
Simulation of Meshes and Tori in an asymmetric Faulty Incrementally
Extensible Hypercube with Unbounded Expansion

*JEN-CHIH LIN1

1Department of Digital Technology Design,
National Taipei University of Education,

No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106,
TAIWAN

E-mail:*yachih@tea.ntue.edu.tw http://tea.ntue.edu.tw/~yachih

Abstract: - The paper considers the problem of finding meshes and tori in a Faulty Incrementally Extensible
Hypercube if any. We develop novel algorithms to facilitate the embedding job when the Incrementally
Extensible Hypercube (IEH) contains faulty nodes. We present strategies for reconfiguring a mesh or tori in an
IEH with unbounded expansion. These simulation approach shows a mesh or torus can be embedded into a
faulty IEH Gn(N) with load 1, congestion 1 and dilation 3 such that O(n2-⎣log2m ⎦ 2) faults can be tolerated.
Furthermore, the technology can be apply in grid computing and cloud computing.

Key-Words: - Incrementally Extensible Hypercube (IEH), hypercube, mesh, torus, embedding, expansion

1 Introduction
Rapidly advancing technology has made it possible
for a large number of processing elements to be
interconnected in a variety of configurations. In the
investigation of parallel computing, networks of
processors are often organized into various
configurations such as hypercubes, trees, rings, and
meshes. These configurations can be presented as
graphs. If the properties and structures of the
underlying graph are used effectively, the
computations and communication speeds can often
be improved. Many parallel algorithms have been
designed to solve different problems on various
networks. It would be of interest to be able to
execute these algorithms in other networks.
Therefore, the problem of simulating one network by
another is modeled as a graph embedding problem
where nodes and edges in the graph represent the
processors and communication links between
processors. Organizing computations in a network of
processors is also modeled as a graph embedding. So,
graph embedding problems become the important
applications in a wide variety of computational
situations.

The problem of embedding an n-processor
guest network G into an n-processor host network H
is an important problem in distributed computing or
parallel processing. Results on this problem not only
demonstrate computational equivalence or
non-equivalence) between networks of different
topology, but also lead to efficient simulations of

algorithms originally designed for G on host H.
Embedding and their implications to distributed
computing or parallel processing have been studied
extensively recently.

An embedding of a graph G=(VG,EG) into a
graph H=(VH,EH) includes a mapping of nodes of VG
into nodes of VH and a mapping each edge of EG into
a path of H. The graph G and H are referred as the
guest and host graphs. Four common measures of
quality of an embedding in parallel processing are
dilation, expansion, congestion and load. The
dilation measures the communication delay and is
defined as the maximum length of paths mapping by
edges of EG. The processor utilization is measured
by the expansion that is defined as the ratio of total
number of nodes of G to total number of nodes of H.
The congestion of an embedding is the maximum
number of edges of the guest graph G that is mapped
by a single edge of the host graph H. The congestion
is a measurement of queuing delay of massages. To
measure the processing time of tasks is referred as
the load in an embedding. The load is the maximum
number node of G that is embedded in a single node
of H.

From the computational perspective, hypercube
multiprocessors have recently offered a cost effective
and feasible approach to supercomputing through
parallelism at the processor level by directly
connection a large number of low-cost processors
with local memories which communicate by
message-passing instead of shared variables.
Therefore, hypercubes are widely used

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1346 Issue 11, Volume 7, November 2010

interconnection architectures in parallel machines.
Hypercube has been the focus of researches in
parallel computing because of its well-defined
properties with the modularity, regularity, and low
diameter, etc. These characteristics make it easy to
design efficient parallel programs and share
machines among users. Its important advantages are
high data bandwidth and low message latency.
Moreover, the hypercube may contain many other
networks as its subgraphs such as rings, trees,
meshes, etc. On the other hand, lots of
interconnection networks can be mapped into the
hypercube. It is apparent to demonstrate how all of
the parallel algorithms, designed by those
interconnection networks, can be directly
implemented on the hypercube without significantly
affecting the number of processors or the
computation time.

A hypercube, also known as a binary n-cube or
cosmic cube, contains 2n processors (nodes), each of
which is connected by fixed communication paths
(links) to n other nodes. The value n is known as the
dimension of the hypercube. In a hypercube, two
nodes are connected if and only if their addresses
differ by one and only one bit. Extensive research
efforts have been focused on hypercube design
aspects and hypercube applications such as data
permutation and matrix operations. These have
resulted in several commercial products, such as the
Intel iPSC and the Connection Machine. However,
the number of nodes of this network is restricted to
be a power of 2, that can be, in some situations, a
significant drawback. In fact, to upgrade a hypercube
it is necessary to double the number of processors,
which can be unrealizable for budget limitations and
for technical reasons. Several hypercube-like
networks that can be constructed for any number of
nodes have been proposed, such as Incomplete
Hypercube[14], Supercube[28, 29], Flexible
Hypercube[11], Incrementally Extensible
Hypercube[31, 32], and so on.

