rating model is open

and flexible, yet standardized. This allows for a
broad implementation of a systematic and
transparent assessment of both Open Source
software and proprietary software.

2.2 The Open Source Maturity Model by
Navica

The Open Source Maturity Model (OSMM) by
Navica is designed to help organizations to
successfully adopt and implement Open Source
software. It consists of a three-phase process for
selecting, assessing and implementing F/OSS
products [29].

Fig.2

In Phase 1 of the OSMM, an organization

evaluates each product element with a four-step
process: define requirements, locate resources,
assess element maturity, and assign element score.
Based upon the organization’s particular
requirements, the available resources are assessed
for their maturity and a score between 1 and 10
assigned. The output of Phase 1 is a set of scores for
each of the key product elements. Of course, not
every product element is of equal importance.
Software is fundamental; support is critical;
documentation, though necessary, is less important
than the previous two elements.

In Phase 2 of the OSMM, weightings are applied
to the individual element scores to reflect their
overall importance for the product maturity. Default
weightings are provided, but each organization is
free to adjust the default weightings to reflect its
particular needs.

An overall product maturity score is calculated in
Phase 3 of the OSMM. This can be compared to the
recommended minimum scores to determine if the
product is suitable for an organizations needs.

The score can also be evaluated to determine if
there are problems with the product that the
organization needs to mitigate. The recommended
minimum scores are, of course, just that:
recommendations. The organization does not have
to follow them rigidly; the recommended scores
serve as guidelines to help to determine if an Open
Source product will serve its needs. Using the key
software concept of maturity (i.e., how far along a
product is in the software lifecycle, which dictates
what type of use may be made of the product), the
OSMM assesses the maturity level of all key
product elements:

• Software;
• Support;
• Documentation;

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1080 Issue 8, Volume 7, August 2010

• Training;
• Product integration;
• Professional Services.
The output of an OSMM assessment is a numeric

score between 0 and 100 that may be compared
against recommended levels for different purposes,
which vary according to whether an organization is
an early adopter or a pragmatic user of IT.

2.3 The Open Source Maturity Model by
Capgemini

In order to be able to determine if an Open
Source product is suitable for an organization,
Capgemini developed its Open Source Maturity
Model (OSMM) [30]. The OSMM describes how a
F/OSS product should be assessed to ensure that the
product meets the IT challenges companies face
today. The OSMM accomplishes this by linking an
extensive product analysis with a thorough review
of the company and its IT issues.

The OSMM aims to:
• determine the maturity of an Open Source

product;
• access an Open Source product’s match to the

business requirements;
• compare Open Source products with

commercial alternatives;
• show the importance of an Open Source

Partner (OSP).
The products are compared using the product

indicators, that are grouped into 4 different groups:
• Product;
• Integration;
• Use;
• Acceptance.
Each of these groups consists of a number of

indicators, which together form the product score.
The group “Product” focuses on the “internals” of
the product, like the development and stability of
the developer group or the purpose of the product.
The group “Integration” measures the options to
link the product to other products or infrastructure.
In addition, it is also a measure for the product’s
modularity. The “Use” group tells us something
about the way in which the user is supported in
everyday use of the product.
For instance, by reviewing the number of support
options made available to the user. The
“Acceptance” group is all about the way the product
is received by the user community, as this is largely
indicative of the products ability to grow and

become a prominent product. The indicators have a
value between 1 and 5, 1 means not important (low)
and 5 means extremely important (high).

2.4 QSOS

In order to have a method of qualification and
selection of open software, Atos Origin built an
original methodology to evaluate F/OSS software
called QSOS [21]. The general process of QSOS is
made up of several interdependent steps.

The goal of step 1 (Definition) is the constitution
and enrichment of frames used in the following
steps.

The frames of reference are :
• Software families: hierarchical classification

of software domains and description of
functional grids associated with each domain;

• Types of licenses: classification of free and
Open Source licenses;

• Types of communities: classification of
community organizations existing around a
free or Open Source software and in charge of
its life-cycle.

The objective of Evaluation (step 2) is to carry
out the evaluation of the software. It consists of
collecting information from the Open Source
community, in order to:

• Build the identity card of the software
• Build the evaluation sheet of the software, by

scoring criteria split on three major axis:
o functional coverage;
o risks from the user’s perspective;
o risks from the service provider’s
 perspective.

