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Abstract: - The paper considers the problem of finding meshes and tori in a Faulty Incrementally Extensible 
Hypercube if any. We develop novel algorithms to facilitate the embedding job when the Incrementally 
Extensible Hypercube (IEH) contains faulty nodes. We present strategies for reconfiguring a mesh or tori in an 
IEH with unbounded expansion. These simulation approach shows a mesh or torus can be embedded into a 
faulty IEH Gn(N) with load 1, congestion 1 and dilation 3 such that O(n2-⎣log2m ⎦ 2) faults can be tolerated. 
Furthermore, the technology can be apply in grid computing and cloud computing. 
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1 Introduction 
Rapidly advancing technology has made it possible 
for a large number of processing elements to be 
interconnected in a variety of configurations. In the 
investigation of parallel computing, networks of 
processors are often organized into various 
configurations such as hypercubes, trees, rings, and 
meshes. These configurations can be presented as 
graphs. If the properties and structures of the 
underlying graph are used effectively, the 
computations and communication speeds can often 
be improved. Many parallel algorithms have been 
designed to solve different problems on various 
networks. It would be of interest to be able to 
execute these algorithms in other networks. 
Therefore, the problem of simulating one network by 
another is modeled as a graph embedding problem 
where nodes and edges in the graph represent the 
processors and communication links between 
processors. Organizing computations in a network of 
processors is also modeled as a graph embedding. So, 
graph embedding problems become the important 
applications in a wide variety of computational 
situations. 

The problem of embedding an n-processor 
guest network G into an n-processor host network H 
is an important problem in distributed computing or 
parallel processing. Results on this problem not only 
demonstrate computational equivalence or 
non-equivalence) between networks of different 
topology, but also lead to efficient simulations of 

algorithms originally designed for G on host H. 
Embedding and their implications to distributed 
computing or parallel processing have been studied 
extensively recently. 

An embedding of a graph G=(VG,EG) into a 
graph H=(VH,EH) includes a mapping of nodes of VG 
into nodes of VH and a mapping each edge of EG into 
a path of H. The graph G and H are referred as the 
guest and host graphs. Four common measures of 
quality of an embedding in parallel processing are 
dilation, expansion, congestion and load. The 
dilation measures the communication delay and is 
defined as the maximum length of paths mapping by 
edges of EG. The processor utilization is measured 
by the expansion that is defined as the ratio of total 
number of nodes of G to total number of nodes of H. 
The congestion of an embedding is the maximum 
number of edges of the guest graph G that is mapped 
by a single edge of the host graph H. The congestion 
is a measurement of queuing delay of massages. To 
measure the processing time of tasks is referred as 
the load in an embedding. The load is the maximum 
number node of G that is embedded in a single node 
of H. 

From the computational perspective, hypercube 
multiprocessors have recently offered a cost effective 
and feasible approach to supercomputing through 
parallelism at the processor level by directly 
connection a large number of low-cost processors 
with local memories which communicate by 
message-passing instead of shared variables. 
Therefore, hypercubes are widely used 
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interconnection architectures in parallel machines. 
Hypercube has been the focus of researches in 
parallel computing because of its well-defined 
properties with the modularity, regularity, and low 
diameter, etc. These characteristics make it easy to 
design efficient parallel programs and share 
machines among users. Its important advantages are 
high data bandwidth and low message latency. 
Moreover, the hypercube may contain many other 
networks as its subgraphs such as rings, trees, 
meshes, etc. On the other hand, lots of 
interconnection networks can be mapped into the 
hypercube. It is apparent to demonstrate how all of 
the parallel algorithms, designed by those 
interconnection networks, can be directly 
implemented on the hypercube without significantly 
affecting the number of processors or the 
computation time.  

A hypercube, also known as a binary n-cube or 
cosmic cube, contains 2n processors (nodes), each of 
which is connected by fixed communication paths 
(links) to n other nodes. The value n is known as the 
dimension of the hypercube. In a hypercube, two 
nodes are connected if and only if their addresses 
differ by one and only one bit. Extensive research 
efforts have been focused on hypercube design 
aspects and hypercube applications such as data 
permutation and matrix operations. These have 
resulted in several commercial products, such as the 
Intel iPSC and the Connection Machine. However, 
the number of nodes of this network is restricted to 
be a power of 2, that can be, in some situations, a 
significant drawback. In fact, to upgrade a hypercube 
it is necessary to double the number of processors, 
which can be unrealizable for budget limitations and 
for technical reasons. Several hypercube-like 
networks that can be constructed for any number of 
nodes have been proposed, such as Incomplete 
Hypercube[14], Supercube[28, 29], Flexible 
Hypercube[11], Incrementally Extensible 
Hypercube[31, 32], and so on. 