The Incrementally Extensible Hypercube (IEH)
graph is a new topology of interconnection networks
and proposed recently. Unlike the hypercube, the
IEH graph is incrementally extensible, that is, any
number of nodes can construct it. Besides, it has the
optimal ability of the fault tolerance and the
diameter of logarithmic in the number of nodes. The
difference between the maximum and the minimum
degree of nodes in an IEH graph is at most 1, so it is
enough to say that the IEH graph is almost regular.
However, the IEH graph does not have the
drawbacks of the above-mentioned generalizations
of the hypercube. The characteristics of IEH graphs
are shown in [31].

Among the static interconnection networks
used for SIMD[26] computers with an array of
processors[2], one of the oldest and very popular
architectures is a two-dimensional-mesh. Many
important algorithms for solving various problems,
e.g., matrix operations, simultaneous linear equations,
graph-theoretic and image processing problems, etc.,
have been efficiently mapped in this mesh
architecture.
 In this paper, we study how algorithms that are
designed for fault-tolerance Incrementally Extensible
Hypercube can be implemented on Incrementally
Extensible Hypercubes that contain faults. In the
following discussion we will consider a parallel
computer as a graph, in which the nodes correspond
to processors and the edges correspond to
communication links.

Also, we developed the methods for finding
meshes or tori in an IEH graph. As the result, we can
transit the parallel algorithms developed under the
structure of meshes or tori to the IEH graph. This
simulation approach enables extremely high-speed
parallel computation in IEH graphs. Although IEH
graphs are not absolutely asymmetric, it has the same
power as the hypercube in terms of meshes and tori.

The remainder of this paper is organized as
follows. Section 2 is devoted to some notations and
definitions. The construction of the mesh in an IEH
is addressed in Section 3. Section 4 develops the
embedding algorithm to a faulty IEH with
unbounded expansion. Section 5 concludes this
paper.

2 Preliminaries
This section briefly describes notations and
definitions of the IEH graph. The IEH graph of
n-dimension is the composition of some m different
hypercubes of dimension k, where 0≤k≤n and 1≤m≤n.
Let Gn(N) be a n-dimensional IEH graph with N
nodes, and N can be expressed by the binary string
N= bnbn-1bn-2…b1b0, and bi ∈ {0,1}. Suppose that
hypercube Hi is a part of the IEH graph Gn(N), it is
certain that the ith bit of N, bi must be 1. That is, an
IEH graph Gn(N) is composed of some different
hypercubes which have lower dimension than Gn(N)
has. For example, G3(13) is an IEH graph contains
13 nodes, and it is composed by three different-sized
hypercubes H0, H2,and H3 because 13=1101, and
b0=b2=b3=1.

Accordingly, the IEH graph is composed of
some hypercubes, so there is a new type of
connections beside the usual connections in a
hypercube. These edges (or links) are used for

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1347 Issue 11, Volume 7, November 2010

connecting two hypercubes are called Inter-Cube or
IC edges. For any given N, 2n≤N<2n+1, the steps of
finding IEH graphs are as follows.

 i=i+1
 Return Gn as the desired incremental hypercube
graph of N vertices.

 Step 1 Build subcube graphs. Express N as
(n+1) bits a binary number as N= bnbn-1bn-2…b1b0,
where bi ∈ {0,1} and bn=1 since N ≥ 2n. For each bi,
bi≠0, construct a hypercube graph Hi with 2i nodes.

 Figure 1 shows the example of G3(13). G3(13)
consists of three subcubes. The three subcubes are
0-subcube(H0), 2-subcube(H2), and 3-subcube(H3).
Nodes 14 is the single node in H0, Nodes 8, 9, 10,
and 11 are composed as a 2-subcube(H2), and nodes
0, 1, 2, 3, 4, 5, 6 and 7 are the elements of a
3-subcube(H3). The edges (8, 14), (10, 14) are IC
edges connected between H0 and H2 such that H0 and
H2 are connected to be an IEH graph containing 5
nodes(G2(5)). In addition, the H3 connects to G2(5)
with these IC edges (0, 8), (1, 9), (2,10), (3,11), and
(6,14).

