
Statechart Normalizations

BENJAMIN DE LEEUW AND ALBERT HOOGEWIJS

Ghent University
Department of Pure Mathematics

Gent B-9000,
BELGIUM

benjamin.deleeuw@ugent.be, albert.hoogewijs@ugent.be

Abstract: Simplified statecharts are derived by excluding all redundant constructs of the UML (Unified Modeling
Language) metamodel on statecharts. In previous papers we introduced this basic concept and pointed out some
interesting applications. We transformed and compacted state machines into serializable objects that clearly high-
light their basic constructs and showed how a lot of sparse edges were created during this transformation. Sparse
edges contain little or no information (e.g. empty transitions). From this compaction we derived a theory in which
state machines are reduced to two distinct partial orderings on states. For the sake of convenience to read this
paper, we briefly recapture part of this theory and show the exponentially growing complexity of calculating all
possible values of variables that appear on state machine edges. In order to arrive at feasible algorithms leading
to practical applications of the implicity complex partial ordering relations we need to reduce this complexity by
formulating and proving reductions to state machine normal forms. Apart from aligning formal and behavioral
equivalence, normal forms allow us to reduce the number of sparse edges and useless states thereby limiting cal-
culational complexity.
In this paper, we extend our theory with normal forms and inject them into the theory of simplified statecharts
presented in earlier work. Some statecharts are only seemingly different from others if one analyzes the differ-
ent paths in those statecharts. The UML is designed to allow for this kind of (uncontrollable) flexibility but in
mathematical descriptions it has adverse effects. We introduce an equivalence relation on simplified statecharts
and derive a normalization procedure which converts a simplified sc to a normalized simplified sc equivalent to the
original one. Our formalism allows us to unravel superficial differences between simplified statecharts.

Key–Words: Statecharts, Statechart Normalization, UML, Model Checking, State Machine Theory

1 Introduction

In [10] Hunyadi et al. argue “although UML [2] facil-
itates software modeling, its object-oriented approach
is arguably less than ideal for developing and validat-
ing conceptual data models with domain experts”. To
overcome this problem, in [6, 7, 8] we introduced the
notion of simplified statecharts (ssc) which allows us
to introduce mathematical manipulations of the UML
sc. We defined a homomorphic mapping (similar to
Levendovszky et al. in [11]) transforming standard
UML statecharts into so-called simplified statecharts,
statecharts with abstracted actions. This abstraction
induces a mathematical definition of statecharts, sim-
ilar to automata and a formal grammar and language,
called statechart DNA. Relying on graph rewriting
principles as introduced in [11] we get a statechart
construction process and a formal as well as practi-
cal way to scalably manage complexity and object be-
havior. The main motivation for this research was the

generation of a repository of test cases for verification
tools and a versioning management tool for state ma-
chine models. We made strong abstractions of the ac-
tion language, normally offered for UML statecharts,
to induce sensible and strict definitions, and finitary
properties. The normal UML statechart executable
model has been matched to the executable model of
simplified statecharts [8], and semantics was given to
the simplified action language.

In this paper we propose an equivalence relation
on simplified statecharts by deriving a normalization
procedure which converts a simplified sc to a normal-
ized simplified sc equivalent to the original one.

In order to make this paper self-consistent, we re-
call the basic results from [8]. We start with the defi-
nition of a simplified statechart:

Definition 1 (Simplified Sc) A simplified statechart
(ssc) M is a tuple

M = 〈Σ, L, δ, δ′, s0, S, T 〉, (1)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1315 Issue 11, Volume 7, November 2010

Figure 1: Partial UML 2.0 Metamodel Defining Statecharts

where Σ is a set of atomic objects, called states. L is
a finite alphabet consisting of two sets of symbols eL
(events) and mL (memory locations) with

L = eL ∪ mL (2)

eL ∩ mL = {ε}. (3)

Here ε is the empty character. The functions δ and δ′
define transitions between states.

δ : Σ × Λ → Σ (intra-region transitions)
δ′ : Σ × Λ → 2Σ (inter-region transitions),

where

Λ = eL × mL × L (4)

is the set of all labels.The first component of a label
is called the trigger of the label, the second one is the
guard and the third one is the effect. The state s0 is
the root state. It belongs to the set S, consisting of
all initial pseudostates of Σ. The set T consists of all
terminate pseudostates of Σ.

Matching the definition of the ssc model to the
UML sc model of Fig. 1 is a trivial exercise, since we
used the same names for the components in Def. 1 as
in Fig. 1. An explicit construct for regions is lacking
in Def. 1. We compose regions as collections or con-
tainers of states. We build these collections from paths
of states in the ssc model. We also define the region
hierarchy of ssc M as an ordering relation on S, based
on paths.

2 Reducing Cycles within Simplified
Statecharts

In [6], we have defined two different kinds of paths
in simplified statecharts. Here we will introduce ex-
ecutions as an extension to complex paths or c-paths
within state machines and try to enumerate all pos-
sible ones to arrive at a formal technique useful for
model checking this kind of state machine.

Definition 2 A simple path (s-path) of an ssc model
M , is a list [σ0, σ1, σ2, . . . , σn] of states of Σ, such
that there exists a list of labels [l1, l2, . . . , ln] of Λ for
which

δ(σ0, l1) = σ1 (5)

δ(σ1, l2) = σ2 (6)

. . .

δ(σn−1, ln) = σn (7)

A composite path (c-path) of an ssc model M , is a
list [σ0, σ1, σ2, . . . , σn] of states of Σ, such that there
exists a list of labels [l1, l2, . . . , ln] of Λ for which

δ(σ0, l1) = σ1 ∨ σ1 ∈ δ′(σ0, l1) (8)

δ(σ1, l2) = σ2 ∨ σ2 ∈ δ′(σ1, l2) (9)

. . .

δ(σn−1, ln) = σn ∨ σn ∈ δ′(σn−1, ln) (10)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1316 Issue 11, Volume 7, November 2010

1 2 3

4

7 6

5 8 9 10

1 2 3

4

76

5 8 9 10(b)

(a)

(c) 1,2,3,4,5 6,7
8 9,10

3 unordered

1,2,3,4,5 6,7
8,9 10

4 unordered

1,2,3,4,5,6,7,3,4,5,8,9,10

1 2 3

4

76

5 8 9 10

Figure 2: Maximal Partial Ordering on s-Paths

In this section we formulate a new definition of
paths in statecharts, taking concurrency into account.
We call these paths concurrent composite paths or cc-
paths for short. An execution is partially ordered set
of labels {l1, l2, . . . , ln} of Λ corresponding to some
cc-path from s0 to t0 of the root region ρ(s0) of the
simplified sc. We use the known technique of par-
tial orders [12, 9] (instead of linear orders) to arrive
at a sound representation of concurrent paths and the
means to reason about value propagation in simplified
statecharts.

Before we can talk about partial orderings we
need to get rid of any cycles in the state machine
model M . In [6] we introduced the notion of regions
as a function ρ on the set of initial pseudostates S. For
each region ρ(si) we construct the relation Rsi from
δ of M as follows:

Definition 3 For each si ∈ S and σ, σ′ ∈ ρ(si)

σRsiσ
′ ⇔ ∃l ∈ Λ δ(σ, l) = σ′ (11)

In order to arrive at a valid partial order relationship
between states in a simplified sc we introduce a well
known procedure to remove cycles from an arbitrary
relation R.