The Incrementally Extensible Hypercube (IEH) 
graph is a new topology of interconnection networks 
and proposed recently. Unlike the hypercube, the 
IEH graph is incrementally extensible, that is, any 
number of nodes can construct it. Besides, it has the 
optimal ability of the fault tolerance and the 
diameter of logarithmic in the number of nodes. The 
difference between the maximum and the minimum 
degree of nodes in an IEH graph is at most 1, so it is 
enough to say that the IEH graph is almost regular. 
However, the IEH graph does not have the 
drawbacks of the above-mentioned generalizations 
of the hypercube. The characteristics of IEH graphs 
are shown in [31]. 

Among the static interconnection networks 
used for SIMD[26] computers with an array of 
processors[2], one of the oldest and very popular 
architectures is a two-dimensional-mesh. Many 
important algorithms for solving various problems, 
e.g., matrix operations, simultaneous linear equations, 
graph-theoretic and image processing problems, etc., 
have been efficiently mapped in this mesh 
architecture. 
 In this paper, we study how algorithms that are 
designed for fault-tolerance Incrementally Extensible 
Hypercube can be implemented on Incrementally 
Extensible Hypercubes that contain faults. In the 
following discussion we will consider a parallel 
computer as a graph, in which the nodes correspond 
to processors and the edges correspond to 
communication links.  

Also, we developed the methods for finding 
meshes or tori in an IEH graph. As the result, we can 
transit the parallel algorithms developed under the 
structure of meshes or tori to the IEH graph. This 
simulation approach enables extremely high-speed 
parallel computation in IEH graphs. Although IEH 
graphs are not absolutely asymmetric, it has the same 
power as the hypercube in terms of meshes and tori. 

The remainder of this paper is organized as 
follows. Section 2 is devoted to some notations and 
definitions. The construction of the mesh in an IEH 
is addressed in Section 3. Section 4 develops the 
embedding algorithm to a faulty IEH with 
unbounded expansion. Section 5 concludes this 
paper. 
 
 
2 Preliminaries 
This section briefly describes notations and 
definitions of the IEH graph. The IEH graph of 
n-dimension is the composition of some m different 
hypercubes of dimension k, where 0≤k≤n and 1≤m≤n. 
Let Gn(N) be a n-dimensional IEH graph with N 
nodes, and N can be expressed by the binary string 
N= bnbn-1bn-2…b1b0, and bi ∈ {0,1}. Suppose that 
hypercube Hi is a part of the IEH graph Gn(N), it is 
certain that the ith bit of N, bi must be 1. That is, an 
IEH graph Gn(N) is composed of some different 
hypercubes which have lower dimension than Gn(N) 
has. For example, G3(13) is an IEH graph contains 
13 nodes, and it is composed by three different-sized 
hypercubes H0, H2,and H3 because 13=1101, and 
b0=b2=b3=1. 

Accordingly, the IEH graph is composed of 
some hypercubes, so there is a new type of 
connections beside the usual connections in a 
hypercube. These edges (or links) are used for 
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connecting two hypercubes are called Inter-Cube or 
IC edges. For any given N, 2n≤N<2n+1, the steps of 
finding IEH graphs are as follows. 

   i=i+1 
 Return Gn as the desired incremental hypercube 
graph of N vertices. 

 Step 1 Build subcube graphs. Express N as 
(n+1) bits a binary number as N= bnbn-1bn-2…b1b0, 
where bi ∈ {0,1} and bn=1 since N ≥ 2n. For each bi, 
bi≠0, construct a hypercube graph Hi with 2i nodes. 

 Figure 1 shows the example of G3(13). G3(13) 
consists of three subcubes. The three subcubes are 
0-subcube(H0), 2-subcube(H2), and 3-subcube(H3). 
Nodes 14 is the single node in H0, Nodes 8, 9, 10, 
and 11 are composed as a 2-subcube(H2), and nodes 
0, 1, 2, 3, 4, 5, 6 and 7 are the elements of a 
3-subcube(H3). The edges (8, 14), (10, 14) are IC 
edges connected between H0 and H2 such that H0 and 
H2 are connected to be an IEH graph containing 5 
nodes(G2(5)). In addition, the H3 connects to G2(5) 
with these IC edges (0, 8), (1, 9), (2,10), (3,11), and 
(6,14).  

