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Abstract: -This paper proposes a novel economic and efficient framework of indexing spatiotemporal objects
based on compressed B+-trees. Our new index technique can compress data records in leaves and in turn reduce
index size to improve update and query efficiencies. The contribution of our framework is threefold. First, the
proposed index structures are more succinct to resident in the main memory. Second, sufficient data with high
similarity inside all indexing pages for the high retrieval quality of cache fetches are attainable. Third, in
addition to process multi-dimensional spatial information, our framework is typically appropriate to model the
valid- and transaction-time of a fact. We present the index efficiency analyses and experimental results which
show that our technique outperforms others.
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1 Introduction
Data management applications are rapidly
developing that enables tracking of the locations of
moving objects. Many applications create such
mobile data, including traffic surveillance or real-
time navigation systems, the positioning of users
with wireless devices, and multimedia application
(animated objects in movies). A wide range of
sensing applications relies on the multidimensional
observing variables which have ever changing over
time. For example, an atmospheric or climatic
observing buoys collect the changes of temperature,
humidity, or pressure at various altitudes at different
moments. The geographic distributions of wildlife
are precisely traced for natural preservation
applications. Land information system (LIS) and
cadastral system are developed to trace the position
and extent variations of land objects. The spatial
attributes about point objects can be the information
of location, position, or status of objects. The spatial
attributes about region objects generally include the
information of extent (i.e. the areas or volumes the

objects occupy). Spatial information varies from
time to time. Both point and region objects are
handled in this paper.

Spatio-temporal databases [19] attempt to
achieve an appropriate kind of interaction between
spatial and temporal data and support an efficient
and feasible solution to users’queries. Trying the
integration of space and time is dealing with multi-
dimensional geometries changing over time.
Generally, these changes are contiguous so that the
continuous movements of objects are the basic
entities processed by spatio-temporal databases.

The performance of indexing structure is largely
related to the techniques and strategies adopted in
the indexing scheme. Indexing techniques include
data model, data representation, data discrimination,
and even transformation designs and methods. The
requirements for these designs and methods are to
precisely extract and preserve the essential
information of movements. On the other hand,
indexing strategies include similarity evaluation,
classification, and node splitting methods which are
expected to facilitate index building with ease and
maintain indexing structure with efficiency. Notably,
the merits of index strategies significantly affect the
complexity of index hierarchy. The collaboration of
functional indexing techniques with adequate
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indexing strategies is influential to the performance
of an indexing structure.

Indexing of multi-dimensional data tends to be
particularly troublesome since complicated spatial
and temporal interaction always occur. Using
dynamic data model or non-stationary function
parameters in representing the movement of objects
is one of the causes of frequent updates. Frequent
updates of data or parameters need to traverse
indexing structures so that they are costly. On the
other hand, unnecessary node splits incur many
costly operations. Hence, indexing techniques and
indexing strategies are extraordinarily influential to
the performance of multi-dimensional indexing
structures.

Query performance depends on the complexities
of resulted index hierarchy and triggered search
paths. Compact indexing structures with short
depths are expected since they bring the short search
paths. Furthermore, data search may come in either
single or multiple paths. Single search paths
traversed in the compact index are definitely
efficient and economic. The index structures
proposed in this paper support data search with
single and short search paths.

As the price of memory continue to become
cheaper and cheaper, it is now feasible to place
many of database tables and indexes in main
memory. One key challenge derives from the need
to accommodate the entire database index into main
memory while simultaneously allowing for efficient
update and query processing. The aggregative data
arrangement inside the index pages and the
compactness of the index hierarchy are crucial to
conquer this challenge.