Procedure 4 (reduce cycles)
Determine the minimal elements Mn of R,
determine the maximal elements Mx of R and
stack (0,Mn).
While stack not empty

pop the expression (e,O).
For each element f of O

if f does not appear on the stack as (f,X)
then push (f, {x | R(f, x)}) on the stack
else remove (e, f) from R.

Determine the minimal elements M′
n of red. R,

determine the maximal elements M′
x of red. R,

R = R ∪ (Mn × M ′
n \ Mn) and

R = R ∪ (M ′
x \ Mx × Mx).

Applying Proc. 4 to all Rsi for each si in S, re-
turns the partial orderings R′

si
. The union of all R′

si

for each si in S is denoted R′
S . From the enumerable

set of all s-paths we can now construct the finite set of
partially ordered and non-repeating simple path states
sets or the finite set of nrs-posets for short. To define
nrs-posets we need following trivial property.

Property 5 If partial orderings R0, R1, R2, . . . on the
same set can themselves be linearly ordered accord-
ing to the ⊆ relationship we can always define a max-
imum and minimum of this relationship ordering. The
maximum has the least unordered elements and the
minimum has the most unordered elements.

Applying Prop. 5 with minimal element R′
si

(with
most unordered elements) allows us to define some

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1317 Issue 11, Volume 7, November 2010

some nrs-path

some nrs-path

some nrs-path

some nrs-path

some nrs-path

some nrs-path

some nrs-path

some nrs-path

Figure 3: Rc Ordering nrs-Posets in between State Machine Regions

relationship R′′
si

for which the number of unordered
elements is minimal. Refer to Fig. 2 for how this
relation would manifest itself if applied on some s-
path. Fig. 2a shows an s-path with repeating states,
Fig. 2b displays the reduced relationship R′

si
and

Fig. 2c shows the maximal partially ordered relation-
ship R′′

si
. The union of all R′′

si
relations, for all si of

S, is denoted R′′
S .

R′′
S =

⋃
R′′

si
(12)

Once the relation R′′
S is determined we can con-

struct a finite set of equivalence classes of the enumer-
able set of s-paths as follows:

Definition 6 Two or more s-paths belong to the same
equivalence class if R′′

S transforms them into the same
partially ordered set of states. Each equivalence class
that can be constructed in this way is called an nrs-
poset.

We call each path within an nrs-poset, a non-
repeating s-path or nrs-path for short. Remark that the
set of nrs-paths is a subset of the s-path set by Def. 6.
In the remainder of this paper we will refer to the R′′

S
relation (12) as <s.

Each s-path is also a c-path and those c-paths in
M that are not s-paths, define a relation on s-paths by
δ′ applications (see [6]). In order to reduce all cycles
within M and come to executions we need to reduce
the cycles within c-paths as well. For this we define
the relation Rc:

Definition 7

σRcσ
′ ⇔ σ <s σ′ ∨ ∃l ∈ Λ σ′ ∈ δ′(σ, l) (13)

From the definition of ssc and from <s we know
that we now have a situation as displayed in Fig. 3
with the oval regions, denoting equivalence classes of
s-paths according to <s and the arrows denoting ap-
plications of the relation Rc that are not in <s. Rc

can therefore conveniently be imagined as a relation
between nrs-posets.

The relationship Rc can have cycles as well but
before reducing these we first introduce a derived
function δ′′ of M and construct the relationship RC .
In this definition we use the partial ordering relation
<h of the region hierarchy of M introduced in [6].

Definition 8 Function δ′′ is a derived function of M

δ′′ : Σ × Λ → 2Σ (inter-region transitions).

For each σ in ρ(si) that is not in T and with si an
element of S, if σ′ belongs to the set δ′(σ, l) for some
label l of Λ and σ′ is part of some ρ(sj) with sj <h si

then for each sk of S for which ¬(sk <h si) and
¬(si <h sk) and for each σ′′ that is part of the set
ρ(sk) add the application δ′′(σ′′, l) = {σ′}.

For each σ in ρ(si) with si an element of S, if
σ′ belongs to the set δ′(σ, l) for some label l of Λ and
σ′ is part of some ρ(sj) with si <h sj and σ′ is not
an element of S then for each sk of S for which there
exists an sl in S with sl <h si and with sk a direct

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1318 Issue 11, Volume 7, November 2010

24

1 2

3

4 13

14

15 16 17 18

19

20

21

22

23

25

5 6

78

910

11 12

Figure 4: A Complex Statechart M , without Labels

child of sl in the tree-order <h then add the appli-
cation δ′′(σ, l) = {sk}. If sk1 , sk2 and sk3 all fulfill
this constraint, add the δ′′(σ, l) = {sk1 , sk2, sk3}
application instead.

We need the derived δ′′ function in our path or-
derings, because it models the activation of concur-
rent state machine regions due to inter-region transi-
tions that are not on initial or terminate pseudostates.
The UML state machine semantics [2] allows this kind
of activation, hence we need to account for it in our
model of executions. Note that the size of the set of
δ′′ applications for one ssc model M might be quite
large. Mainly due to the intrinsic complexity of this
kind of region activation, we need disentanglement of
statecharts. With the introduction of δ′′ we can define
the relationship RC which is an extension of Rc.

Definition 9

σRCσ′ ⇔ σ <s σ′ ∨
∃l ∈ Λ σ′ ∈ δ′(σ, l) ∨
∃l ∈ Λ σ′ ∈ δ′′(σ, l)

We apply Proc. 4 to the relationship RC between
nrs-posets and in doing so construct the relationship
R′

C . Again we apply Prop. 5 on R′
C to construct

the relationship R′′
C between nrs-posets in exactly the

same way as we did for R′′
S . This way we are able to

construct equivalence classes of nrs-posets.

Definition 10 Two or more paths consisting of nrs-
posets ordered by RC belong to the same equivalence
class if R′′

C transforms them into the same partially
ordered set of nrs-posets. Each equivalence class con-
structed in this way is called an nrc-poset.

Bringing <s and R′′
C together results in a partial

ordering on states of M constrained by both relation-
ships: first constrained to nrs-posets and second to
nrc-posets. We call this ordering <c and nrc-paths
are c-paths that are constrained by this ordering. Note
that the set of all nrs-paths is a subset of the set of
all nrc-paths just like s-paths and c-paths respectively
and that <s is a subset of <c.

The remaining discussion in the next section will
be about characterizing executions of a simplified sc
in terms of the partial order <c.

3 Value Propagation through Simpli-
fied Statecharts

Before talking about executions in a ssc model M we
need to introduce more vocabulary.

Definition 11 A concurrent set of state σ of M is a
subset of the set (δ′ ∪ δ′′)(σ). If σ′ belongs to the
concurrent set of σ and σ′ belongs to ρ(si) for some si

of S then all sj of S that are also part of (δ′ ∪ δ′′)(σ),
for which there exists an sk of S with sk <h si and for

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1319 Issue 11, Volume 7, November 2010

which sj is a direct child of sk in the tree-order <h are
also in the concurrent set. We denote a concurrent set
of σ with cset(σ,M). The set of all concurrent sets
for some σ of M is called Cset(σ,M).

Definition 12 The set nrsmin(σ,M) is the set of all
nrs-paths of M containing σ as minimal element.

The set nrscon(N,M) is the set of all nrs-paths
of M containing at least all states of the set N .