 Step 2 Label the nodes. Note that each node 
has a (n+1)-bit binary label. Each hypercube Hi is 
labeled as 11…10bi-1bi-2…b1b0. Obviously each 
hypercube of dimension i (having 2i nodes) have i 
number of dashed and the individual nodes of the 
hypercube can be obtained by filling the dashes with 
0 or 1 in all possible ways. In other words, the binary 
representation of each node in Hi has the same prefix 
of (n-i)1's followed by a single zero. Definition 1[19] The Hamming distance between 

two nodes with labels x=xn-1xn-2...x0 and y= 
yn-1yn-2...y0 is defined as  

Step 3 Construct the incremental hypercube in 
steps by providing the inter-cube edges. Find the 
minimum i such that bi≠0. Set j=i and Gj=Hi.  HD(x , y)= , where  ∑

−

=

1

0
),(

n

i
ii yxhdSet i=i+1.  

While i≤n do 

hd(xi , yi)=  
⎩
⎨
⎧

≠
=

.yxif 1,
,yxif 0,

ii

iiif bi≠0 then 
  if i-j=1 then 

each node x in Gj with label 
11…bjbj-1…b0 is connected to the 
node 11…10bjbj-1…b0 of Hi. 

Definition 2[19] Let x=xn-1…x0, y=yn-1…y0, then 
Dim(x, y)={i in (0…n-1)∣xi ≠ yi} 
Definition 3[1] If G is a graph, the vertex set of G is 
denoted by V and the edge set of G is denoted by E. 
A graph G’ is said to be a subgraph of G if V’⊆V and 
E’⊆E.  

  else 
each node x in Gj with label 
11…1bjbj-1…b0 is connected to (i-j) 
different nodes of Hi chosen in the 
following way: Definition 4[16] 21 mm ×  mesh or torus, denoted 

by , is a 2-dimensional mesh or torus, where 
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Definition 5[16] Any  mesh or 
torus, denoted by , in the d-dimensional 

space R

dmmm ××× L21

1 2 dm m mM × × ×L

d, where mi = .  ip2
Definition 6[19] The Binary-Reflected Gray Code 
(BRGC) is defined recursively as follows. 

Cn+1={0Cn, 1(Cn)R}, where C1={0 , 1} 
and C2={0C1 , 1(C1)R} 

For example, a 2-bit Gray Code can be 
constructed by the sequence, defined in definition 6, 
and insert a cipher in front of each codeword in C1, 
then insert an one in front of each codeword in (C1)R . 
We get the code C2={00, 01, 11, 10}. Now, we can 
then repeat the procedure to built a 3-bit Gray Code, 
and also get the code C3=0C2∪1(C2)R={000, 001, 
011, 010, 110, 111, 101, 100}. 

Set j=i and set Gj to be the composite graph 
generated in the previous steps. Note that Gj has now 

 nodes and the binary label of each node in 

G

∑
=

j

k

k
kb

0
2

j has a prefix of (n-j) 1's. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Jen-Chih Lin

ISSN: 1790-0832 1348 Issue 11, Volume 7, November 2010



 
Fig. 1 The IEH graph contains 13 nodes 

 
 
3 Meshes and Tori Embedding 
The section describes the representation used to 
solve that embeds a mesh and torus in an IEH. 
Lemma 1  mesh or torus, denoted by 

, is a 2-dimensional mesh or torus, where 

 can be embedded in an 
n-dimensional hypercube where n = r+ s. 

21 mm ×

1 2m mM ×

sr mm 2,2 21 ==

Lemma 2 Any  mesh or torus, 
denoted by , in the d-dimensional space 

R

dmmm ××× L21

1 2 dm m mM × × ×L

d, where mi = can be embedded in an 
n-dimensional hypercube where n = p

ip2
1 + p2+…+ pd. 

The numbering of the mesh or torus nodes is any 
numbering such that its restriction to each ith variable 

is a Gray sequence which is described in definition 2. 
Note that the assumption that all mi’s be power of 2. 