2 Related work
Many different policies related to data classification
are developed in traditional indexing schemes. One
of the common policies is to adopt pre-partitions of
data space [5, 9, 16] before processing indexing
scheme. The generation of data is usually one-by-
one, but not of batch, so that data space pre-
partitioned according to a specific design in advance
of the collection of all data is difficult to conform to
the practical distribution of data. Consequently, it is
incapable of maintaining high data aggregation
within every index page. This situation is
particularly troublesome when data skewness
happens. Other policies adopt real-time splits when
emerging data are inserted into the full target leaves.
Conventional node splits can follow unbalanced
partition [8, 23], or alternatively, balanced partition
[7, 15, 18, 27]. Overgrowing splits are typically
derived from the situation that index hierarchy

suffers from the improper data insertion order. The
common outcome is that neighboring data already
arranged in the same page are likely separated by
force due to the subsequent data. Such scenario
frequently fragments the data space. The handle of
node splits is irreversible and should be invoked in
the case that no alternative is suggested.

Traditional indexes resided in memory do not
supply the cache fetches with sufficient retrieval
quality. This is because the tremendous quantity of
low space-utilization leaves dominates the index.
R*-tree [2] and extended CIR-tree [11] use the re-
insertion techniques to reorganize parts of improper
data arrangement in leaves. Although fewer splits
are performed, the insertion routine with costly
overhead is called more often in restructuring the
indexing structures. Too many node splits still linger
in them so as to cause cache quality and cache
misses stay at an unsatisfactory level.

The Time-Parameterized R-tree (TPR-tree) [22]
and its descendants such as TPR*-tree [25], PR-tree
[3], and NSI tree [21] represent objects’movements
as motion function, so that updates are triggered by
the changes of function parameters. Linear function
with the minimum number of parameters and the
interpolation method are employed to describe more
complex movements. As revealed in [6], although
the use of linear rather than constant functions
reduces the need for updates by a factor of three,
update performance still remain low when a number
of parameters are involved.

Bx-tree [10] adopts another data model which
combines object locations with their update
timestamps. Using the taxonomy proposed in [1],
Bx-tree only considers transaction-time of a fact.
Insertions and deletions can only happen at the
current time, namely, no update is allowed in the
past. Basically, Bx-tree is B+-tree which comprises
several sub-partitions. The purpose of index
partition is to differentiate objects based on different
update timestamps. While this widens the B+-tree
and consequently increases the storage requirement
for the entire structure. Spatial proximity is
preserved within each partition, so quick queries are
only partially facilitated on a restricted condition
when objects with near update time are queried. In
the case that similar objects with near proximity but
are updated at different timestamps, multiple or
concurrent data accesses in different index partitions
are necessary. Unfortunately, the characteristic of
single search path in classical B+-trees is
exacerbated by the concurrency control algorithms
of Bx-tree. Another inefficiency of Bx-tree is the low
space utilization of 50%-70% which is inherited
from its base structure of B+-tree.
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In order to trace the variation in the movement of
moving objects from time to time, present spatio-
temporal indexes propose many update methods.
TB-tree [20], SETI [4], and SEB-tree [24] handle
spatial dimension by using trajectory segments and
all movements corresponding to the segments must
be known in advance of index processing. Namely,
only closed trajectories with explicit start and end
positions and timestamps can be handled.
Exceptional operations are required when
movements last till now. The 2-3 TR-tree [1] keeps a
two-dimensional R-tree for the current objects and a
three-dimensional R-tree for the historical data.
LUR-tree [12] is only concerned with the current
positions. So, as soon as objects change their
locations, old entries are deleted and new entries are
inserted. Another taxonomy [17] categorizes the
indexing schemes into three categories: past, current,
and now plus the future. In the past two decades, R-
tree and B-tree play two major roles in the evolution
of spatio-temporal access methods. Especially, R-
tree and the adoption of MBRs dominate this
evolution because more than 70% of the spatio-
temporal access methods [3, 21, 22, 25] are based
on the relevant design issue. TPR*-tree receives a
lot of attractions as its nearly-optimal query
performance is validated in the last decade. As well
known, node splitting based on MBRs exhibits high
concurrency overheads and hence each individual
update is quite costly. On the other hand, the simple
implementation and practical popularity of B-tree
have also made it feasible to index the scalar values
such as the timestamps and the end-points of
trajectory segments.