The set nrsmax(σ,M) is the set of all nrs-paths
of M containing σ as maximal element.

We now have introduced all mathematical mate-
rial to construct all executions or cc-paths of an ssc
model M . Before tackling the procedure to construct
the set E of all cc-paths of model M we explain the
mechanics. The set E is a powerset of Σ of M and
each set in E is partially ordered by <c. Initially
the set E is empty and at the end of the procedure
application it will contain all calculated cc-paths of
M .

We denote the maximal element of an nrs-path
p with max(p). To know which nrs-path we are on
in each step of the procedure we have to store the
current nrs-path together with the complete set of
states of M that constitutes to the cc-path we are
constructing as a pair < p, q > with p the current
path we are evaluating and q the growing set of states
(starting from initial pseudostate s0, and implicitly
ordered by <c) at that point in the execution of the
procedure.

Since an nrs-path is also a (linearly ordered) set,
we conveniently use the notation p ∪ q to show the
addition of the states of path p to the set q. Drop-
ping the order of p when adding to q doesn’t matter
since we know that p’s ordering is implicitly present
in the ordering <c of M . We use a set Pσ of pairs
< p, q > to group different paths starting from the
same state σ. We need to group the sets Pσ when we
apply cset(σ,M) in the procedure and use the nota-
tion Q′

σ for this purpose, with each σ′ representing a
different state in the concurrent set cset(σ,M). Be-
cause the Cset(σ,M) of one state σ might have more
than one element (see Def. 11) we are in need of yet
another level of grouping (of sets Q′

σ this time) and
use the sets Ri for this purpose, with each i represent-
ing a different set of concurrent sets in Cset(σ,M).

12

1

2

19

15 11 5

16 6

20

24

25

1

2

3 15

4

16

5 9

6
10

7

21

22 23

2425

(a) (b)

Figure 5: Two reductions of the example in Fig. 4

Procedure 13 (construct cc-paths)
for each path p of nrsmin(s0,M)

add <p, p> to the set Ps0 ,
add Ps0 to Qs0 ,
add Qs0 to R0 and
stack R0.

While stack not empty pop Ri.
For each Qσ in Ri,

for each Pσ in Qσ and
for each <p, q> in Pσ,

if max(p) ∈ ρ(s0) ∩ T
then add q to the set E,
else for each c-set c of Cset(max(p),M),

for each σ′ of c,
for each path p′ of nrsmin(σ′,M)

add <p′, q ∪ p′> to the set Pσ′

add non-empty Pσ′ to Qσ′ ,
add non-empty Qσ′ to Rj and
stack non-empty Rj .

For each Qσ in Ri,
for each choice g of one <p, q> of each Pσ′ of Qσ,

for each label l that is applicable with
Nl = nrscon(

⋃
g δ′ ∪ δ′′(max(p), l),M),

for each path p′ ∈ Nl,
add <p′, q ∪ p′> to Pσ′′ ,

add non-empty Pσ′′ to Q′′
σ,

add non-empty Q′′
σ to Rj and

stack Rj .

The set E contains all partially ordered cc-paths
of M .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1320 Issue 11, Volume 7, November 2010

Proposition 14 By Proc.13 every well formed simpli-
fied statechart model M can be transformed into a set
of partially ordered cc-path, called CCPM . This set
is always unique and has a finite number of elements.

Fig. 4 shows a simplified sc model M , and Fig. 5
shows two possible reductions of e ∈ CCPM .

We introduce an extended technique to further re-
duce the cc-paths in the set CCPM , for some simpli-
fied sc model M . This technique will be very sim-
ilar to the one used in memory model specification
[12], and is based on partial ordering information on
the control flow in statecharts. The technique that is
described there can easily be transfered to our system
now that we possess a way of reducing a complex state
machine to all of its partially ordered cc-paths and ex-
ecutions.

The transitive reduction of <c is called ≺c and
can easily be constructed for every cc-path in CCPM .
By the definition of <c we know that for each σ ≺c σ′
there exists a unique application of either δ or δ′ for
a certain label l of Λ for which δ(σ, l) = σ′ or σ′ ∈
δ′(σ, l) respectively.

Definition 15 The trace of M for any cc-path e of
CCPM , denoted as trace(e,M), is an ssc model
M ′ = 〈Σe, L, δe, δ

′
e, s0, Se, Te〉 for which Σe is a sub-

set of Σ consisting of the set of states in cc-path e, Se

is a subset of S composed of the initial pseudostates in
e and Te is a subset of T of the terminate pseudostates
in e.
δe : Σe × Λ → Σe

δe(σ, l) = σ′ ⇔ σ ≺c σ′ ∧ δ(σ, l) = σ′ (14)

δ′e : Σe × Λ → 2Σe

σ′ ∈ δ′e(σ, l) ⇔ σ ≺c σ′ ∧ σ′ ∈ δ′(σ, l) (15)

and Λ = eL × mL × L remains unchanged from M .

All cc-paths e of M have a single trace and if we cal-
culate all cc-paths of the ssc trace(e,M) we retain a
single cc-path e. Each application of ≺c is called an
edge of trace(e,M). The set of all edges of cc-path e
is called edge(e,M), the set of edges for any nrs-path
p is denoted with edge(p,M) and the set of all edges
of all cc-paths of CCPM is denoted with edge(M).
Remark that the ordering relation <c can in a trivial
way be transfered to the elements of edge(p,M) and
edge(M).

There are two kinds of guards in (simplified) stat-
echarts: constraining guards, and non-constraining
guards. Constraining guards freeze the evolution to
the next stable configuration, on some path in the sc,
until a certain memory condition is met. This condi-
tion is dependent on the random access writes which

already have been executed on previous transitions. In
terms of our morphism ϕ of [6], constraining guards
are the result of the translation of normal UML guards
like [x < 5]. Only a limited number of memory ac-
tions will satisfy such a guard (for example /x = 7
will satisfy this guard, while /x = 1 will not). Non-
constraining guards are normal reads of variables of
which we need the content. The theory of simpli-
fied state machines treats both kinds of guards equiv-
alently in the sense that if no value is found for a non-
constraining guard the state machine halts its execu-
tion. Therefore each guard is considered constraining
in a simplified sc model M .

We divide the set edge(M) into (not necessarily
disjoint) sets edgew(M) and edger(M) of edges that
write and read some value respectively. First we de-
fine an accesor function for the labels:

lbl : edge(M) → Λ

which returns for each edge its label. We now intro-
duce a new relation gsat between guards and memory
write actions.

Definition 16

gsat : edgew(M) × edger(M)
gsat(e1, e2) ⇔

lbl(e1) = (t,m, a), (16)

lbl(e2) = (t′, a, a′) (17)

and action a of e1 satisfies the guard a of e2.

Non-constraining guards are always satisfied by any
memory write action to the same location a of mL.
For constraining guards, the gsat relation becomes an
essential part of the information to calculate legal ex-
ecutions. It can be decided from the original UML
statechart or can be considered an execution property
of some simplified sc.