The goal of Qualification is to define filters
translating the needs and constraints related to the
selection of Free or Open Source software into a
specific context. This is achieved by “qualifying”
the user’s requirements which will be used later in
the Selection phase.

The last step, Selection, identifies software
fulfilling user’s requirements, or more generally
compares software from the same family.

2.5 EFFLOSS
This approach is intended to help IT

organizations assessing which Open Source
software would be most suitable for their needs
[22]. The main limit of the frameworks described
above is that they are based on qualitative metrics.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1081 Issue 8, Volume 7, August 2010

The key idea of EFFLOSS is to systematically use
quantitative metrics that can be automated, taking
advantage of the information that can be found on
the Web.

 Fig.3

In order to allow an easy usage of EFFLOSS, the
assessment process is divided in three steps (see
Fig.3), which are performed sequentially: the first
one determines the features that characterize an
Open Source product [31]; the second one identifies
the success metrics; the third one assigns a score for
each metric.

The goal of the first step is to understand in
which ways a particular OS product is similar or
different from another Open Source product. In this
phase the authors define the feature that characterize
and affect the success of Open Source products in
order to perform a preliminary analysis.

The maturity of a product is key to understanding
how well it is suited for a particular use. Relatively
immature products can be used for noncritical
systems, whereas production use require very
mature products. Determining the maturity of a
product is a critical priority for any IT organization,
because the failure to assess a product’s maturity
early enough in the selection process yields dire
consequences. For commercial software products,
pragmatic IT organizations expect a single company
to deliver the elements required for sufficient
maturity: the product, training, support, and so on. If
the company does not deliver an element itself, it
has recommended providers that will deliver that
element at the required level of maturity.

2.6 NVAF
 The NVAF is a framework that aims at giving a
contribution to support the public administrations in
their decision-making choices [24].

NVAF (Needs, Values and Assessment
Framework) is addressed to public administrations
and has a neutral approach to assure impartiality in
the adoption choice of IT solution based on
proprietary software or Open Source, and to avoid
any kind of discrimination. The framework
implements the criteria for evaluating the strategic
choice of a solution compared to another. It allows
evaluation if the choice increases the value into the
environment in question.

The public administrations should evaluate
which solution amongst those available is more
suitable to their needs by comparing technical and
economical factors, and also taking into account
total own cost of individual solutions and cash
outflows. The choice of the software model to adopt
is a strategic decision for the public administrations
and it should be based on the maximum value for
money, which is defined like "the best combination
of the cost of owning a system and the quality of the
system, based on its capacity to satisfy
requirements''.

It is necessary to consider the investment in its
totality and not in separate parts that are
independent of one another. Moreover it is
necessary to assure the PA’s adopted solution will
guarantee the maximum value for money measured
by the merit and local needs of business.

NVAF is a framework composed by three factors
interacting among each other: Needs (N), Values
(V) and the Assessment (A). These factors are the
categories of the framework and the structure is
supported by the key elements for the PAs that are
identified as:

• actors and their roles;
• interest areas;
• processes.
NVAF aims to manage the complexity of this

multitude of factors using a matrix to conceptualize
the interrelation among the components and then to
map them in order to understand the same
framework.

3 FAME: Filter, Analyze, Measure
and Evaluate Approach

FAME methodology originates from previously
described heavyweight Open Source assessment

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1082 Issue 8, Volume 7, August 2010

methodologies. FAME can be considered an
evolution of many software comparison
methodologies and it focuses on some aspects like
the maturity, the durability and the strategy of the
organisation around the Open Source project itself
[23]. FAME takes into account many aspects also
present in NVAF [24], intended to support the
choice of software applications. NVAF is mainly
addressed to public administrations and has a
neutral approach to assure impartiality in the
adoption of IT solutions based on proprietary
software or F/OSS. The framework considers also
the social impact of the choice. Another very
interesting feature of this methodology is the use of
quantitative metrics gathered on the Internet about
the projects to evaluate.

All these methodologies, however, are quite
heavyweight approaches, suitable for large
organizations or research studies, but difficult to
adopt by SMEs. For this reason, in the context of a
research project of FlossLab, an Italian SME, it has
been decided to devise a new methodology to
support SMEs in selecting F/OSS applications,
using a simple, structured and tool-based approach,
with support from the University of Cagliari.