This paper proposes a novel indexing framework
based on compressed B+-trees without
compromising on update and query efficiencies. The
advantages of using compressed B+-trees are
multiple. First, B+-tree is widely used in commercial
database systems and its variation compressed B+-
tree has been proven to be very efficient [13, 14]
when executing update and query operations.
Second, compressed B+-tree relies on one-
dimensional indexing and it does not exhibit the
overlapping problems associated with MBR-based
indexes. Third, B+-tree is typically appropriate to
model the valid- and transaction-time of a fact.
Therefore, to a certain extent, modeling the
trajectories of moving objects is identical to the
processing of end-points of trajectory segments.

We analyze the effect of our proposed
framework and make the following contributions:
(1) Bitemporal data handling: data processing with

both valid- and transaction-time.

(2) Fully evolving: the cardinality of the database
can change and the objects can change their
locations and outlines.

(3) The storage requirement is remarkably reduced
so that the database indexes can completely
reside in main memory with an ease.

(4) No restructuring is required; thereby no
structural adjusting overhead is requested.

(5) Only single search paths are required; thereby
data access complexity is significantly reduced.

The rest of this paper is organized as follows.
Section 3 demonstrates our indexing scheme and
shows how this scheme collaborates with
compressed B+-trees. For the complete
understanding of the difference among the
mentioned approaches and our method, Section 4
analyzes the hierarchy complexity and query
performance in detail. Section 5 evaluates system
and query performance by means of a large volume
of simulated data. Meanwhile, some factors that
affect the query performance are investigated in
detail. In Section 6, we summarize our key results.

3 New indexing scheme
For the simplicity in demonstrating our design, we
assume objects moving and/or changing their
boundaries on a two-dimensional space so that the
extension to a three-dimensional data space is
straightforward. An example of such a
spatiotemporal evolution appears in Fig. 1. The x
and y axes represent the two-dimensional space
while the time axis corresponds to the time
dimension. Time dimension in our discussion
retains continuous and non-decreasing. The
snapshot of data space is displayed at every marked
timestamp in Fig. 1. These snapshots look like video
frames in which region objects are enclosed by
MBRs. As time goes by, the extents of MBRs may
change so that the variations in the boundary of
MBRs deliver more information than those in the
area of MBRs.

At first, i.e. time=t1, region object O1 and point
object O2 come to the two-dimensional space. At
time=t2, point object O3 appears, O1 expands and
moves to a new area, O2 stays still at the same
position. During the time period between t2 and t4,
O1 and O3 continue their motions and change their
outlines; while O2 always keeps its stillness in this
during.
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Fig.1 The snapshots of objects from t1 to t4

The primary information preserved in our
indexing structures includes the critical positions
and the critical time, where and when objects
change their movements. The involved space and
valid time corresponding to every movement are
subsequently handled and preserved in our indexing
structures. Taking object O1 and its enclosing MBR
as an example for illustration, Figure 2 outlines the
movements in two-dimensional space from t1 to t4.
The x projected segments listed below the
coordinate sketch the involved space at different
timestamps. The solid dots and circles represent the
start and end locations of involved space,
respectively. Then, the information related to the
horizontal transition of O1’s MBR can be preserved
by the two polygonal lines depicted in Fig. 3. The
vertical transition of O1’s MBR can also be outlined
by the similar process.

Fig.2 The movements of O1’s MBR during [t1, t4]

In Fig. 3, s1, s2, e1, and e2 are trajectory segments
representing onward movements. Trajectory
segment e3 and s3 represents backward and still
movements, respectively. Vertical segment is
unreasonable because the position can not be
confirmed at a specific timestamp.

Fig. 3 The horizontal transition of O1’s MBR

3.1 The compressed B+-tree
The base structure of compressed B+-tree (CB+-tree)
is classical B+-tree. The insertion algorithm of CB+-
tree takes advantage of unused space at leaf level.
As shown in the step 4 of Fig.4(a), data 5 and 6 are
removed from the right leaf and shifted to the left
leaf. Then, datum 15 can be inserted into the right
leaf. Since the variance of {1,3,4,5,6} plus the
variance of {8,9,12,15} is less than that of {1,3,4,5}
plus {6,8,9,12,15}, the redistribution of data 5 and 6
achieves a better data classification which is more
aggregative than that only shifting datum 5.
Classical B+-tree allocates more leaves and
consequently has a low space utilization as shown in
Fig.4(b).