We introduce another relation over memory ac-
tions and guards, namely the most recent write rela-
tion ([9], mrw), for every guarded edge of cc-path e
in CCPM we construct the mrw relation as follows:

Definition 17

mrw : edger(M) × edgew(M)
mrw(e1, e2) ⇔

lbl(e1) = (t,m, a) (18)

lbl(e2) = (t′,m′,m), (19)

¬(e1 <c e2)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1321 Issue 11, Volume 7, November 2010

and no e3 ∈ edge(M) exists with

lbl(e3) = (t′′,m′′,m) (20)

e2 <c e3 <c e1

The mrw relation points out which write actions
on a certain variable can happen before some guard on
that variable is encountered. The most recent write re-
lation was first introduced in [9] and later adapted for
the Java programming language in [12]. In a similar
way we compose the mrwgsat relation:

Definition 18

mrwgsat : edger(M) × edgew(M)
mrwgsat(e1, e2) ⇔ mrw(e2, e1) ∧ gsat(e1, e2)

If we leave out event semantics of simplified sc we can
now constrain the set of cc-paths, CCPM , by defining
that every legal cc-path e must possess for every guard
on every edge ei in edge(e,M) at least one edge ej of
edge(e,M) satisfying the relation mrwgsat.

In order to consider events in this schema, more
work needs to be done.

Definition 19 An interleaving of a set of linear or-
dered sets

N = {(L1, <i), . . . , (Ln, <n)} (21)

is a linear ordered set (L,<) consisting of all ele-
ments of

L1 ∪ . . . Ln

and with < constrained as follows:

∀l1, l2 ∈ Li l1 <i l2 ⇒ l1 < l2

The set of all interleavings of set N of linearly ordered
sets is denoted with il(N).

To construct an interleaving of a partial order, we
need to isolate the linear ordered strings in that order,
and apply the definition of il recursively. This can
only be done if the partial order is connected.

Definition 20 A partially ordered set (L,<) is con-
nected if L has a unique minimal (min) and maximal
(max) element and for each other element l ∈ L holds
that min < l < max.

In particular, we need to identify the “deepest” choice
points (defined below as sync-in and sync-out) in the
connected partial order, and start the recursion of il on
linear ordered paths, between these identified states.
We will use the notion of an interval again, in a par-
tially ordered set, to access the elements which lie be-
tween two choice points.

Definition 21 Given a partially ordered set (L,<),
for each l1, l2 ∈ L, the interval]l1, l2[is defined as
a set of elements

]l1, l2[= {l ∈ L \ {l1, l2} | l1 < l < l2} (22)

and for each l, l′ ∈]l1, l2[holds that l < l′ or l′ < l.

Definition 22 A sync-in point of a partially ordered
connected set (L,<) is an element l of L for which
there exist l1, l2 in L with l < l1, l < l2, ¬(l1 < l2)
and ¬(l2 < l1).

A sync-out point of a partially ordered connected set
(L,<) is an element l of L for which there exist l1, l2
in L with l1 < l, l2 < l, ¬(l1 < l2) and ¬(l2 < l1).

The closest sync-out point for every sync-in point l
of L is a sync-out point l′ for which holds that l < l′
and there is no l′′ in L for which l < l′′ < l′ and l′′ is
a sync-out point hold at the same time.

The closest sync-in point for every sync-out point l of
L is a sync-in point l′ for which holds that l′ < l and
there is no l′′ in L for which l′ < l′′ < l and l′′ is a
sync-in point hold at the same time.

A deepest sync-in point of a partially ordered
set (L,<) is a sync-in point l of L for which also
holds that, given its closest sync-out point l′ there
doesn’t exist an l′′ in]l, l′[with l′′ a sync-in point.

A deepest sync-out point of a partially ordered
connected set (L,<) is a sync-out point l of L for
which also holds that, given its closest sync-in point
l′ there doesn’t exist an l′′ in]l′, l[with l′′ a sync-out
point.

A deepest sync pair is a pair (li, lo) of deepest
sync-in point li and deepest sync-out point lo with
li < lo.

We now define a procedure returning the inter-
leaving of any connected partially ordered set (L,<).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1322 Issue 11, Volume 7, November 2010

Procedure 23 (interleaving)
If no deepest sync pair can be found in (L,<)
then store the ordered set (L,<) in il(L,<)
For each deepest sync pair (li, lo) of (L,<)

determine all intervals]li, lo[in (L,<),
store all]li, lo[in the set Nli,lo ,
remove all elements of all]li, lo[from (L,<) and
store il(Nli,lo) in I .

For each choice c, one of each set il(Nli,lo) in I
(Li, <) = (L,<) ∪ ⋃

c]li, lo[and
store (Li, <) in J .

For each (Li, <) in J
apply the procedure interleaving.

The set of all possible interleavings determined by this
procedure is called il(L,<). Following proposition
can easily be verified:

Proposition 24 The partially ordered set edge(e,M)
for each cc-path e of M is connected.

With the definitions of the accessor functions for
triggered and event generating action edges we will
be able to construct the set of all legal cc-paths for
any ssc model M .

Definition 25 The trigger list of a linearly ordered
set of edges is a linearly ordered set of events (e
in eL \ {ε} of M) such that for each edge ei, with
lbl(ei) = (e,m, a), there is a corresponding element
e in tl such that the label function is order preserving.
The trigger list of a linearly ordered set E of edges is
accessed with tl(E).

The generator list of a linearly ordered set of edges is
a linearly ordered set of events (e in eL \ {ε} of M)
such that for each edge ei, with lbl(ei) = (e,m, a)
and a of eL \ {ε}, there is a corresponding element a
in gl such that the label function is order preserving.
The generator list of a linear ordered set E of edges
is accessed with gl(E).

For each trace(e,M) and concordant connected par-
tially ordered set edge(e,M) it is possible to remove
all elements between any sync-in point and its closest
sync-out point as well as all elements that are ordered
to any element of this path to arrive at a partially or-
dered set of edges consisting of one or more connected
partially ordered sets. We denote the set of these con-
nected partially ordered sets with edge(e,M) \ p for
any nrs-path p between any sync-in point and closest
sync-out point.

Definition 26 Any cc-path e of M and concordant
simplified state machine trace(e,M) is triggerable if
there exists a connected partially ordered set N ⊆

edge(e,M) \ edge(p,M) for any nrs-path p in
trace(e,M) between any sync-in point and its closest
sync-out point for which tl(edge(p,M)) is a subset of
gl(il(N)). Any triggerable cc-path (and concordant
trace(e,M)) e for which for each guarded edge ei of
edge(e,M) there exists an ej in edge(e,M) for which
mrwgsat(ei, ej) holds is a legal cc-path. The set of
all legal cc-paths of simplified sc model M is called
LCCPM .

Given a gsat relation, the set LCCPM now only con-
tains those cc-paths that reaches termination.

Proposition 27 The set LCCPM is well defined and
finite. Reachability in simplified statecharts is there-
fore decidable, given a gsat relation.

The most recent write relation that we introduced
earlier, can now be used to study the propagation of
values throughout any cc-path in LCCPM . Every
guard reads a value, dependent on his mrw write ac-
tion. Each state of trace(e,M) of any cc-path e of
LCCPM knows the possible values of some memory
locations (m ∈ mL). These values are the result of
guarded edges lying on any path from the initial pseu-
dostate to the current state.