 Step 2 Label the nodes. Note that each node
has a (n+1)-bit binary label. Each hypercube Hi is
labeled as 11…10bi-1bi-2…b1b0. Obviously each
hypercube of dimension i (having 2i nodes) have i
number of dashed and the individual nodes of the
hypercube can be obtained by filling the dashes with
0 or 1 in all possible ways. In other words, the binary
representation of each node in Hi has the same prefix
of (n-i)1's followed by a single zero. Definition 1[19] The Hamming distance between

two nodes with labels x=xn-1xn-2...x0 and y=
yn-1yn-2...y0 is defined as

Step 3 Construct the incremental hypercube in
steps by providing the inter-cube edges. Find the
minimum i such that bi≠0. Set j=i and Gj=Hi. HD(x , y)= , where ∑

−

=

1

0
),(

n

i
ii yxhdSet i=i+1.

While i≤n do

hd(xi , yi)=
⎩
⎨
⎧

≠
=

.yxif 1,
,yxif 0,

ii

iiif bi≠0 then
 if i-j=1 then

each node x in Gj with label
11…bjbj-1…b0 is connected to the
node 11…10bjbj-1…b0 of Hi.

Definition 2[19] Let x=xn-1…x0, y=yn-1…y0, then
Dim(x, y)={i in (0…n-1)∣xi ≠ yi}
Definition 3[1] If G is a graph, the vertex set of G is
denoted by V and the edge set of G is denoted by E.
A graph G’ is said to be a subgraph of G if V’⊆V and
E’⊆E.

 else
each node x in Gj with label
11…1bjbj-1…b0 is connected to (i-j)
different nodes of Hi chosen in the
following way: Definition 4[16] 21 mm × mesh or torus, denoted

by , is a 2-dimensional mesh or torus, where

.
1 2m mM ×

sr mm 2,2 21 ==

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−

−−

−

−−

−

−−

−

−−

−

−−

01

1i-n

01

1i-n

01

1i-n

01

1i-n

01

1i-n

......10......11011......11

......01......11011......11

......11......10011......11

......11......01011......11

......11......11011......11

bbb

bbb

bbb

bbb

bbb

jj

ji

jj

ji

jj

ji

jj

ji

jj

ji

4847648476

4847648476

MOMM

4847648476

4847648476

4847648476

Definition 5[16] Any mesh or
torus, denoted by , in the d-dimensional

space R

dmmm ××× L21

1 2 dm m mM × × ×L

d, where mi = . ip2
Definition 6[19] The Binary-Reflected Gray Code
(BRGC) is defined recursively as follows.

Cn+1={0Cn, 1(Cn)R}, where C1={0 , 1}
and C2={0C1 , 1(C1)R}

For example, a 2-bit Gray Code can be
constructed by the sequence, defined in definition 6,
and insert a cipher in front of each codeword in C1,
then insert an one in front of each codeword in (C1)R .
We get the code C2={00, 01, 11, 10}. Now, we can
then repeat the procedure to built a 3-bit Gray Code,
and also get the code C3=0C2∪1(C2)R={000, 001,
011, 010, 110, 111, 101, 100}.

Set j=i and set Gj to be the composite graph
generated in the previous steps. Note that Gj has now

 nodes and the binary label of each node in

G

∑
=

j

k

k
kb

0
2

j has a prefix of (n-j) 1's.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1348 Issue 11, Volume 7, November 2010

Fig. 1 The IEH graph contains 13 nodes

3 Meshes and Tori Embedding
The section describes the representation used to
solve that embeds a mesh and torus in an IEH.
Lemma 1 mesh or torus, denoted by

, is a 2-dimensional mesh or torus, where

 can be embedded in an
n-dimensional hypercube where n = r+ s.

21 mm ×

1 2m mM ×

sr mm 2,2 21 ==

Lemma 2 Any mesh or torus,
denoted by , in the d-dimensional space

R

dmmm ××× L21

1 2 dm m mM × × ×L

d, where mi = can be embedded in an
n-dimensional hypercube where n = p

ip2
1 + p2+…+ pd.

The numbering of the mesh or torus nodes is any
numbering such that its restriction to each ith variable

is a Gray sequence which is described in definition 2.
Note that the assumption that all mi’s be power of 2.

Our proposition is best illustrated by an example.
Consider a mesh or torus i.e., d = 2, p22M × 1 =1, p2
= 1, n = p1 + p2 = 2. A binary number H of any node
of the 2-dimensional hypercube can be regarded as
consisting of two parts: its first 1 bit and its last 1 bit,
which we write in the form H = X1Y1, where Xi and Yi
are bits 0 or 1. It is clear from the definition of an
n-dimensional hypercube (with n = 2) that when the
last 1 bit is fixed, then the resulting nodes form
a p

12 p

1-dimensional hypercube (with p1 = 1).
Whenever we fix the first 1 bit we obtain a
p2-dimensional hypercube. The embedding then
becomes clear. Choosing a 1-bit BRGC for the x

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1349 Issue 11, Volume 7, November 2010

direction and 1-bit BRGC for the y direction, the
point () of the mesh or torus is assigned to the
node X

ii yx ,
1Y1 where X1 is the 1-bit BRGC for dimension

of p1 while Y1 is the 1-bit BRGC for dimension of p2.
Herein, we illustrate the result of the mesh or torus in
Figure 2.