The main idea behind FAME is that the users
should evaluate which solution amongst those
available is more suitable to their needs by
comparing technical and economical factors, and
also taking into account the total cost of individual
solutions and cash outflows.

This principle is strictly related to a set of
conditions to account for, its constraints,
disadvantages and benefits. First, the goals of the
project need to be defined, and the planning
approach has to follow a strategic investment
choice. In particular, it also considers all the positive
effects registered in the area where the investment
takes place. The required activities to obtain these
results are:

1. identify and evaluate the main constraints
and risks;

2. identify and evaluate the needs of the
involved organization;

3. identify and prioritize the key objectives;
4. provide a priority framework.

The stakeholders with strategic information are
considered as users of the framework. They are in
charge to make changes and to approve the choices
of a specific project.

The methodology is structured according to four
distinct phases (Fig.4).

Fig.4

3.1 Filtering

The first problem to deal with in an evaluation
methodology is the one connected to the choice of
the candidate projects to introduce in the following
assessment phases. In fact it is totally
counterproductive to carry out any kind of
evaluation on an excessive number of solutions.

From these considerations it follows before the
real evaluation phase a selection phase is needed
that reduces the number of options in a consistent
way.

The first operation to complete in such process is
therefore the choice of which are the projects that
satisfy the minimum requirements (which does not
come within a quality evaluation or however a
detailed evaluation) connected to particular
requirements of the organization that carries out the
evaluation. This operation is of fundamental
importance and must be as simple and fast as
possible as it allows to reduce considerable and in
an immediate way the solutions to take into
consideration in the real phase of evaluation, with
consequent cost reduction in terms of time and
resources of the entire process.

The critical elements of the census operation can
themselves be summarized in two main aspects:
what to search for (domain understanding) and
where to search (identification of possible
repositories and citation of eventual studies).

Such information will allow to construct a
general profile on the solution of our interest and
therefore to define an Identity Card of the project by
means of which we will be able to carry out a totally

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1083 Issue 8, Volume 7, August 2010

qualitative but highly effective evaluation for the
filtering operations.

3.2 Analysis
From the user’s point of view this phase aims to

understand which solution can satisfy the needs of
the organization considered in order to guarantee
effective and efficient productivity.

About the needs analysis, the key is to seek the
gap between the current situation and the desired
situation and then to focus resources where they're
most needed. The analysis must determine root
causes.

The approach wants to give a correct and
complete identification of the business objectives
that we want to get, with the focus on the needs to
satisfy. The output will be established by a
hierarchy based on priority of objectives, obtained
from strategic evaluations and the domain
characteristic and constrains.

The process of needs definition has been divided
in three main steps. The first step has involved an
analysis of the literature and of the Italian and
international regulation and guidelines. The second
one has involved the creation of a survey for the
decision makers according to the results of phase
one. In the third step the stakeholders define the
more interesting needs and its priority based on the
needs knowledge base.

In the third step we can record the necessity that
the survey has to have some open areas to identify
other potential needs not yet found or specific of the
organization. The complete identification of the
survey areas is still on and can be modified.

The surveys have been organized in two macro-
areas, they recognize the main type of needs.
Therefore the final components, based on the
information are the following:

• technical and functional analysis;
• economical and social analysis.

3.3 Measurement

The measurable elements come from the needs.
FAME turns the high level stakeholder’s evaluations
in technical-functional values and economical-social
values. A weight and a metric is associated to these
elements and the comparative analysis among the
solutions is possible.

The technical-functional elements are classic in
literature, and so we show only the economical-

social elements concerning the evaluation of
potential benefits for the citizens, the enterprises and
local organizations. They take into consideration the
social and educational elements, like the offer to
wide access to information, the increase of capacity
and information skills of the citizens. But it is very
important to consider all business implications
around the territory, like the increase of local
capacity and skills with important repercussions on
the development of the local enterprises.

We have adopted the procedures of the
economical analysis following the cost-benefit
analysis. This analysis is very difficult and
expensive to follow in-depth way, so we have
adopted only the methodological approach. This
approach is used to make firstly an estimate of
benefits, secondly of costs, then both, also other
intangibles. Because a cost-benefit model shows if
the system benefits justify your implementation, so
it is necessary first to see the value coming from the
adoption of a solution rather than another. This
analysis aims to find the typical real costs of a
project choice and to evaluate and compare
incidental saving costs for the public
administrations, so the public administrations with
these savings can offer further services. A correct
procedure of an economic comparison should be
completed both with the starting costs and the
services costs to the support, the training, but also
migration, installation and management costs,
adapting, maintaining, and so on.