Definition 28 For each state σ of Σe of trace(e,M)
the data of that state σ is the data of the previous states
(the source states σ′ of the edges ei for which σ′ ≺c σ,
lbl(ei) = (t,m, a)) plus the guards m of mL that
are read on the incoming edges ei minus any memory
location that is written to in the actions a in mL of
each ei. We denote the data present within a state σ
with data(σ, e,M)

A state can only have data on locations that ap-
pear as guard on every path to σ and that are not writ-
ten to after they are read. If a location is written to it is
removed from the data of successor states. Sync-out
points of the partially ordered cc-paths only have the
intersection of the data of all source states of its in-
coming edges. Both constraints on the data of states
are the result of our abstraction of functional calcula-
tion in simplified state machines. The only things that
can happen on an edge are a read (guard) which is
added to the known values of the destination state and
subsequent memory writes of a transformation of the
data of the previous states plus the read value on the
edge under consideration. In analogy to the mrw re-
lation we now introduce the mrr relation pointing out
for every state and for every location known in that
state which are the most recent reads for that location
(e.g. the reads that influence the written result value).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1323 Issue 11, Volume 7, November 2010

a,b

a b

b,c

/c=h(b)

/a=g(b,c)

[b]

[c]

[a] /b=f(a)

[b]

/a=5 /b=6

/c=g(a,b)

[c] [a]

Figure 6: An Incomplete Example of the Most Recent
Write relation

Definition 29 For every cc-path e of M and concor-
dant ssc trace(e,M) we define

mrr : Σe × mL × edge(e,M)
mrr(σ,m, ei) ⇔ lbl(ei) = (t,m, a)

with m in data(σ, e,M) and there exists a σ′ for
which σ′ ≺c σ induced edge ei.

Fig.6 shows two unordered paths in the partial or-
der of some cc-path in LCCPM , for some simplified
sc model M . The gray arrows point out the mrw re-
lationship between reads and writes. Note that the as-
signment /a = 5 for example, is the application of a
function, without any arguments. This kind of func-
tion is most commonly known as a constant function.

In the literature on memory models the likelihood
of causal loops between memory writes and reads is
illustrated [12]. Such causal loops between mrw and
mrr relations can still be present in legal cc-paths of
LCCPM . A causal loop is created when some most
recent write w1 of some most recent read r1 has in its
calculation (or transformation) need of a reference to
some other read value r2, which has as one of its most
recent writes, w1. Fig. 6 shows a couple of causal
loops. Memory location a for example, is read into
the write on b. This read sees both writes of a, one
of which is depending on the value of b and c. The
value of b in its turn, is depending on the value that
was written to b, which was depending on the value

1

2

1

a

b c

2

write m write l write m write l

e[g]/m=m+l;a e[g]

[m]

[l]

write m;a

φ

Figure 7: Side-Effects-Free Operations in an Ssc
Model

of a. Every legal cc-path needs a resolution of these
causal loops. To guide this resolution we need a func-
tion for each edge with a memory write on it. In this
definition, we will represent the set of all primitive re-
cursive functions as F .

Definition 30 For every execution e of M and con-
cordant ssc trace(e,M) we define

χ : edge(e,M) → ((F) × 2mL)

is a function which returns for each edge with a mem-
ory write in its label the function which is applied be-
fore the transformed value is written. It also points out
which variables are needed for its calculation. For
each result pair of function χ and for each relevant
subset of mL each one of the elements in the second
component must be present in the data of the state of
which the edge origins, in all executions of LCCPM

with a path through that state.

If for example the function χ is partially defined
for edge ei as χ(ei) = (g, {a, b, c}) it means that the
write operation in lbl(ei) is depending on the values
of a, b and c, and that some function g is applied to
them.

In Fig. 7 we see that while translating the sc with
morphism ϕ, and with ei the edge under transforma-
tion, we would have to log in χ that χ(ei) equals
(+, {m, l}). The function χ thus can be derived from
the translation of normal UML statecharts, while ap-
plying translation morphism ϕ described in [6].

With the partially ordered executions in the set
LCCPM , χ and gsat, we can deterministically trace
the possible values of each memory location in any
simplified sc model M . We already discussed how
the gsat relation allows us to limit our attention to
legal cc-paths and executions. As we will see below

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1324 Issue 11, Volume 7, November 2010

the function χ can now guarantee that we only have to
verify legal cc-paths without causal loops.

Let us give an extended example of the whole pro-
cess, before we describe the procedure for causal loop
detection and resolution. Fig. 8 shows us an example
without events. Two of the reduced orders are shown
in Fig. 9. Table 1 defines function χ for Fig. 8. Fig. 10
shows the data in each state of the reduced orders of
Fig. 8.

Table 1: Definition of χ for Fig. 8

(1, 2) → 5 (10, 21) → f11(b)
(2, c1) → f6(a) (15, 16) → f3(a)
(2, 19) → f1(a) (16, 17) → f12(b)
(3, 4) → f7(a) (16, 20) → f4(b)

(4, c2) → f8(b, a) (19, 11) → f2(a, b)
(5, 6) → 7 (20, 24) → f5(b)
(6, 7) → f9(c, b) (21, 22) → f13(a, b)

(9, 10) → f10(b) (23, 24) → f14(b, a, c)

Using Fig. 9,10 and Table 1, we can verify causal-
ity, remove causal loops and determine the outcome
value for each memory location in each state of cc-
path and its concordant execution, and this for each
legal cc-path. The cc-path of Fig. 9 left, has no causal
loops, so it is rather easy to determine the possible val-
ues of each variable a, b and c for example, upon the
termination of the execution. Table 2 shows these val-
ues. We give the example for the termination state in
Tab. 2 but it may be clear that the same technique can
be applied to any state of the sc that is present in some
cc-path e of LCCPM . The values for c upon termi-
nation are dependent on the write on edge (20, 24),
and is therefore determined by f5(b). The most recent
write of b seen from edge (20, 24) is determined by
edge (2, 19), where f1(a) is written to b. The most re-
cent write, for the read seen on edge (2, 19) is on edge
(1, 2), which assigns 5 to a. Conclusion: in state 24, c
equals f5(f1(5)). We adopt similar reasoning for vari-
ables (memory locations) a and b. Notice that in the
case of a we took the last value (the maximal element
that writes a) in the <c order that was written. If there
would have been more candidates, a would have had
all of those values.

Table 2: Value Propagation of Fig. 9, Left Side

a → f3(5)
b → f1(5)
c → f5(f1(b))

12

1

2

19

15 11 5

16 6

20

24

25

1

2

3 15

4

16

5 9

6
10

7

21

22 23

2425

(a) (b)
/a=5

[a]/b=f1(a)

[b]/c=f2(a,b)

/a=f3(a) [a] /c=7

[b]/c=f4(b)

[b]/c=f5(b)

[c]

/a=5

[a]/c=f6(a)[a]/c=f6(a)

/b=f7(a)

[b]/a=f8(b,a) [b]/a=f8(b,a)

/c=7

[c]/c=f9(c,b)

[b]/a=f11(b)

/a=f10(b)

/a=f3(a)

[a]/b=f13(a,b)
[b]

[c]/c=f14(c,a,b)

[c]

Figure 9: Complex Example Revisited, with Labels

If we now analyze Fig. 9, right, in the same man-
ner we get a more complex causality pattern. For vari-
able c in Fig. 9, right, we get causal dependencies
(with a causal loop) as shown in Fig. 11. This exam-
ple shows that it might be useful to introduce a more
algorithmic and systematic approach to the determina-
tion of the values for each variable in each state. (This
way, we can get a computer to do all the work for us.)

With x a memory location of the data of a certain
state σ, in a certain execution e of LCCPM we outline
the procedure (Proc. 31) to determine all values.