Fig. 2 A mesh 22M ×

The binary node number of any mesh and torus
node is obtained by concatenation its binary x
coordinate and its binary y coordinate. Therefore, if
we call Gray sequence any subsequence of a BRGC,
we observe that any column of mesh and torus nodes
forms a Gray sequence and any row of mesh and
torus nodes forms a Gray sequence. Thus, we will
refer to the codes defined above as 2-D Gray codes.
Generalizations to higher dimensions are
straightforward and one can state the above lemma 2.
Lemma 3 For any given N, a hypercube Hn must be
a subgraph of an IEH Gn(N), where 12 2n nN +≤ < .
Proof. An IEH Gn(N) must contain a hypercube Hn.
That is trivially by the generation schema of an IEH
Gn(N) graph. It must contain the maximum
hypercube Hn.

The simulation approach that a
mesh or torus can be embedded in an IEH G

1 2 dm m mM × × ×L

n(N) is as
follows.

Simulation approach

1 2 dm m mM × × ×L (mi =), ip2

Gn(N) (), 12 2n nN +≤ <
1,,,,, 2121 ≥≤=+++∀ dd pppnwwppp KK

),()(EVGNGn =
1 2

' '(,)
dm m mM G V E× × × =L ,

Vν ∈ ' V

0121 XXXXXv wwn KK −−=

0121' XXXXv ww K−−=
'Vν ′∈ can be embedded in V denote as

012100 XXXXv ww KK −−=
Theorem 1 A

2 2r sM
×

2-dimensional mesh or torus
can be embedded in an IEH Gn(N) where

2logr s N+ = ⎢ ⎥⎣ ⎦ with load 1, dilation 1, congestion
1, and expansion 2.
Proof: This is trivial by lemma 1and the above
simulation approach.
Theorem 2 Any d-dimensional mesh or

torus, where m
1 2 dm m mM × × ×L

i = can be embedded in an IEH
G

ip2
n(N), where with

load 1, dilation 1, congestion 1 and expansion 2.
1 2 d 2p + p + + p log N= ⎢⎣K ⎥⎦

Proof: It is trivial by lemma 2 and the above
simulation approach.

This is the best illustrated by an example in
Figure 3. That is a mesh or torus can be
embedded in an IEH G

22M ×

3(13).
Lemma 3 A mesh or tori contains any number of
nodes can be embedded into an IEH graph with load
1, congestion 1, and dilation 1.

'ν ∈ (Denoted by unique binary string)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1350 Issue 11, Volume 7, November 2010

Fig. 3 Embedding of a mesh and torus in an IEH G22M × 3(13)

4 Fault-Tolerant mapping with

Unbounded Expansion
In the previous section, we have constructed a mesh
and a torus in an IEH graph. In the section, we
consider a faulty IEH with unbounded expansion
embedding.
Theorem 3 A mesh or a tori can be mapped into an
IEH graph with unbounded expansion.
Proof: It is trivial by lemma 3.
 The cardinality of Hi, denoted by | Hi |, is
number of nodes in Hi. Similarly, |Gn(N)| is number
of nodes in the IEH graph Gn(N).
Theorem 4 Suppose Gn(N) is an IEH graph contains
N nodes, Hn is the maximal hypercube exists in
Gn(N), then | Hn | > (N-|Hn|). On the other hand, if
Gn(N) is divided into two parts, Hn and Gm(N-|Hn|),

Hn contains more nodes than Gm(N-|Hn|) does, where
0≤ m < n.
Proof: Let Gn(N) be an IEH graph contains
N=(an-1an-2...a0) nodes. It is composed by hypercubes
Hi if ai≠0 for 0 ≤ i ≤ n. It is necessary that the most
significant bit an-1 must be equal to 1, so Hn is a part
of Gn(N) Because Hn is an n-dimensional hypercube,
|Hn|=2n. The rest part of Gn(N) is Gm(N-|Hn|) which
is possibility composed by H0, H1, ..., and Hn-1 if it is
greatest, so the maximal number of nodes in
Gm(N-|Hn|) is
|H0|+|H1|+|H2|+...+|Hn-1|=20+21+...+2n-1=2n-1. As the
result, 2n=|Hn|≥(N-|Hn|)=2n-1.
Theorem 5 For an IEH Gn(N), the nodes of the
subgraph Hn has an IC edge at least.
Proof: By the construction of IEH and theorem 4, all

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1351 Issue 11, Volume 7, November 2010

of nodes of Gm(N), where m < n, has a unique IC
edges connecting to Hn at least. Therefore, the nodes
of the subgraph Hn of an IEH Gn(N) have an IC edge
at least.