Our proposition is best illustrated by an example. 
Consider a  mesh or torus i.e., d = 2, p22M × 1 =1, p2 
= 1, n = p1 + p2 = 2. A binary number H of any node 
of the 2-dimensional hypercube can be regarded as 
consisting of two parts: its first 1 bit and its last 1 bit, 
which we write in the form H = X1Y1, where Xi and Yi 
are bits 0 or 1. It is clear from the definition of an 
n-dimensional hypercube ( with n = 2 ) that when the 
last 1 bit is fixed, then the resulting  nodes form 
a p

12 p

1-dimensional hypercube ( with p1 = 1 ). 
Whenever we fix the first 1 bit we obtain a 
p2-dimensional hypercube. The embedding then 
becomes clear. Choosing a 1-bit BRGC for the x 
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direction and 1-bit BRGC for the y direction, the 
point ( ) of the mesh or torus is assigned to the 
node X

ii yx ,
1Y1 where X1 is the 1-bit BRGC for dimension 

of p1 while Y1 is the 1-bit BRGC for dimension of p2. 
Herein, we illustrate the result of the mesh or torus in 
Figure 2. 

 
Fig. 2 A  mesh 22M ×

The binary node number of any mesh and torus 
node is obtained by concatenation its binary x 
coordinate and its binary y coordinate. Therefore, if 
we call Gray sequence any subsequence of a BRGC, 
we observe that any column of mesh and torus nodes 
forms a Gray sequence and any row of mesh and 
torus nodes forms a Gray sequence. Thus, we will 
refer to the codes defined above as 2-D Gray codes. 
Generalizations to higher dimensions are 
straightforward and one can state the above lemma 2. 
Lemma 3 For any given N, a hypercube Hn must be 
a subgraph of an IEH Gn(N), where 12 2n nN +≤ < .  
Proof. An IEH Gn(N) must contain a hypercube Hn. 
That is trivially by the generation schema of an IEH 
Gn(N) graph. It must contain the maximum 
hypercube Hn. 

The simulation approach that a  
mesh or torus can be embedded in an IEH G

1 2 dm m mM × × ×L

n(N) is as 
follows.  

Simulation approach 

1 2 dm m mM × × ×L ( mi = ),  ip2

Gn(N) ( ),  12 2n nN +≤ <
1,,,,, 2121 ≥≤=+++∀ dd pppnwwppp KK

),()( EVGNGn =
1 2

' '( , )
dm m mM G V E× × × =L ,  

Vν ∈  ' V

0121 XXXXXv wwn KK −−=  

0121' XXXXv ww K−−=   
'Vν ′∈  can be embedded in V  denote as 

012100 XXXXv ww KK −−=  
Theorem 1 A 

2 2r sM
×

2-dimensional mesh or torus 
can be embedded in an IEH Gn(N) where 

2logr s N+ = ⎢ ⎥⎣ ⎦  with load 1, dilation 1, congestion 
1, and expansion 2. 
Proof: This is trivial by lemma 1and the above 
simulation approach. 
Theorem 2 Any d-dimensional mesh or 

torus, where m
1 2 dm m mM × × ×L

i =  can be embedded in an IEH 
G

ip2
n(N), where  with 

load 1, dilation 1, congestion 1 and expansion 2. 
1 2 d 2p  + p + + p log N= ⎢⎣K ⎥⎦

Proof: It is trivial by lemma 2 and the above 
simulation approach. 

This is the best illustrated by an example in 
Figure 3. That is a  mesh or torus can be 
embedded in an IEH G

22M ×

3(13). 
Lemma 3 A mesh or tori contains any number of 
nodes can be embedded into an IEH graph with load 
1, congestion 1, and dilation 1. 

'ν ∈ (Denoted by unique binary string) 
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Fig. 3 Embedding of a  mesh and torus in an IEH G22M × 3(13) 

 
 
4 Fault-Tolerant mapping with 

Unbounded Expansion 
In the previous section, we have constructed a mesh 
and a torus in an IEH graph. In the section, we 
consider a faulty IEH with unbounded expansion 
embedding. 
Theorem 3 A mesh or a tori can be mapped into an 
IEH graph with unbounded expansion. 
Proof: It is trivial by lemma 3. 
 The cardinality of Hi, denoted by | Hi |, is 
number of nodes in Hi. Similarly, |Gn(N)| is number 
of nodes in the IEH graph Gn(N).  
Theorem 4 Suppose Gn(N) is an IEH graph contains 
N nodes, Hn is the maximal hypercube exists in 
Gn(N), then | Hn | > (N-|Hn|). On the other hand, if 
Gn(N) is divided into two parts, Hn and Gm(N-|Hn|), 