The costs compared to benefits are simpler to
find. The right costs analysis should also take into
account the TCO (Total Cost of Ownership). It
considers all direct and indirect costs. All software
has a TCO including the price of selling, hardware
and software upgrades, maintenance, technical
support and learning (time and frustration are
complex to measure). After we have assigned a cost
to each single item, this cost will be normalized.
Here we suggest a possible solution and how our
normalized score is calculated:

S = W*(Cmin+ Cmax- Cij)/Cmax
let: [S] normalized score; [W] maximum assignable
score; [C_min] lower price; [Cmax] higher price;
[Cij] price to be normalized.

FAME associates to the need of type outsourcing
the technical-functional elements of type “supplier
reliability” with high weight. This is because the
organization, which we have analyzed, assigned a
high priority to that need. FAME relates to each
Need being in the questionnaire a set of Measurable

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1084 Issue 8, Volume 7, August 2010

elements with corresponding metrics, so that to each
element Ei is related an objective metrics of
evaluation Mi.

3.4 Evaluation
The decision choice should be taken by

comparing the values of the needs among the
different solutions, and using the weights and the
objective metrics for the assessment of the found
elements. In order to compare different objects, we
choose to adopt a systematic comparison among the
scores of the solutions.

The approach is based on associating a weight to
a value, it reflects the relative weight of the value in
the overall assessment in accordance with
∑Wi=Wtot, where Wi is the weight associated with
the element Ei and Wi /Wtot is the relative weight in
the assessment based on the importance coming
from the needs analysis and the priority that one has
associated. The priority comes from the evaluation
given in the questionnaire to the need from which
the value has come.

From this phase FAME obtains the table that is
instantiated with the analyzed need and it shows
also how the weights depend on the needs. Then we
compare the different eligible solutions. The project
choice will be determined throughout the metrics M
used with the weights W associated with the element
E, in accordance with FAME. Each solution will
have a final score like summation of the scores
assigned with each evaluated element. Finally the
organization will choose the project solution with
the major score.

Practically, a score Pij is assigned to each
proposed solution Sj, where 0<=Pij <=Wi for each
element Ei based on metric Mi associated with that
element. Then each solution will have a total score
Pjtot. The solution with the major score Pjtot will be
the chosen solution, in fact it will satisfy better the
needs of the administration. The solution with the
maximum Ptot will be the best because the
evaluation comes from the needs analysis and
elements measurement and the assessment of that
organization.

4 FAMEtool, description and use
Purpose of this support tool is to supply useful

instruments in order to simplify and automate as
much as possible the application of a determined
evaluation methodology. The tool is of easy

application also for non professional people and is
like a guide for the user who will have to carry out
the selection among various software alternatives
and it will assist him in the evaluation phase.

FAMEtool implements the steps of the FAME
framework, trying to follow the logic of the
simplified method and proposing automation that
allow a faster application and supplies support to
those who will be engaged in the selection of the
new IT solution. Such tool is introduced in the form
of Web application and has been developed in Java.

Fig.5

In the Filtering phase the system supports the

user in the collection of information about the
candidate products through an user interface of data
insertion, shown in fig. 5, and a module of data
imported from repositories of Open Source projects,
like for example SourceForge. All the information
and data gathered are reclassified and will serve as a
base in order to be able to search software on the
base of functional requirements needed.

One of the strong points of this kind of approach
is that the user can define and insert through an
iterative filtering process, further characteristics
with relative values and in this way select further
candidate projects, all through a comfortable
interface of selection.

Fig.6

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1085 Issue 8, Volume 7, August 2010

At the end of this phase the FAMEtool shows,
Fig. 6, the list of candidate projects and the user can
view more info about a project or delete it from the
candidate list.

In the Analysis phase the user is guided through
a tree in which the leaves represent the needs to
measure and the nodes the several macro area of
such needs. This tree is visited only if the interest
manifested by the interviewed user for the macro
area will be above a defined threshold; in the
contrary case, all the macro area will be neglected.

During this iterative process the user chooses and
defines indirectly the metrics to evaluate through the
manifestation of the needs. Inside the tool an
interactive questionnaire has been constructed:
every question has been formulated in order to be
able to directly find the priority of the need to which
it is associated. The possible answers proposed for
every question go from “Not important” to “Very
important” and they are numerically translated in a
value comprised between 1 and 5.