In this procedure we construct a tree of depen-
dent writes and we close leaves if they either appear
twice in the path to the root of the tree (which means
we have a causal loop) or if they are a constant value
(which needs no more arguments). This way we com-
bine the resolution of causality with the determination
of all possible values, in each state and for each mem-
ory location.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1325 Issue 11, Volume 7, November 2010

24

1 2

3

4 13

14

15 16 17 18

19

20

21

22

23

25

5 6

78

910

11 12

/a [a]/c

[a]/b [b]/c [a]/b

/b

[b]/a

/c

[b]

[c]/c [b]/b

/a

[a]

[b]/a

[a]/c

[a]

/a [b]/c [a]

[b]/c

[b]/c

[b] [a]

[c]/c

[c]

Figure 8: Complex Example Revisited, with Labels

Procedure 31 (determine values)
Search for mrr(σ, x, ei),
determine mrw(ei, ej) and
construct a tree T with root χ(ej).
While not all leaves of T closed,

for each var v used in χ(ej) and in data(σ, e,M)
search for mrr(σ′, v, ek)
store mrr(σ′, v, ek) in W and
make all elements of W , children of v.
If leaves appear twice on a path to the root of T
then close these leaves.
If a new leaf is a constant
then close this leaf.

Redo this recursively.
Store the leaves of T in L and
remove all closed, non-constant leaves from T .
Recursively remove leaves not in L.
Recursively construct

all values on any path to the root of T .

Fig. 12 shows a trace tree for variable c in state
24 (x = c and σ = 24 in Proc. 31), and Fig. 11 shows
how we got to it. Non-constant functions which
are leaves, are removed in Fig. 12, and the possible
values can now systematically and unambiguously be

determined, by following the leaves bottom up. One
of the 25 possible values of c upon termination of the
executed statechart in Fig. 9, right, is

c = f14(f9(7, f7(5)), f11(f7(5)),
f13(f3(f8(f7(5), 5)), f7(5)))

Remark that one can parse this expression, using
the trace tree of Fig. 12. We call the expression for
c, a footprint of c in state σ and each variable can
have any but an infinite number of footprints in each
state of each cc-path of a simplified sc model M . The
tree that was used to construct these values, is called
a trace tree. Each variable or memory location has
exactly one trace tree in every state of a simplified sc
cc-path. If after removal of causally looping leaves,
the tree becomes empty, then there aren’t any legal
values for that variable in that state. If the variable in
question belongs to the data of that state, and is used
in write functions, then we say that χ is illegal, instead
of the cc-path e of M . We then remove this illegal part
χ(e) but only if both conditions of above are met. If
χ becomes an empty function in doing so for a certain
cc-path e of M only then will we remove e from the
set LCCPM and say that it is an illegal cc-path and
execution.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1326 Issue 11, Volume 7, November 2010

ab

a

a ab a

a

b

b

bc

a a

a

b b

b
b

b

b

a ab

ababc

(a) (b)
/a=5

[a]/b=f1(a)

[b]/c=f2(a,b)

/a=f3(a) [a] /c=7

[b]/c=f4(b)

[b]/c=f5(b)

[c]

/a=5

[a]/c=f6(a)[a]/c=f6(a)

/b=f7(a)

[b]/a=f8(b,a) [b]/a=f8(b,a)

/c=7

[c]/c=f9(c,b)

[b]/a=f11(b)

/a=f10(b)

/a=f3(a)

[a]/b=f13(a,b)
[b]

[c]/c=f14(c,a,b)

[c]

Figure 10: Complex Example Reduction Revisited,
with Labels

Remark that it will almost always be necessary to
calculate all values of all variables in all states of the
model M . The calculations can be done much more
efficiently if a certain order is followed, namely top
down, as we can keep the calculated values stored for
every state and reuse them in a recursive application
of Proc. 31. To verify the model with model check-
ing techniques for example, we do need to know all
possible values in all reachable states for all possible
executions of LCCPM .

Proposition 32 For each cc-path e of LCCPM each
possible value of any memory location (of mL) in use
in any state of a simplified sc, can unambiguously be
determined by Proc. 31.

4 Normalization

Simplified state machines, when derived from UML
sc, can, due to the transformations that we apply to
them (see [6]), have many sparse edges. An edge of an
ssc is called sparse when it is missing a trigger, guard
or action (or any combination of the three). Having
many sparse edges in an ssc is not very useful due to
this reason: in the ssc formalism a state can only be
influenced by triggers, guards and actions and is only
useful if any of the possible values of the variables
available in that state differ with the previous and next
states in any path containing that state or if the trigger
list of a certain path becomes different by accessing

that state. We therefore derive a normal form for sim-
plified statecharts that will allow us to reduce sparse
edges and unnecessary states. Having a normal form
of simplified state machines will prove to be invalu-
able when defining complexity metrics on statecharts.
Some statecharts are only seemingly different from
others if one analyzes the different paths in those stat-
echarts. The UML is designed to allow for this kind
of (uncontrollable) flexibility but in mathematical de-
scriptions it has adverse effects. Our formalism would
only be useful if it allows us to unravel superficial dif-
ferences. Also remark that the procedures to disen-
tangle state machines are very complex and that any
reduction of the number of states or edges can have
tremendous positive effect on the calculational com-
plexity of the formalism.

We start by defining what we mean by a normal-
ized state machine, proceed with explaining equiva-
lent simplified statecharts and derive a normalization
procedure which converts a simplified sc to a normal-
ized simplified sc equivalent to the original one.

Definition 33 The set of all values of some variable
v of the data of some state σ of some cc-path e of ssc
model M is denoted with val(v, σ, e,M).

Definition 34 A state σ of M is distinguishable if on
some cc-path e of M for some σ1 and σ2, states of M
different from σ with σ1 ≺c σ ≺c σ2 it hold that either

data(σ, e,M) �= data(σ1, e,M) and
data(σ, e,M) �= data(σ2, e,M)

or there exists a variable v of data(σ, e,M) for which

val(v, σ, e,M) �= val(v, σ1, e,M) and
val(v, σ, e,M) �= val(v, σ2, e,M).

Definition 35 A state σ of M is trigger-contributing
if by removing it from M and attaching incoming and
outgoing edges to other states such that the transi-
tive <c-order is preserved on all states of M except
σ, there exists a trigger list in M that doesn’t appear
on the model with σ removed.

Definition 36 A normalized ssc is a simplified stat-
echart of which all states are distinguishable and
trigger-contributing.

From the properties of a normalized ssc we derive
that a state machine can be called label-equivalent to
another state machine if the order of guards is pre-
served, the order of triggers is preserved, the order of
actions is preserved and if a guard on a certain vari-
able v is ordered to an action on v that order is also
preserved. To write this down formally we need to
split up the definition of the label-function on edges.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1327 Issue 11, Volume 7, November 2010

(23,24)
f14(c,a,b)

(15,16)
f3(a)

(10,21)
f11(b)

(6,7)
f9(c,b)

(9,10)
f10(b)

(21,22)
f13(a,b)

(3,4)
f7(a)

(5,6)
7

(4,5|9)
f8(b,a)

(1,2)
5

Figure 11: Dependencies of Variables and Values for Location c in State 25 of Fig. 9

Definition 37 A guard-label of an edge e is the label
lbl(e) limited to the guard (of mL) and is denoted with
lblg(e).
A trigger-label of an edge e is the label lbl(e) limited
to the trigger (of eL) and is denoted with lblt(e).
An action-label of an edge e is the label lbl(e) limited
to the action (of eL∪mL) and is denoted with lbla(e).
A variable-label of an edge e is the label lbl(e) limited
to the indexed guards and actions (of mL) on the same
variable v and is denoted with lblx(v, e). If there is no
variable v appearing in the label, the variable-label
returns ε.