Hn contains more nodes than Gm(N-|Hn|) does, where 
0≤ m < n. 
Proof: Let Gn(N) be an IEH graph contains 
N=(an-1an-2...a0) nodes. It is composed by hypercubes 
Hi if ai≠0 for 0 ≤ i ≤ n. It is necessary that the most 
significant bit an-1 must be equal to 1, so Hn is a part 
of Gn(N) Because Hn is an n-dimensional hypercube, 
|Hn|=2n. The rest part of Gn(N) is Gm(N-|Hn|) which 
is possibility composed by H0, H1, ..., and Hn-1 if it is 
greatest, so the maximal number of nodes in 
Gm(N-|Hn|) is 
|H0|+|H1|+|H2|+...+|Hn-1|=20+21+...+2n-1=2n-1. As the 
result, 2n=|Hn|≥(N-|Hn|)=2n-1. 
Theorem 5 For an IEH Gn(N), the nodes of the 
subgraph Hn has an IC edge at least. 
Proof: By the construction of IEH and theorem 4, all 
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of nodes of Gm(N), where m < n, has a unique IC 
edges connecting to Hn at least. Therefore, the nodes 
of the subgraph Hn of an IEH Gn(N) have an IC edge 
at least. 

Algorithm Mesh_Mapping(x) 
Input:  x  /*the faulty node*/,  

1 2 dm m mM × × ×L ( mi = ),  ip2

Gn(N) ( ),  12 2n nN +≤ <

1,,,
,,

21

21

≥
≤=+++∀

d

d

ppp
nwwppp

K

K
  

Output: y /*the replaceable node*/ 
1.  i=0; j=0; k=0 
2.  Create a Queue Q; Q=Φ 
3.  if a node x is faulty 
4.  then 
5.   { 
6.  while i < (n+1-⎣log2m ⎦ ) do  
7.   { 
8.   search the node y  

/* HD(x, y )=1, Dim(x, y)= ⎣log2m ⎦ +i*/ 
9.   if y is not a virtual node and it is free 
10.  then 
11.  return(y) /*replace x with y*/ 
12.  remove all nodes in Q  
13.  exit() 
14.  else 
15.  enqueue(y, ⎣log2m ⎦ +i) 
16.  i=i+1 
17.    } 
18.   } 
19.  while Q is not empty do  
20.  { 
21.   dequeue(a,b) 
22.   while j < b do  
23.   { 
24.   search the node z 

 /* HD(a, z )=1, Dim(a, z)=j*/ 
25.   if z is not a virtual node and it is free 
26.   then 
27.   return(z)  

/*replace x with y*/ 
28.   remove all nodes in Q  
29.   exit() 
30.   j=j+1 
31.   } 
32.  } 
33. search the node y /*(x, y ) is an IC edge*/ 
34.  if y is not a virtual node and it is free 
35.  then 
36.  return(y) /*replace x with y*/ 
37.  exit() 
38.  while k < ⎡ log2m ⎤  do  
39.   { 

40.   search the node z  
/* HD(z, y )=1, Dim(z, y)=k*/ 

41.   if z is not a virtual node and it is free 
42.   then 
43.   return(z)  

/*replace x with y*/ 
44.   exit() 
45.   k=k+1 
46.   } 
47.  return(“Failure”) 
48.  end 

Finding the replaceable node as follows: 
node 0 = 0Xn-1Xn-2…X⎣log2m⎦ …X1X0

node 1 = 0Xn-1Xn-2…X’⎣log2m⎦ …X1X0 

node 2= 0Xn-1Xn-2…X’⎣log2m⎦+1 X⎣log2m⎦ …X1X0

  M  
node (n-⎣log2m⎦ ) = 0X’n-1Xn-2…X⎣log2m⎦ …X1 X0  
node (n-⎣log2m⎦ +1) = 1Xn-1Xn-2…X⎣log2m⎦ …X1 X0

  

node (n-⎣log2m⎦ +2) = 0Xn-1Xn-2…X’⎣log2m⎦ …X1X’0 

node (n-⎣log2m⎦ +3) = 0Xn-1Xn-2…X’⎣log2m⎦ …X’1X0  
  M  
node (n-⎣log2m⎦ +1+⎣log2m⎦) = 0Xn-1Xn-2…X’⎣log2m⎦ 