Because it's not possible to take into account
through just one questionnaire all the multiple
aspects that characterize a specific context in the
choice of a new IT solution, it has been thought
useful to be able to insert manually the tern Need,
Value and Metrics, with priority, according the
exigencies. In this way it is possible for the
organization to accord the framework to its own
needs keeping the evaluation phase open and
dynamic.

Fig.7

In the Measurement phase the user is guided, as

shown in fig. 7, through a wide view of what has to
be evaluated and with what parameters such process
must be executed. In literature there exists
techniques defined in order to collect the necessary
data for the evaluation metrics and they take the
name of Evaluation Depth Classes (EDC) [28].

These classes can be divided into the following
groups:

• documentation, interview, clarification;
• expert knowledge;
• non functional testing;

• scenario-based testing;
• prototyping.
 The efforts necessary to collect the data

belonging to each class grows gradually from the
first to the last class; starting here, it's realized that
there are metrics easily measurable and others less
easily measurable, depending on if a data belongs to
a certain class.

In some cases it appears impossible to identify
the necessary information or onerous to start the
activities for their collection. For example, let's
think about the activity tests that require such effort
for which the importance of the produced data is not
justified.

Users could, therefore, decide to not carry out
some measurements, discarding in this way the
estimation of the associated need.

 Finally, in the Evaluation phase the collected
data will have to be inserted, after normalization, in
an appropriate mask created on purpose by means of
the list of the candidate software and the list of the
metrics selected in the previous steps; the
application will calculate the result taking into
account the expressed priorities. The tool offers the
possibility to save and, successively, reload, the
entire data set used in the evaluation cycle; this data
set includes the list of the candidate software, the
list of the selected metrics with relation to the needs
and obviously the obtained scores from every
product, with graphs in order to have a wide view
and an immediate interpretation of the obtained
result.

4.1 Experience of use
To define FAME and its tool we use as test case

a real need of a SME, which decided to enter the
Document Management System (DMS) market with
a F/OSS approach. To this purpose, they had to
choose the Open Source DMS best suited to their
needs. The skills of the firm were mainly in Java. In
the following, we will briefly describe how the four
phases of FAME were applied to this specific case
with the assistance of the FAMETool.

In the Filter Phase, key prerequisites of the
programs to choose are selected, with the goal to
reduce the number of potential candidates for the
next phase. These pre-requisites can be linked to
strategic issues, such as quality and sustainability of
the project, and to technical issues, such as the
target operating system, programming language, and
so on.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1086 Issue 8, Volume 7, August 2010

With the support of the tool, we have recovered
the relative information of a high number of projects
on SourceForge. FAMEtool also supported the
insertion of the relative information of other
interesting projects not classified by SourceForce as
DMS (e.g. Alfresco).

In our case, we set a filter to restrict the DMS
projects to those written in Java and PHP, because
of their portability. Another filter was set to
consider only highly popular – and hence highly
downloaded and with a high activity index –
projects. Since Java is the language used by the
SME, we set a preference towards Java by lowering
the latter filter requirements in the case of Java
projects with respect to PHP ones.

After this filtering, we came out with a list of
four projects, namely Alfresco, e-prot,
KnowledgeTree and Nuxeo. Among these, only
KnowledgeTree is a PHP project, all others being
Java ones.

We also allowed for two more projects: Adam,
an Italian DMS promoted by Italian Center for Open
Source in Public Administrations (CNIPA), and
Hummingbird, a proprietary project evaluated for
comparison purposes. The last part of this phase was
to create an “identity card” for all pre-selected
projects, gathering the most relevant information
about them, as found in the Internet.

The Analysis Phase was the most critical and
effort-prone. It consisted in eliciting the key needs
of the SME, as regards the DMS to choose.
Following FAME guide-lines, we performed an
analysis of technical-functional and economic
requirements.

We set high priority to the programming
language, security (using popular protocols,
including LDAP), quality of documentation, and
community “strength”.

In the Measurement Phase, FAMEtool allows to
evaluate the various identified metrics using
different units, depending on their specificity. Some
of them were simply boolean (yes or no,
corresponding to 1 and 0 respectively), denoting the
presence or absence of a specific feature. Some had
a score between 1 and 5, while others had a three-
valued score (0, 1, 2). For the sake of simplicity, the
relative weights were chosen identical to the
relevance factor for the relative need, that is
between 1 and 5.