(a) (b)

Fig. 4(a) A compressed B+-tree and (b) a classical
B+-tree

The temporal and spatial attributes of trajectory
segments corresponding to the MBRs of moving
objects are processed by separate CB+-trees. The
resulting indexes are temporal and spatial CB+-trees
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which are abbreviated as TCB+-tree and SCB+-tree,
respectively. The detail processing are presented in
the following subsections.

3.2 TCB+-tree
In generally, the generation of critical timestamps
for TCB+-tree is strictly increasing. So, the insertion
of new timestamp simply appends to the rightmost
side of TCB+-tree. Figure 5 shows the TCB+-tree
built by inserting the critical timestamps derived
from O1. The content of array )( kt referred by the
leaf entry tk is fulfilled by the following criterion.

}0|)|or|(|and|)|or|(|],[|or{)(   t
i

t
i

t
i

t
ikkiik esesttest 

(1)
, where ||or|| t

i
t
i es is the projected length on the

temporal dimension. Term tk
+ (or tk

-) is defined as
the indexed timestamp right after (or before) tk, so
that tk<tk

+ (or tk
-<tk). Namely, no indexed timestamp

tm exists such that tk
-<tm<tk or tk<tm<tk

+. As shown in
Fig. 3, s1 and e1 are valid during [t1, t2]. So, {e1, s1}
is referred by the leaf entry t1 of Fig.5.

Fig. 5 TCB+-tree

In case that continuous temporal data are
generated, consecutive insertions fast extend the
right side of TCB+-tree. Since these insertion data
are totally ordered, the index hierarchy can easily
retain compactness after all data are organized. The
compression mechanism of CB+-tree maintains high
data aggregation and high space utilization within
leaf level when other operations (deletion or
updating) are executed.

3.3 SCB+-tree
Similar to TCB+-tree, the content of array

)( kx referred by the leaf entry xk of SCB+-tree is
fulfilled by the following criterion.

}0|)|or|(|and|)|or|(|],[|or{)(   xx
i

x
i

x
ikkiik esesxxesx 

(2)
Figure 6 shows the building procedure of SCB+-

tree when the critical spatial information of O1’s
MBR are handled. Similar to TCB+-tree, the bottom
structure of SCB+-tree is composed of a sequence of
arrays referred by leaf entries. In order to label
different moving directions in the generated arrays,

terms is , 'is , and is ( ie , 'ie , and ie ) are used to
denote onward, backward, and still motions,
respectively. The motions happened in [t3, t4] are
taken for illustration. Object O1’s MBR holds its
start position and varies its end position from a
higher position to a lower in this duration. Precisely,
by way of entry 40, 3s is finally referred in the
bottom structure of the resulting index of Fig. 6. As
to '3e , the apostrophe hints that the higher position
is 50+ (=60) and the lower position is 50.

Fig. 6 SCB+-tree

Query procedures over TCB+-tree or SCB+-tree
are identical to conventional B+-tree. Due to the
succinct index hierarchies with TCB+-tree and SCB+-
tree, they can easily reside at the main memory so
that the concurrent execution can be simply fulfilled
as well. Point and interval queries are two typical
operations that users often specify. One point query
over TCB+-tree or SCB+-tree only triggers one single
searching path. One interval query needs two single
searching paths to embrace the related information.
Users who are attracted by specific timestamps and
locations will launch point queries over TCB+-tree
and SCB+-tree. Time periods and spatial areas when
and where are concerned by users will trigger
interval queries.