X’⎣log2m⎦ -1…X1X0 

node (n-⎣log2m⎦ +1+⎣log2m⎦+1) = 
0Xn-1Xn-2…X’⎣log2m⎦ +1…X1X’0 

node (n-⎣log2m⎦ +1+⎣log2m⎦+2) = 
0Xn-1Xn-2…X’⎣log2m⎦ +1…X’1X0 

  M  
node (n-⎣log2m⎦ +1+2*⎣log2m⎦) = 
0Xn-1Xn-2…X’⎣log2m⎦+1 X⎣log2m⎦X’⎣log2m⎦-1…X1X0 

node(n-⎣log2m⎦+1+2*⎣log2m⎦+1)=0Xn-1Xn-2…X’⎣log2

m⎦+1 X⎣log2m⎦’X⎣log2m⎦-1…X1X0 

  M
node ((n-⎣log2m⎦+1)*(⎣log2m⎦+1))+(1+2+…+n) = 
1X’n-1Xn-2…X⎣log2m⎦-1…X1X0 

node 
((n-⎣log2m⎦+1)*(⎣log2m⎦+1)+(1+2+…+n)+1)=YnY
n-1Yn-2… Y⎣log2m⎦…Y1Y0  
(The IC edge connects node 0 and node 
((n-⎣log2m⎦+1)*(⎣log2m⎦+1)+(1+2+…+n)+1)) 
node ((n-⎣log2m⎦+1)*(⎣log2m⎦+1) +(1+2+…+n)+ 
⎣log2m⎦) = YnYn-1Yn-2… Y⎣log2m⎦ …Y1Y’0

  M  
node((n-⎣log2m⎦+1)*(⎣log2m⎦+1)+(1+2+…+n)+⎣lo
g2m⎦)=YnYn-1Yn-2…Y’⎣log2m⎦-1…Y1Y0 
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 For the IEH G3(13) as Figure 3, where the 
 has been mapped in it. We give a simple 

example in this section to explain the operations of 
the Mesh_Mapping algorithm when the faulty nodes 
exist. The procedure for handling this faulty node 
straightforward.  

22M ×

1. If the node 0 is faulty, it visits or signals the node 
4, to check whether it is free or not. If it is, it 
terminates.  

2. If not, insert the node 4 to the queue, and search 
the node 8, to check whether it is free or not. If it 
is, it terminates. 

3. If not, insert the node 8 to the queue, and delete 
the node 4 from the queue, search the node 5, to 
check whether it is free or not. If it is, it 
terminates. 

4. If not, search the node 6, to check whether it is 
free or not. If it is, it terminates. 

5. If not, delete the node 4 from the queue, search 
the node 9, to check whether it is free or not. If it 

is, it terminates. 
6. If not, search the node 10, to check whether it is 

free or not. If it is, it terminates. 
7. If not, search the node 14, to check whether it is 

free or not. If it is, it terminates. 
8. If not, return(“Failure”).  

Therefore, the whole searching path is listed as 
{4(0100), 8(1000), 5(0101), 6(0110), 9(1001), 
10(1010), 14(1110)}. 

In Figure 4, we assume that the node 0000 is 
faulty. We can find the six nodes in the sequence for 
replacing the faulty node. 

We illustrate the search tree of finding a 
replaceable node in an IEH graph G3(13) as shown 
Figure 5. 

Figure 6 shows the representation for Figure 5. 
In Figure 6, we have mapped these replaceable nodes 
into these idle nodes of the IEH graph G3(13). 

Now, Figure 7 shows Mesh_Mapping() 
algorithm applied to the graph of Figure 4. 