Algorithm Mesh_Mapping(x)
Input: x /*the faulty node*/,

1 2 dm m mM × × ×L (mi =), ip2

Gn(N) (), 12 2n nN +≤ <

1,,,
,,

21

21

≥
≤=+++∀

d

d

ppp
nwwppp

K

K

Output: y /*the replaceable node*/
1. i=0; j=0; k=0
2. Create a Queue Q; Q=Φ
3. if a node x is faulty
4. then
5. {
6. while i < (n+1-⎣log2m ⎦) do
7. {
8. search the node y

/* HD(x, y)=1, Dim(x, y)= ⎣log2m ⎦ +i*/
9. if y is not a virtual node and it is free
10. then
11. return(y) /*replace x with y*/
12. remove all nodes in Q
13. exit()
14. else
15. enqueue(y, ⎣log2m ⎦ +i)
16. i=i+1
17. }
18. }
19. while Q is not empty do
20. {
21. dequeue(a,b)
22. while j < b do
23. {
24. search the node z

 /* HD(a, z)=1, Dim(a, z)=j*/
25. if z is not a virtual node and it is free
26. then
27. return(z)

/*replace x with y*/
28. remove all nodes in Q
29. exit()
30. j=j+1
31. }
32. }
33. search the node y /*(x, y) is an IC edge*/
34. if y is not a virtual node and it is free
35. then
36. return(y) /*replace x with y*/
37. exit()
38. while k < ⎡ log2m ⎤ do
39. {

40. search the node z
/* HD(z, y)=1, Dim(z, y)=k*/

41. if z is not a virtual node and it is free
42. then
43. return(z)

/*replace x with y*/
44. exit()
45. k=k+1
46. }
47. return(“Failure”)
48. end

Finding the replaceable node as follows:
node 0 = 0Xn-1Xn-2…X⎣log2m⎦ …X1X0

node 1 = 0Xn-1Xn-2…X’⎣log2m⎦ …X1X0

node 2= 0Xn-1Xn-2…X’⎣log2m⎦+1 X⎣log2m⎦ …X1X0

 M
node (n-⎣log2m⎦) = 0X’n-1Xn-2…X⎣log2m⎦ …X1 X0
node (n-⎣log2m⎦ +1) = 1Xn-1Xn-2…X⎣log2m⎦ …X1 X0

node (n-⎣log2m⎦ +2) = 0Xn-1Xn-2…X’⎣log2m⎦ …X1X’0

node (n-⎣log2m⎦ +3) = 0Xn-1Xn-2…X’⎣log2m⎦ …X’1X0
 M
node (n-⎣log2m⎦ +1+⎣log2m⎦) = 0Xn-1Xn-2…X’⎣log2m⎦

X’⎣log2m⎦ -1…X1X0

node (n-⎣log2m⎦ +1+⎣log2m⎦+1) =
0Xn-1Xn-2…X’⎣log2m⎦ +1…X1X’0

node (n-⎣log2m⎦ +1+⎣log2m⎦+2) =
0Xn-1Xn-2…X’⎣log2m⎦ +1…X’1X0

 M
node (n-⎣log2m⎦ +1+2*⎣log2m⎦) =
0Xn-1Xn-2…X’⎣log2m⎦+1 X⎣log2m⎦X’⎣log2m⎦-1…X1X0

node(n-⎣log2m⎦+1+2*⎣log2m⎦+1)=0Xn-1Xn-2…X’⎣log2

m⎦+1 X⎣log2m⎦’X⎣log2m⎦-1…X1X0

 M
node ((n-⎣log2m⎦+1)*(⎣log2m⎦+1))+(1+2+…+n) =
1X’n-1Xn-2…X⎣log2m⎦-1…X1X0

node
((n-⎣log2m⎦+1)*(⎣log2m⎦+1)+(1+2+…+n)+1)=YnY
n-1Yn-2… Y⎣log2m⎦…Y1Y0
(The IC edge connects node 0 and node
((n-⎣log2m⎦+1)*(⎣log2m⎦+1)+(1+2+…+n)+1))
node ((n-⎣log2m⎦+1)*(⎣log2m⎦+1) +(1+2+…+n)+
⎣log2m⎦) = YnYn-1Yn-2… Y⎣log2m⎦ …Y1Y’0

 M
node((n-⎣log2m⎦+1)*(⎣log2m⎦+1)+(1+2+…+n)+⎣lo
g2m⎦)=YnYn-1Yn-2…Y’⎣log2m⎦-1…Y1Y0

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1352 Issue 11, Volume 7, November 2010

 For the IEH G3(13) as Figure 3, where the
 has been mapped in it. We give a simple

example in this section to explain the operations of
the Mesh_Mapping algorithm when the faulty nodes
exist. The procedure for handling this faulty node
straightforward.