As a result, all query types are initialized as the
form of Q(T, S1, S2, ..., Sn), where T is a specific
timestamp or period and Si is a specific location or
interval on the i-th dimension, ],...,2,1[ ni . For
example, concentrating our attention on x-
dimensional space, Q(t, xa, xb) and Q(ta, tb, xa)
respectively issue time-slice and location-slice
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queries. Window query Q(ta, tb, xa, xb) specifies a
spatial interval that is valid for a time interval.
Q(now, xa, xb) specifies a spatial interval on the
instant. Q=(t, now, xa, xb) is a window query
retrieving those movements that keep moving and
pass through [xa, xb] during [t, now+]. In case
timestamp now is involved in the query, the
movements with lasting inertia motions to the near
future are retrieved. Such case is predictive queryies
for the anticipated future. In addition, users can
issue moving query Q(ta, tb, xa, xb, xc, xd) which
specifies (xa, xb) at time ta and (xc, xd) at time tb.

4 Index efficiency analyses
TPR*-tree and Bx-tree are taken as the competitor
schemes against our method. TPR*-trees deal with
time parameterized boundaries of MBRs (minimum
bounding rectangles for spatial data) and VBRs
(velocity bounding rectangles). Bx-trees deal with
movement vectors together with update time.
Different data models lead to the different designs
of data classification and data comparison methods.
For the completeness of this comparison, hierarchy
complexities including tree order, index depth, and
total amount of tree nodes are carefully investigated.
For the precise grasp of query execution efficiency
of these spatio-temporal access methods, the amount
of generated data entries, the storage requirement of
whole index, the number of nodes accessed, and the
CPU time are investigated as well.

4.1 Efficiency analysis
The notations adopted in our analysis are listed in
Table 1. We start our analysis by first giving a
definition of the tree order for CB+-tree, TPR*-tree,
and Bx-tree.

Table 1 Notations for analysis
Symbol Description

B block size for one page
N the total data amount generated from

moving objects
NL number of leaf nodes
CL maximum capacity of leaf nodes
h the depth (height) of tree.
m the tree order (maximal fan-out)
t byte number for one integer
p byte number for one linking pointer

LEMMA 1. The tree order m of a CB+-tree is












pt
pB 2

.

Proof: Every entry in the leaf or non-leaf node of
a CB+-tree comprises one index key and one pointer.

Except the root, every node of CB+-tree retains two
pointers to link its fore and next sibling. Generally,
one memory block corresponds to one index page
(node) in the computer system. The order m of a
CB+-tree is evaluated as following:













pt
pB

mBpptm
2

2)( (3)

In a general implementation, 4 Kbytes is a proper
size for one memory block. One integer number
usually occupies 16 bytes and one pointer occupies
32 bytes. Therefore, the order of a CB+-tree is
approximated as 84. In case of using TPR*-tree,
every entry contains one pointer linking to a sub-
tree and one rectangle that bounds the positions of
all moving points or other bounding rectangles in
that sub-tree. One n-dimensional rectangle needs 2n
values to position its location in the space. So, in
case n=2, TPR*-tree’sorder is approximated as
following:













pt
pB

mBpptm
4

)4( (4)

Furthermore, applying the same conditions as
previous, the order of a TPR*-tree is deduced as
only half of that in a CB+-tree. In case of using Bx-
tree, besides the pointer to the next sibling, a leaf
entry of Bx-tree corresponding to one movement
updated at certain timestamp has the representation
composed by a position vector ( x ), a velocity

vector ( v ), and an update time (tu). Five integers
and one pointer are preserved in each leaf entry of
Bx-tree when two-dimensional motions are handled.

The Bx-tree’s order is formulated as 










pt
PB

5
which

is evaluated as 36 under the same conditions as
previously mentioned. In summary, the order ratio
between these three indexes is 1 :0.5 :0.43.

LEMMA 2. The ratio of index depth among
CB+-tree, TPR*-tree, and Bx-tree is
approximated as

321 :: hhh = 1log )2ln( 





m
N

m : 1
2ln5.0

log )2ln5.0( 





m
N

m
:

1
2ln43.0

log )2ln43.0( 





m
N

m
.

Proof: The number of leaf nodes (NL) of CB+-tree

can be estimated as 





m
N

because the high

accommodation rate near 100% is ensured in its
external structure. However, in the internal structure,
the average space utilization of non-leaf nodes is
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about  %1002ln 69.3% [26]. So, the depth of

CB+-tree (h1) is approximated as 1log )2ln( 





m
N

m .