The metrics were then applied on the relevant
features of the pre-selected projects, using data
found in their “identity card”, SourceForge and

projects Web sites and source code repositories,
yielding a set of scores for each candidate product.

In the Evaluate Phase, the Tool normalized the
measured values in such a way that it became
consistent with each other, and to reflect comparable
values in economic terms. Then, using the choices
made in the third phase, it weighted them according
to the relevance of the respective needs, obtaining
the total scores for each area (technical and
economic) and finally showing the total score of
each solution. The DMS with the highest score was
Alfresco, in both the technical and economic areas,
and it was therefore the chosen project.

5 Conclusion
In this paper we presented the FAMETool, the

support tool for the FAME approach that is a
simplified methodology for F/OSS project
assessment.

FAME is an engineering process structured in 4
phases full-defined that can be easily automated. In
fact in those phases where it is important and
necessary to evaluate a very large amount of data,
like in gathering, analysis and measurement steps, it
is possible to achieve the best benefits from the
automated tool.
This tool also allows to carry out the whole process
driving the user along the phases and in their
application, and acting as system support in the use
of the methodology.

The main characteristics of the FAMEtool are:
• the supported iterative approach;
• an automated filtering phase to pre-select

project candidates, with automatic collection
of data, easing the whole evaluation process;

• a specific interface to support the analysis of
the needs of the organization performed using
GQM approach and in practice being able to
configure the evaluation process according to
the actual organization’s needs, both technical
and economic;

• an engine that explicitly considers various
viable metrics, including possible quantitative
measurements of software repositories and
Web hits related to the projects;

• the evaluation/comparison component that
blends together different metrics, making
them comparable and consistent, and
performs the final evaluation.

In particular, the integration and the contextual
development of the tool with the methodology

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1087 Issue 8, Volume 7, August 2010

defines this methodology with the precise objective
to support and to simplify the evaluation, rendering
almost automatically and instantaneously all the
phases of the evaluation process, through iterative
and interactive process for the user, trying to reduce
in this way the complexity of the methodologies
analysed, which have as weak points the high
number of information to manage.

References:
[1] Feller, J., Fitzgerald, B., Hissam, S. and

Lakhani, K., Perspectives on Free and Open
Source Software, MIT Press, Cambridge, MA,
2005.

[2] Free/Libre and Open Source Software:
Survey and Study: Final Report”, 2003,
available at: http://FLOSS.infonomics.nl/

[3] Senyard, A. and Michlmayr, M., How to
have a successful free software project.,
APSEC, IEEE Computer Society, pp. 84–91,
2004.

[4] Antoniades, I. P., Stamelos, I., Angelis, L.
and Bleris, G. L., A novel simulation model for
the development process of open source
software projects, International Journal of
Software Projects: Improvement and Practice
(SPIP), special issue on Software Process
Simulation and Modeling, 2003.

[5] Feller, J. and Fitzgerald, B., A framework
analysis of the open source software
development paradigm, ICIS 2000, pp. 58–69.

[6] Gonzalez-Barahona, J. M., Pérez, M. A. O.,
Quiros, P. d. l. H., Gonzalez, J. C. and Olivera,
V. M., Counting potatoes: the Size of Debian
2.2, Upgrade - The European Online Magazine
for the IT Professional, Vol. II, No. 6,
December 2001, pp. 61-67.

[7] Mockus, A., Fielding, R. T. and Herbsleb,
J., A case study of open source software
development: the Apache server, ICSE ’00:
Proceedings of the 22nd international
conference on Software engineering, ACM
Press, New York, NY, USA, 2000, pp. 263-
272.

[8] QUALOSS, http://www.qualoss.org, 2008.
[9] FLOSSMetrics, http://flossmetrics.org,

2008
[10] SQO-OSS, http://www.sqo-oss.eu, 2008.
[11] QUALIPSO, http://www.qualipso.org,

2008.
[12] Michlmayr, M., Software process maturity

and the success of free software projects, in
Zielinski, K. and Szmuc, T. (Eds.), Software

Engineering: Evolution and Emerging
Technologies, IOS Press, 2005, pp. 3-14.