Extending the different label functions on sets
we arrive at the following concise definition of label-
equivalence.

Definition 38 Two simplified statechart models M1

and M2 are label-equivalent if there exist four isomor-
phisms ϕi : Pi → Qi, for i = g, t, a, v

Pi = {α | p nrs − path, lbli(edge(p,M1)) = α} (23)

Qi = {α | q nrs − path, lbli(edge(q,M2) = α} (24)

such that

ϕi(p) = q ⇔ p ≡l q (25)

with p ≡l q if and only if the two posets are equal
when removing all ε’s thereby preserving the poset or-
der.

Remark the similarity to the definition of a bisim-
ulation in process algebras. With this definition we
are given enough room for a normalization procedure,
consisting of these two steps: label normalization and
state normalization. In the first step we try to fill out
the transition labels as densely as possible by replac-
ing ε’s in the labels. We also put all triggers, guards
and actions as early as possible on any path. The sec-
ond step will use a transformed minimalisation pro-
cedure for regular automata, to remove unnecessary
states. We will prove that the result of these transfor-
mations is a label-equivalent normalized simplified sc.
We specify the label chord normalization transforma-
tion rules in Table 3 and define the λ-transition.

Definition 39 A λ-transition is an edge with label
(ε, ε, ε).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1328 Issue 11, Volume 7, November 2010

f14(c,a,b)

f9(c,b) f11(b) f13(a,b)

7 f7(a)

5

f7(a)

5

f11(b) f3(a) f7(a)

f7(a)

5

f8(b,a) f10(b) f11(b)

f7(a)

5 f3(a) 5

f7(a) f7(a)

5 5

5 5

f3(a)

f8(b,a) f10(b) f11(b) 5

f7(a) 5f3(a)

5

f7(a) f7(a)

5 5

Figure 12: Trace Tree for Location c in State 25 of Fig. 9

Procedure 40

For each s ∈ S
repeat until nothing changes anymore:

for each σ in region ρ(s),
remove all (reflexive) λ-transitions on σ,

for each σ in region ρ(s),
apply the maximal set of lcn rules on σ.

A maximal rule links up as many parts of the la-
bels as possible, but never all parts at once (see Tab. 3).

First part of Proc. 40 is to remove all (reflexive)
λ-transitions in the simplified sc under consideration.
The following proposition states that this doesn’t in-
fluence label-equivalence.

Proposition 41 Each λ-transition between σi and σj ,
of any region can be removed by assuming σi = σj ,
and results in a label-equivalent simplified sc.
Each reflexive λ-transition on σi, of any region can
be removed from δ and results in a label-equivalent
simplified sc.

The proof of this proposition is rather trivial by
the definition of ≡l.

The labels of a simplified sc can be seen as a bead
chord. The beads are the three parts of the transition

labels (triggers, guards and actions), and the chord
that binds them together in a certain order, is formed
by the paths that bear these labels. The transforma-
tion we realize in the second part of Proc. 40 can be
imagined as follows: if we put a bead chord in our one
hand, and hold the start of the chord between thumb
and index, we can link up the beads relative to the start
position with our other hand (draw them nearer to the
start position, for example). Fig. 13 shows this pro-
cess. Dependent on the number of beads, relative to
the length of the chord (the number of ε-parts in la-
bels), this linking has more or less effect. The result
of this linking should be that actions are executed as
early as possible without violating path causality (or
order), guards are tested as early as possible and trig-
gers are waited for as early as possible. ‘Early’ signi-
fies close to the start state of some region. We do not
touch transitions of δ′ and leave the region hierarchy
intact in our normalization procedure.

Table 3 shows an overview of the six possible
transformations for every state which has incoming
and outgoing edges (at least one of each). Table 3
shows six rules: the initial configuration is at the left
hand side of the arrows, and the result is at the right
hand side. The columns left of the double vertical line
display the three parts of the different incoming labels
(in the order trigger, guard, action), and the columns

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1329 Issue 11, Volume 7, November 2010

Table 3: Label Chord Normalization lcn

e1 g1 ε f1 h1 b
.
en gn ε fm hm b

→
e1 g1 b f1 h1 ε
.
en gn b fm hm ε

→
e1 ε ε f1 h b1

.
en ε ε fm h bm

→
e1 h ε f1 ε b1

.
en h ε fm ε bm

→
ε g1 ε f h1 b1

.
ε gn ε f hm bm

→
f g1 ε ε h1 b1

.
f gn ε ε hm bm

→
e1 ε ε f1 h b
.
en ε ε fm h b

→
e1 h b f1 ε ε
.
en h b fm ε ε

→
ε ε ε f h b1

.
ε ε ε f h bm

→
f h ε ε ε b1

.
f h ε ε ε bm

→
ε g1 ε f h1 b

.
ε gn ε f hm b

→
f g1 b ε h1 ε

.
f gn b ε hm ε

at the right side display the three parts of the outgo-
ing labels in the same order. Everywhere in Table 3
we assume that the state σ under transformation has n
incoming edges and m outgoing edges. The first rule
states for example that if for a certain state, in a certain
region, all outgoing edges execute the same action,
and if no incoming edge of this state has an action
other than ε, then the action on the outgoing edges,
can be linked to the incoming edges. The other five
rules are similar. We refer to any application of these
rules as lcn (label chord normalization) in Proc. 40.
Remark that similar rules are used in compiler opti-
mizations to execute actions as early as possible (see
for example [12]).

Proposition 42 Procedure 40 terminates for every
simplified statechart, and transforms a simplified stat-
echart into a label-equivalent simplified statechart.

Procedure 40 consists of two parts: (reflexive) λ-
transition elimination and lcn application (Table 3).
The proof that λ-transition elimination terminates is
trivial: there are only a finite number of states and
edges in each region and with every λ-transition re-
moval one edge is eliminated therefore the procedure

Figure 13: Linking the Labels as a Bead Chord

cannot go on for ever. Reflexive λ-transition removal
also terminates for similar reasons. We already proved
equivalence of statecharts after (reflexive) λ-transition
elimination.