The node splitting strategy employed in R*-tree
and consequently adopted in TPR*-tree lacks the
ability to compactly aggregate data entries in their
external structures. Their leaf nodes still have the
low space utilization less than %1002ln  on
average. This leads to the difficulty to organize the
succinct data arrangement in the internal structure of
TPR*-tree. With the same page size as that used in
building CB+-tree, the NL of TPR*-tree is

approximated as 





2ln5.0 m
N

, where 0.5m is the

order of TPR*-tree. The depth of TPR*-tree (h2) is

then approximated as 1
2ln5.0

log )2ln5.0( 





m
N

m .

Regarding Bx-tree, the total data amount N depends
on the number of timestamps that objects are
inserted or updated. The update time dominate the
entry values and decide the exact portion of index
partition. The depth of Bx-tree (h3) is approximated

as 1
2ln43.0

log )2ln43.0( 





m
N

m , where the order of

Bx-tree is 0.43m.

COROLLARY 1. Based on the same data size N,
the difference between the depth of TPR*-tree and
that of CB+-tree is   12log )2ln( k

m m , where

Nk m )2ln5.0(log .

Proof: Deduced from Lemma 2, the depth difference
(h) between TPR*-tree and CB+-tree is
h2–h1=( 1

2ln5.0
log )2ln5.0( 





m
N

m
)-( 1log )2ln( 





m
N

m
) (5)









 )(log)(log 2 m

A
A
A k

A

k

A
, where 2ln5.0 mA and

kAN  .

 
 
 12log

12log

]2log[)1(

]
2
)2(

[log)1(

)2ln(

)2(

)2(

)2(



















k
m

k
A

k
A

k

k

A

m

m

mkk

m
A

k

As k varies from 10 to 50 data sizes vary from
10)

2
2ln84

(
 to 50)

2
2ln84

(


when m equals 84.

Table 2 lists some examples and reveals SCB+- and

TCB+-trees significantly improve index size when
data sizes grow.

Table 2 Depth difference
k 10 20 30 40 50
h 2 4 6 7 9

COROLLARY 2. Based on the same data size, the
total number of nodes generated by SCB+-tree (or
TCB+-tree), TPR*-tree, and Bx-tree are
approximated as the ratio of

)12ln43.0(2ln43.0
43.0

:
)12ln5.0(2ln5.0

5.0
:

12ln
1

 mmm
.

Proof: Deduced from Lemma 2, the total number
of nodes generated by SCB+- or TCB+-tree is

)
12ln

2ln
()

2ln
1

1(












m
m

m
N

mm
N

 (6)

The total number of nodes generated by TPR* is

)
12ln5.0

2ln5.0
(

2ln5.0
)

2ln5.0
1

1(
2ln5.0 











m
m

m
N

mm
N

 (7)

The total number of nodes generated by Bx-tree is

)
12ln43.0

2ln43.0
(

2ln43.0
)

2ln43.0
1

1(
2ln43.0 











m
m

m
N

mm
N



(8)
The ratio among them can be simplified as

)12ln43.0(2ln43.0
43.0

:
)12ln5.0(2ln5.0

5.0
:

12ln
1

 mmm
after reducing the common parts. We obtain an
approximation of 1: 2.94: 3.43 when replacing m by
84.

4.2 Query performance analysis
Query performance is deeply affected by the
complexity of index hierarchy. Applying queries
over the higher index usually accesses more data
pages (nodes) from the index. Data model with
complex design always consumes much CPU time
to advance data comparisons. In addition, data
retrieval with insufficient quality is another cause
deteriorates query performance. Single searching
paths with short length, simple data comparison
mechanism, and sufficient data provision in every
retrieved page are our achievements in SCB+-tree
and TCB+-tree. Following corollaries investigate the
performance of point and interval queries.