22M ×

1. If the node 0 is faulty, it visits or signals the node
4, to check whether it is free or not. If it is, it
terminates.

2. If not, insert the node 4 to the queue, and search
the node 8, to check whether it is free or not. If it
is, it terminates.

3. If not, insert the node 8 to the queue, and delete
the node 4 from the queue, search the node 5, to
check whether it is free or not. If it is, it
terminates.

4. If not, search the node 6, to check whether it is
free or not. If it is, it terminates.

5. If not, delete the node 4 from the queue, search
the node 9, to check whether it is free or not. If it

is, it terminates.
6. If not, search the node 10, to check whether it is

free or not. If it is, it terminates.
7. If not, search the node 14, to check whether it is

free or not. If it is, it terminates.
8. If not, return(“Failure”).

Therefore, the whole searching path is listed as
{4(0100), 8(1000), 5(0101), 6(0110), 9(1001),
10(1010), 14(1110)}.

In Figure 4, we assume that the node 0000 is
faulty. We can find the six nodes in the sequence for
replacing the faulty node.

We illustrate the search tree of finding a
replaceable node in an IEH graph G3(13) as shown
Figure 5.

Figure 6 shows the representation for Figure 5.
In Figure 6, we have mapped these replaceable nodes
into these idle nodes of the IEH graph G3(13).

Now, Figure 7 shows Mesh_Mapping()
algorithm applied to the graph of Figure 4.

Fig. 4: Embedding of a mesh and torus in a faulty IEH G22M × 3(13)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1353 Issue 11, Volume 7, November 2010

Fig. 5 The search tree for finding the searching path by Mesh_Mapping(x) algorithm

Fig. 6 Mapping Figure 5 into IEH G3(13)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1354 Issue 11, Volume 7, November 2010

Fig. 7 Summary of Mesh_Mapping(x) algorithm applied to Figure 4

Theorem 6 A mesh or a torus can be
mapped into a faulty IEH G

1 2 dm m mM × × ×L

n(N) graph with dilation 3,
congestion 1, load 1, and unbounded expansion.
Proof: Every searching path is only one path
according to the algorithm Mesh_Mapping, allowing
us to obtain congestion 1 and load 1. Herein, we
allow unbounded expansion to obtain the replaceable
node of the faulty node. When a node is faulty, it is a
worse case in which the dilation=1+2=3 at most by
algorithm Mesh_Mapping. Because these nodes and
links of searching paths are not replicated from
algorithm Mesh_Mapping, These costs associated
with graph embedding are dilation 3, congestion 1,
load 1, and unbounded expansion.
Theorem 7 A searching path of algorithm
Mesh_Mapping is including 1/2*n2 + (n* ⎣log2m⎦)
+ 3/2*n - ⎣log2m⎦ 2 +1 nodes.

Proof: We can embed into G
1 2 dm m mM × × ×L n(N) by

theorem 6. If a node is faulty, we can change a bit in
the binary string sequence from bit ⎣log2m⎦ to bit n
and insert its corresponding node into the queue. In
the worst case, we can get (n-⎣log2m⎦+1) different
nodes. Then we delete the node from the queue.
From the first node we can change a bit in the
sequence from bit 0 to bit (⎣log2m⎦ - 1), and we can
get ⎣log2m⎦ different nodes. We can also change a
bit in the sequence from bit 0 to bit ⎣log2m⎦ from the
second node of the queue, and we can also get
(⎣log2m⎦+1) different nodes. Until the queue is
empty, the sum of all searched nodes is (n - ⎣log2m⎦
+ 1) * (⎣log2m⎦ + 1)) + (1 + 2 + … + n). The
search path includes (n - ⎣log2m⎦ + 1) * (⎣log2m⎦

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1355 Issue 11, Volume 7, November 2010

+ 1)) + (1 + 2 + … + n) nodes. We assume there is
an IC edge connecting to the faulty node by theorem
4.3. Therefore, we can search ⎣log2m⎦ nodes in the
worst case. We infer the edges of the replacing
method exist and none of the nodes and the edges has
a duplicate replacement. That is, the whole search
path includes (n - ⎣log2m⎦ + 1) * (⎣log2m⎦ + 1))
+ (1 + 2 + … + n - ⎣log2m⎦) + ⎣log2m⎦ = 1/2 *
n2 + (n * ⎣log2m⎦) + 3/2 * n - ⎣log2m⎦ 2 + 1 nodes.
Theorem 8 There are O(n2-⎣log2m ⎦ 2) faults, which
can be tolerated.
Proof: By theorem 7, the whole search path includes
1/2 * n2 + 3/2 * n + ((n+1) * ⎣log2m⎦) - ⎣log2m⎦
2 nodes. That is, O (n2 - ⎣log2m ⎦ 2) faults can be
tolerated.