[13] Stewart, K. J. and Ammeter, T., An
exploration study of factors influencing the
level of vitality and popularity of open source
projects, in. Applegate, R. L and De Gross, J. I.
(Eds.), Proceedings of the Twenty-Third
International Conference on Information
Systems, 2002, pp. 853-857.

[14] Weiss, D., A large crawl and quantitative
analysis of open source projects hosted on
sourceforge, Research Report RA-001/05,
Institute of Computing Science, Poznań
University of Technology, Poland, 2005.

[15] Weiss, D., Measuring success of open
source projects using web search engines,
OSS2005, Proceedings of the The First
International Conference on Open Source
Systems, 2005, pp. 93-99.

[16] Crowston, K., Annabi, H. and Howison, J.,
Defining open source software project success,
International Conference on Information
Systems (ICIS), 2003, pp. 327–340.

[17] Crowston, K., Annabi, H., Howison, J. and
Masango, C., Towards a Portfolio of FLOSS
project success measures, in Workshop on
Open Source Software Engineering,
International Conference on Software
Engineering, Edinburgh, Scotland, UK, 2004.
From http://flosspapers.org/180

[18] Cau, A., Concas, G. and Marchesi, M.,
Extending OpenBRR with automated metrics
to measure object oriented open source project
success, The Workshop on Evaluation
Frameworks for Open Source Software,
collocated in The Second International
Conference on Open Source Systems, 2006.

[19] Ciolkowski, M. and Soto, M., Towards a
Comprehensive Approach for Assessing Open
Source Projects, in Proceedings of the
international Conferences on Software Process
and Product Measurement (Munich, Germany),
Lecture Notes In Computer Science,
SpringerVerlag, Berlin, Heidelberg, Vol. 5338,
2008, pp. 316-330.

[20] Deprez, J. C., Alexandre, S., Comparing
assessment methodologies for free/open source
software: OpenBRR & QSOS, Lecture Notes in
Computer Science, Springer, 2008.

[21] Method for Qualification and Selection of
Open Source software (QSOS), version 1.6,
Atos Origin, 2006, available at: http://qsos.org

[22] Cau, A., EFFLOSS: An Evaluation
Framework for Free/Libre Open Source, PhD
Thesis, 2007.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1088 Issue 8, Volume 7, August 2010

[23] Pani, F. E., Concas, G., Sanna, D., Carrogu,
L., The FAME Approach: an assessing
methodology, WSEAS International
Conferences, Catania (Sicily), Italy, May 29-
31, 2010.

[24] Mannaro, K., Concas, G., Marchesi, M.,
NVAF: un Framework per una valutazione di
tipo comparativo delle soluzioni software nelle
Pubbliche Amministrazioni, The Second
International Conference on Open Source
Systems, Esperta Workshop, Como, Italy, 2006.

[25] Business Readiness Rating, A Proposed
Open Standard to Facilitate Assessment and
Adoption of Open Source Software, 2005,
available at http://www.openbrr.org

[26] Porruvecchio, G., Uras, S., Concas, G.,
Knowledge Management Aspects in Open
Source Communities, WSEAS International
Conferences, Catania (Sicily), Italy, May 29-
31, 2010.

[27] Locci, M., Concas, G., Turnu, I.,
Computing the Fractal Dimension of Software
Networks, 9th WSEAS Int. Conf. on Applied
Computer Science (ACS'09), Genova, Italy,
2009.

[28] Tonelli, R., Concas, G., Locci, M., Three
Efficient Algorithms for Implementing the
Preferential Attachment Mechanism in Yule-
Simon Stochastic Process, WSEAS
Transactions on Information Science &
Applications, Vol. 7, 2010.

[29] Golden, B., Succeeding with Open Source,
Addison-Wesley Professional, 2004.

[30] Duijnhouwer, F. W., Widdows, C., Open
Source Maturity Model (Capgemini), 2003.

[31] Jones, C., Software Assessments,
Benchmarks, and Best Practices, Addison-
Wesley Information Technology Series, 2000.

[32] Ochs, M., Pfahl, D., Chrobok-Diening, G.,
Nothhelfer-Kolb, B., A method for efficient
measurement-based COTS assessment and
selection method description and evaluation
results, Fraunhofer Inst. for Exp. Software
Eng., 2001.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Filippo Eros Pani, Giulio Concas, Daniele Sanna, Luca Carrogu

ISSN: 1790-0832 1089 Issue 8, Volume 7, August 2010