COROLLARY 3. The point query performance
among CB+-tree, TPR*-tree, and Bx-tree is a ratio of

321 :: hchh , where 1c .
Proof: Based on Lemma 2, the processing of

every point query over CB+-tree and Bx-tree
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respectively access 1h and 3h nodes. The
experiments conducted in R*-tree [2] had pointed
out that the average number of disc accesses (nodes)
per point query is about 1.5~2 times of the index
depth. So, the point query performance of TPR*-tree
is approximated as the complexity of multiple h2’s.

As two-dimensional moving objects are
concerned, one TCB+-tree and two SCB+-trees with
similar index hierarchies are built. Even thought the
case that temporal and spatial queries can not
execute concurrently, at most 13h nodes are accessed
sequentially in TCB+- and SCB+-trees for every point
query.

COROLLARY 4. The time complexity of
interval query among CB+-tree, TPR*-tree, and
Bx-tree is approximated as a ratio of

)(:)(:)( 31
2 hOOhO h , where 1 .

Proof: In addition to the nodes accessed on two
single searching paths, some consecutive leaf nodes
are traversed as well for the coverage of whole
query range. So, ch 12 nodes are involved and thus
a time complexity of )( 1hO is deduced for CB+-tree.
As far as Bx-tree is concerned, the query complexity
is approximated as )(2 33 hOch  . However, as the
experimental results presented in R*-tree, the wider
range one query covers the more time cost the query
operation spends. The number of nodes accessed is
several times or even exceeds 10 times of the index
depth. In regard to TPR*-tree, a factor  indicating
the overlapping degree among MBRs is used to
predict the branch number involved by the multiple
searching paths for every range query. This factor is
obtained by dividing the summation of all MBRs’ 
ranges generated at all levels with the union area of
these MBRs. Obviously, the query with wider range
causes the more branches for search. The design of
is based on a simplified consideration. Therefore,
the time complexity of range queries over TPR*-tree
is estimated as )(1 22 12 hh O    .

5 Performance evaluation

5.1 Experiment setup
Datasets with object sizes varying from 500 to 5000
are generated randomly. The underlying space is
based on a two-dimensional image with a resolution
of 104×104 pixels. The time period considered in
our experiments is T[0,4999]. The time unit is
second. Not only point objects but also regional
objects are collected into a dataset for the generation
of movements. Initially, the starting position for

each movement is uniformly selected from the
underlying space and the starting timestamp is
uniformly selected from T[0,4999]. All motions
could have a short appearance or last their
movements for a while. Motion directions might be
forward, backward, or still. In this time period, point
objects can grow into regional objects, regional
objects can shrink into point objects, existent objects
can vanish, or new objects can be generated. In our
experiments, the life time of motions follow certain
types of exponential distribution. One object can
produce so many continuous movements that the
number of trajectory segments for indexing is far
more than the number of objects. The moving speed
for every piece of movement and the changing
speed for every MBR’s outline follow the normal
distribution with parameters 0 and }10,6,2{ ,
where speed unit is pixel/second.

5.2 The amount of generated data entries
We first count the number of data entries generated
for completing the whole index. TPR*- and Bx-trees
transform every linear movement into a single data
entry. Based on their data models, data
corresponding different movements are handled
individually. But, in SCB+- and TCB+-trees, the
temporal and spatial data are extracted based on
their variations. No matter what objects or what
motions are considered, several variations happen at
the same location or on the same time only appeal to
one spatial data or one temporal data for indexing.
This is the reason why CB+-trees generate fewer
data than TPR*- and Bx-trees as shown in Fig. 8.
The generated spatial data have higher repetition
than the generated temporal data so that SCB+-trees
create fewer data than TCB+-trees. This difference is
also revealed in Fig. 8.