5 Conclusion
 In [20], we consider the problem of embedding
rings in IEH graphs. After [20], we consider the
problem of embedding meshes in IEH graphs.
According the result, we not only can map these
parallel programs of rings, but also can map these
parallel programs of meshes in an IEH. In [21], we
consider the problem of embedding meshes in
Supercubes. Because the IEH is an asymmetric
Incrementally Extensible Hypercube, it fit in with the
distributed system or cloud computing system more
than the Supercube. Obviously, the IEH is superior to
Supercube in terms of embedding meshes or tori
under faults.
In this paper, we try to find the replaceable node of
the faulty node. The main result of this paper is the
fact that it is always possible to give solutions to the
embedding of meshes and tori in a faulty IEH. After
a mesh is mapped in an IEH, we develop new
algorithms to facilitate the embedding meshes and
tori in a faulty IEH. Our results demonstrate that
O(n2-⎣log2m ⎦ 2) faults can be tolerated. Also, the
methodology is proven and an algorithm is presented
to solve them. These existent parallel algorithms in
mesh architectures can be easily transformed to or
implemented in IEH architectures with load 1,
congestion 1, dilation 3, and unbounded expansion.
Although an IEH is asymmetric, it has the same
power as the hypercube in terms of meshes. The
technology can be apply in grid computing and cloud
computing.

References:
[1] S. B. Akers, and B. Krishnamurthy, A

Group-Theoretic Model for Symmetric

Interconnection Networks, IEEE Trans. on
Computers, Vol. 38, 1989, pp. 555-565.

[2] J. R. Armstromg and F. G. Gray, Fault-
diagnosis in n-Cube array of microprocessor,
IEEE Trans. on Computers, Vol. C-30, No. 4,
1992, pp. 587-590.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel
and Distributed Computation: numerical
methods, Prentice Hall, Englewood Ciffs, New
Jersey, 1989.

[4] L. Bhuyan and D.P. Agrawal, Generalized
Hypercubes and Hyperbus structure for a
computer network, IEEE Trans. on Computers,
Vol. 33, 1984, pp. 323-333.

[5] C. Chartand and O. R. Oellermann, Applied and
Algorithmic Graph Theory, McGRAW-HILL
Inc., 1993.

[6] K. Day and A. E. Al-Ayyoub, Fault Diameter
of k-ary n-cube Networks, IEEE Trans. on
parallel and distributed systems, Vol. 8, No. 9,
1997, pp. 903-907.

[7] Q. Dong, X. Yang, J. Zhao, and Y. Y. Tang,
Embedding a family of disjoint 3D meshes into
a crossed cube, Information Sciences, Vol. 178,
No. 11, 2008, pp. 2396-2405.

[8] S. Dutt and J. P. Hayes, An automorphic
approach to the design of fault-tolerance
Multiprocessor, Proc. 19th Inter. Symp. on
Fault-Tolerant Computing, 1989.

[9] M. J. Duff, CLIP4: A Large Scale Integrated
Circuit Array Parallel Processor, IEEE
International Joint Conference on Pattern
Recognition, 1976, pp. 728-733.

[10] M. J. Duff, Real Applications on CLIP4, in
Integrated Technology for Parallel Image
Processing, Academic Press London, 1985, pp.
153-165.

[11] T. Hameenanttila, X.-L. Guan, J. D. Carothers,
and J.-X. Chen, The Flexible Hypercube: A
New Fault-Tolerant Architecture for Parallel
Computing, Journal of Parallel and
Distributed Computing, Vol. 37, 1996, pp.
213-220.

[12] J. Hastad, T. Leighton, and M. Newman,
Reconfiguring a Hypercube in the Presence of
Faults, ACM Theory of Computing, 1987, pp.
274-284.

[13] J. P. Hayes, and T.N. Mudge, Hypercube
supercomputing, Proc. IEEE, Vol. 77, 1989, pp.
1829-1842.

[14] H.P. Katseff, “Incomplete Hypercubes,” IEEE
Trans. on Computers, Vol. 37, 1988, pp.
604-608.

[15] J. Kuskin, et al., The Stanford FLASH
Multiprocessor, Proceedings of the 21st Annual

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1356 Issue 11, Volume 7, November 2010

http://www.sciencedirect.com/science/journal/00200255

International Symposium on Computer
Architecture, 1994, pp. 302-313.