 

 
Fig. 4: Embedding of a  mesh and torus in a faulty IEH G22M × 3(13) 
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Fig. 5 The search tree for finding the searching path by Mesh_Mapping(x) algorithm 

 
Fig. 6 Mapping Figure 5 into IEH G3(13) 
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Fig. 7 Summary of Mesh_Mapping(x) algorithm applied to Figure 4 

Theorem 6 A mesh or a torus  can be 
mapped into a faulty IEH G

1 2 dm m mM × × ×L

n(N) graph with dilation 3, 
congestion 1, load 1, and unbounded expansion. 
Proof: Every searching path is only one path 
according to the algorithm Mesh_Mapping, allowing 
us to obtain congestion 1 and load 1. Herein, we 
allow unbounded expansion to obtain the replaceable 
node of the faulty node. When a node is faulty, it is a 
worse case in which the dilation=1+2=3 at most by 
algorithm Mesh_Mapping. Because these nodes and 
links of searching paths are not replicated from 
algorithm Mesh_Mapping, These costs associated 
with graph embedding are dilation 3, congestion 1, 
load 1, and unbounded expansion. 
Theorem 7 A searching path of algorithm 
Mesh_Mapping is including 1/2*n2 + (n* ⎣log2m⎦ ) 
+ 3/2*n - ⎣log2m⎦ 2 +1 nodes. 

Proof: We can embed  into G
1 2 dm m mM × × ×L n(N) by 

theorem 6. If a node is faulty, we can change a bit in 
the binary string sequence from bit ⎣log2m⎦ to bit n 
and insert its corresponding node into the queue. In 
the worst case, we can get (n-⎣log2m⎦+1) different 
nodes. Then we delete the node from the queue. 
From the first node we can change a bit in the 
sequence from bit 0 to bit ( ⎣log2m⎦ - 1 ), and we can 
get ⎣log2m⎦ different nodes. We can also change a 
bit in the sequence from bit 0 to bit ⎣log2m⎦ from the 
second node of the queue, and we can also get 
(⎣log2m⎦+1) different nodes. Until the queue is 
empty, the sum of all searched nodes is ( n - ⎣log2m⎦ 
+ 1 ) * ( ⎣log2m⎦ + 1 ) ) + ( 1 + 2 + … + n ). The 
search path includes ( n - ⎣log2m⎦ + 1 ) * ( ⎣log2m⎦ 
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+ 1 ) ) + ( 1 + 2 + … + n) nodes. We assume there is 
an IC edge connecting to the faulty node by theorem 
4.3. Therefore, we can search ⎣log2m⎦ nodes in the 
worst case. We infer the edges of the replacing 
method exist and none of the nodes and the edges has 
a duplicate replacement. That is, the whole search 
path includes ( n - ⎣log2m⎦ + 1 ) * ( ⎣log2m⎦ + 1 ) ) 
+ ( 1 + 2 + … + n - ⎣log2m⎦ ) + ⎣log2m⎦  =  1/2 * 
n2 + ( n * ⎣log2m⎦ ) + 3/2 * n - ⎣log2m⎦ 2 + 1 nodes. 
Theorem 8 There are O(n2-⎣log2m ⎦ 2) faults, which 
can be tolerated. 
Proof: By theorem 7, the whole search path includes 
1/2 * n2 + 3/2 * n + ( ( n+1 ) *  ⎣log2m⎦ ) - ⎣log2m⎦ 
2 nodes. That is, O ( n2 - ⎣log2m ⎦ 2 ) faults can be 
tolerated. 
 
 
5 Conclusion 
 In [20], we consider the problem of embedding 
rings in IEH graphs. After [20], we consider the 
problem of embedding meshes in IEH graphs. 
According the result, we not only can map these 
parallel programs of rings, but also can map these 
parallel programs of meshes in an IEH. In [21], we 
consider the problem of embedding meshes in 
Supercubes. Because the IEH is an asymmetric 
Incrementally Extensible Hypercube, it fit in with the 
distributed system or cloud computing system more 
than the Supercube. Obviously, the IEH is superior to 
Supercube in terms of embedding meshes or tori 
under faults. 
In this paper, we try to find the replaceable node of 
the faulty node. The main result of this paper is the 
fact that it is always possible to give solutions to the 
embedding of meshes and tori in a faulty IEH. After 
a mesh is mapped in an IEH, we develop new 
algorithms to facilitate the embedding meshes and 
tori in a faulty IEH. Our results demonstrate that 
O(n2-⎣log2m ⎦ 2) faults can be tolerated. Also, the 
methodology is proven and an algorithm is presented 
to solve them. These existent parallel algorithms in 
mesh architectures can be easily transformed to or 
implemented in IEH architectures with load 1, 
congestion 1, dilation 3, and unbounded expansion. 
Although an IEH is asymmetric, it has the same 
power as the hypercube in terms of meshes. The 
technology can be apply in grid computing and cloud 
computing. 
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