Fig. 8 The number of entries generated for different
indexes.
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5.3 Storage requirement
In order to promote system performance, more and
more databases in modern applications request to
cache all indexing structures in main memory. Thus,
storage requirement becomes a bottleneck when
developing new indexing structures. Figure 9(a)
shows the amount of leaves, in which SCB+-trees
generate the least number of all and TCB+-trees
generate a slight higher amount. There are three
factors that cause TPR*- and Bx-trees to assign a
large number of leaves. The first factor is explained
in Subsection 5.2. Data models adopted in TPR*-
and Bx-trees allocate more memory bytes in
representing their data entries. Data
accommodations in TPR*- and Bx-trees are so low
that results in the second factor. The third factor
derives from the low space utilization in the base
structures of R*- and B+-trees. These factors cause
TPR*- and Bx-trees frequently allocate new leaves
and in turn inflate the index sizes.

Furthermore, the internal structure together with
the external structure of resulting TCB+- and SCB+-
trees are taken into account. Temporal and spatial
structures based on the same dataset are taken as the
whole one for storage requirement analysis. The
experimental results as shown in Fig. 9(b) validate
that SCB+- and TCB+-trees employ the storage
requirement with better efficiencies.

(a)

(b)
Fig. 9. (a) The number of leaves and (b) the scale of

storage requirement.

5.4 Range query
In this subsection, we study the performance of
range query when varying the number of uniformly
distributed moving objects from 500 to 5000. This
paper assumed that the length and width of query
size have the uniform distribution U( 210 , 310 ). We
first generate 100 different sizes. For each size, 20
locations are selected from the underlying space as
the left-lower corners to locate 20 range queries.
The number of nodes accessed for each located
range query is counted and 20 results from the same
query range are averaged for performance analysis.
As shown in Fig. 10, Bx- and CB+-trees have a stable
performance and the amount of involved nodes
always stay at the low level. The performance of
TPR*-trees not only suffer from the high amount of
involved nodes, but this situation is inflamed by the
increase of data size. When SCB+- and TCB+-trees
are queried concurrently (the index system is
abbreviated as concurrent CB+), the amount of nodes
accessed in this system is evaluated as the higher
number between the results involved in SCB+- and
TCB+-trees.
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Fig. 10 The range query performance

5.4.1 Effect of speed rates
In order to investigate how the factor of speed rate
affects range query performance, we simulate to
change the moving and shrink-expand speeds of
objects. This paper assumed that these two types of
speed have the normal distribution ranging from 21

to 210 pixels/second. Figure 11 shows that TPR*-
trees continue to grow the amount of accessed nodes
when increasing speed rates. This is because the
high speed rates tend to expand the cover areas of
MBRs. And this consequently leads to that the
overlaps between MBRs become more and more
serious. Finally, query ranges are so easily sunk into
dead space that a large portion of indexed pages is
involved in the processing.

Fig. 11 Effect of speed rate

5.4.2 Effect of lasting time
In order to study the effect of movement’s lasting
time on query performance, it is assumed that
objects move and/or change with a speed rate of 10
pixels/second. This experiment assumed lasting time

has the exponential distribution with parameter 
varying from 5 to 55. Figure 12 shows that the
number of nodes accessed from TPR*-trees still
stays at the highest level of all. In contrast, the
performance of Bx- and CB+-trees are not affected
by the variations of lasting time. This experimental
result once again verifies that our proposed method
can work with a stable and efficient performance.

Fig. 12 Effect of lasting time

6 Conclusions and future work
In this paper we have proposed and evaluated a new
spatio-temporal indexing mechanism. Temporal and
every single spatial dimension are processed
separately by compressed B+-trees. Our TCB+- and
SCB+-trees benefit from the aggregative data
arrangement inside the indexed pages and achieve
the high update and query efficiencies. Logically,
our designs are easily implemented by modifying
the existing B+- or B*-tree-based database systems.

For future work, we plan to experiment with a
number of extensions to high dimensional
applications. Currently, based on our proposed
model, n-dimensional moving objects impose n+1
CB+-trees. Although succinct index hierarchies are
achieved, system implementation with too many
indexes is still problematic. One possible solution is
to filter dimensions before processing index scheme.
The decision factors can be so complex that they
include practical application need, query accuracy,
system efficiency, system effectiveness, and others.
Another possible research direction is to develop the
data mining technologies for spatio-temporal data. It
is highly expected to discover the useful techniques
suitable for the handle of interaction between spatial
and temporal data.
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