[16] F. T. Leighton, Introduction to parallel
algorithms and architectures: Arrays, Trees,
Hypercubes, MORGAN KAUFMANN
PUBLISHERS, Inc., 1992.

[17] D. Lenoski, et al., The StanfordDASH
Multiprocessor, Computer, Vol. 224, 1971, pp.
63-79.

[18] J.-C. Lin, “Fault-Tolerant Mapping of a Mesh in a
Flexible Hypercube”, WSEAS Transactions on
Computers, Vol. 8, 2009, pp. 1587-1596.

[19] J.-C. Lin, “Simulation of Cycles in the IEH
Graph,” International Journal of Hjgh Speed
Computing, Vo1. 10, No. 3, pp. 327-342
(1999).

[20] J.-C. Lin, S. K.C. Lo, S.-J. Wu, and H.-C. Keh,
“Distributed Fault-Tolerant embeddings of
rings in Incrementally Extensible Hypercubes
with Unbounded Expansion”, Tamkang Journal
of Science and Engineering, Vol. 9, No. 2, pp.
121-128, 2006.

[21] J.-C. Lin, S.-J. Wu, H.-C. Keh, and L. Wang,
“Fault-Tolerant Meshes and Tori Embedded in
a Faulty Supercube”, WSEAS Transactions on
Computers, Vol. 9, No. 5, pp. 445-454, 2010.

[22] C. D. Park, and K.-Y. Chwa, Hamiltonian
properties on the class of hypercube-like
networks, Information Processing Letters, Vol.
91, 2004, pp. 11-17.

[23] F. P. Preparata, and J. Vuillemin, “The
cube-connected cycles: A versatile network for
parallel computation,” Commun. ACM, Vol. 24,
1981, pp. 300-309.

[24] D. A. Rennels, On Implemanting
Fault-tolerance in binary hypercubes, Proc.
16th Inter . Symp. on Fault-tolerant Computing,
1986, pp. 344-349.

[25] Y. Saad, and M. Schultz, Topological
properties of Hypercube, IEEE Trans. on
Computers, Vol. 37, 1988, pp. 867-871.

[26] J. L. C. Sanz, The SIMD Model of Parallel
Computation, Springer-Verlag New-York, Inc.,
1994.

[27] C. Seitz, The Cosmic Cube, Commun. ACM,
Vol. 28, 1985, pp. 22-33.

[28] A. Sen, Supercube: An Optimally Fault
Tolerant Network Architecture, Acta
Informatica, Vol. 26, 1989, pp. 741-748.

[29] A. Sen, A. Sengupta and S. Bandyopadhyay,
Generalized Supercube: An incrementally
expandable interconnection network,
Proceedings of the Third Symposium on
Frontiers of Massively Parallel
Computation-Frontiers'90, 1990, pp. 384-387.

[30] H. Sullivan, T. Bashkow, A large scale,
homogeneous, fully distributed parallel
machine, I, Proc. 4th Symp. Computer
Architecture, ACM, 1977, pp. 105-177.

[31] S. Sur and P. K. Srimani, Incrementally
Extensible Hypercube Networks and Their
Fault Tolerance, Mathematical and Computer
Modelling, Vol 23, 1996, pp. 1-15.

[32] S. Sur, and P. K. Srimani, IEH graphs: A novel
generalization of hypercube graphs, Acta
Informatica, Volume 32, 1995, pp 597-609.

[33] L. W. Tucker and G. G. Robertson,
Architecture and applications of the connection
machine, IEEE Comput., Vol. 21, 1988,
pp.26-38.

[34] N.-F. Tzeng and H.-L. Chen, Fast Compaction
in Hypercubes, IEEE Trans. on parallel and
distributed systems, Vol. 9, No. 1, 1998, pp.
50-55.

[35] S.-H. Wang, Y.-R. Leu, and S.-Y. Kuo,
Distributed Fault-Tolerant Embedding of
Several Topologies in Hypercubes, Journal of
Information Science and Engineering, Vol. 20,
No. 4, 2004, pp. 707-732.

[36] L. D. Wittie, Communications structures for
largenetworks of microcomputers, IEEE Trans.
Comput., Vol. C-30, 1981, pp.264-273.

[37] C. Xu and F. C. M. Lau, Load Balancing in
Parallel Computers-Theory and Practice,
Kluwer Academic Publishers, Inc., 1997.

[38] P.-J. Yang, S.-B. Tien, and C.S. Raghavendra,
Embedding of Rings and Meshes onto Faulty
Hypercube Using Free Dimensions, IEEE
Trans. on Computers, Vol. 43, No. 5, 1994, pp.
608-618.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1357 Issue 11, Volume 7, November 2010