Remains to show that lcn-rules application termi-
nates and results in equivalent simplified statecharts.
To prove this, we introduce an edge weight function.
The arity of an edge is the number of non ε positions
in the label of that edge. Possible values for the ar-
ity of an edge in simplified statecharts are the natural
numbers zero to three (0 to 3). We access this arity

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1330 Issue 11, Volume 7, November 2010

value for each edge e with the function ar(e). We de-
note the set of all edges of all s-paths from state σ to
σ′ with SP (σ, σ′)

Definition 43 For any state σ in any region ρ(s), s
in S, of a simplified statechart, the edge weight of all
outgoing edges of state σ is defined as follows. Given
all the shortest s-paths, originating from the start state
to state σ (∈ ρ(s)):

p1 : s = σ0,1, σ1,1, σ2,1, . . . , σk,1 = σ
. . .
pm : s = σ0,m, σ1,m, σ2,m, . . . , σk,m = σ

calculate following expression for each shortest s-
path pj:

ar(pj) = Σei∈edge(pj ,M)ar(e).4i (26)

and find the s-path pmin for which ar(pj) is the
smallest. The edge weight of all outgoing edges of
state σ to any state σ′ connected via edge f is defined
as

| f |l= ar(pmin) + ar(f).4k (27)

The weight of SP(σ,σ) is 0. The edge weight of
the set SP(σi,σj) of s-path edges between σi and σj is
the sum of the edge weights of all edges in this set:

| SP(σi,σj) |l = Σe∈SP(σi,σj)
| e |l (28)

Remark that by this definition and by the defini-
tion of s-paths we have

| SP(σi,σj) ∪ SP(σj ,σj) |l = | SP(σi,σj) |l (29)

| SP(σi,σj) ∪ SP(σj ,σk) |l ≤ | SP(σi,σk) |l (30)

The proof that lcn terminates, is an application of
noetherian induction. We first prove following prop-
erty of edge weights:

Proposition 44 For each set of s-path edges
SP(σi,σj) in region ρ(s) holds that

| SP(σi,σj) |l > | lcn(SP(σi,σj)) |l

with lcn(SP(σi,σj)) the edges of the set of s-paths be-
tween σi and σj after maximal rule application of lcn.

Figure 14: Analysis of Two Types of s-paths

We proceed with the proof of this property. The
rationale of the edge weight function, is that any link-
ing of label parts, due to lcn, which brings label parts
closer to the start state, will result in a lower edge
weight for at least one edge, therefore also for a set
of edges containing that edge. With wi, wi+1 label ar-
ities, x < wi+1, we have for the edge weight of some
edges in SP(σi,σj) and lcn(SP(σi,σj))

. . . + wi.4i + wi+1.4i+1 + . . . >
. . . + (wi + x).4i + (wi+1 − x).4i+1 + . . .

for any linking which brings label parts closer to the
start state. There is one case where label parts can
be linked up to edges further away from the start
state, namely when a loop participates in some path
in SP(σi,σj). Every loop has at least one entry and one
exit point, otherwise it is not reachable from the start
state or would not participate in the paths to σj , hence
wouldn’t be present in SP(σi,σj). We therefore can al-
ways find states σk and σl with k < l which are entry
and exit points respectively for the loop with incom-
ing and outgoing edge weights wk and wl, x < wi,
y < wl, k < i < i+ t < l, such that for an exhaustive
application of lcn on all paths of SP(σi,σj), we have

. . . + wk.4k + . . . + wi.4i+
. . . + wi+t.4i+t + . . . + wl.4l + . . . >

. . . + (wk + y).4k + . . . + (wi − x).4i+
. . . + (wi+t + x).4i+t + . . . + (wl − y).4l + . . .

Therefore in any case we have

| SP(σi,σj) |l > | lcn(SP(σi,σj)) |l
and this proves the property. Fig. 14 visually illus-
trates both cases of this proof.

By Prop. 44, every sequence of lcn applications,
with s ∈ S and t ∈ T , of the form

| SP(s,t) |l > | lcn(SP(s,t)) |l >

. . . > | lcni(SP(s,t)) |l > . . .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1331 Issue 11, Volume 7, November 2010

is noetherian, and therefore can never be infinitely
long. It follows easily that an exhaustive application
of lcn must terminate and results in an irreducible nor-
mal form.

Proposition 45 Any (exhaustive) application of lcn to
a simplified sc results in a label-equivalent simplified
statechart.

The proof of this property is trivial: match the
four constraints of label-equivalence to the six differ-
ent rules of Table 3. We leave it to the reader.

With Prop. 41, the termination of (reflexive) λ-
transition removal, Prop. 45, the termination of lcn
application, and the independence of λ-transition re-
moval and lcn application, we prove Prop. 42.

Another form of normalization for simplified stat-
echarts, is the reduction of the number of states by re-
moving the unnecessary ones. For this we will use an
adapted form of regular automata state reduction. The
number of states and the length of paths in a simpli-
fied sc clearly determine the complexity of calculating
execution traces. By reducing the number of states
and by shortening paths we can make this calculation
more efficient. Unlike UML statecharts, simplified
statecharts impose severe restrictions on the labeling
of their edges. In [3] we reduced the action language
to its least redundant form given the expressive power
of statecharts themselves. We removed control flow
instructions from the action language because they are
implicitly present in statecharts, we removed event-
like structures since they are also implicitly present
and so on. Also, we abstracted assignment and other
operators to their most basic memory influence, the
use of which has become apparent in determining all
executions and the possible values of all memory lo-
cations. The net result was an action language without
redundancy matching regular automata. We can now
easily apply regular automata theory to simplified stat-
echarts. In doing so we introduce the final part of the
normalization procedure for simplified state machines
where we will remove all indistinguishable states.

Definition 46 A state is indistinguishable if it is not
distinguishable.

Definition 47 A state is inaccessible if there exists no
s-path containing any s of S that also contains that
state.

It may be clear from the definition that the indis-
tinguishable relationship is reflexive, symmetric and
transitive, and therefore an equivalence relation. We
split up this relationship by region and denote it with
=s with s of S, for each region ρ(s). We continue
with the specification of the second normalization pro-
cedure.

Procedure 48

For each s ∈ S,
for each state σ of region ρ(s)

remove σ if it is inaccessible and
remove all δ(σ, l) = σ′ and δ(σ′′, l) = σ from δ.

construct all equivalence classes Csi for =s.
For each s ∈ S,

add s to Σ=,
for each equivalence class Csi in region ρ(s)

add a new state σsi to Σ=,
for each σ in Csi with δ(σ, e,m, a) = σ′ ∈ Csj

add δ=(σsi, e,m, a) = σsj to δ=,
for each σ in Csi with δ′(σ, e,m, a) = σ′ ∈ Cs′k

add δ′=(σsi, e,m, a) = {σs′k} to δ′=,
if s ∈ δ′(σ, e,m, a), σ ∈ Csi

then add δ′=(σsi, e,m, a) = {s} to δ′=.
For each t ∈ T ,

add t to Σ=,
for each σ in some Csi for which δ(σ, e,m, a) = t

add δ=(σsi, e,m, a) = t to δ=

for each σ in δ′(t, e,m, a), σ ∈ Csi

add δ′=(t, e,m, a) = {σsi} to δ′=.
Construct the simplified statechart

〈Σ=, s0, δ=, δ′=, S, T 〉

Termination of this procedure is trivial, so we pro-
ceed with the proof of the label-equivalence.

Remark that an isomorphism relation is an equiv-
alence relation: each set is isomorphic to itself, and if
set A is isomorphic to set B, then B is also isomor-
phic to A. If A is isomorphic to B and B to C , then
A is isomorphic to C .

We proceed by induction on the gradual construc-
tion of all the equivalence classes Csi, from termina-
tion (t in T) to start (s in S). Let us call the original
simplified sc, sc0. As base case we prove that the con-
struction of the equivalence classes for states with out-
going edges to any termination state of some region (t
in some ρ(s)) of sc0 results in a label-equivalent sc.

In the first iteration (base case) we construct the
equivalence classes of indistinguishable states with
outgoing edges to t, and only of these states, by
Proc. 48. Each equivalence class of indistinguishable
states gets exactly one outgoing edge to t. By the def-
inition of indistinguishable states each path in sc0 is
label-equivalent to exactly one path in the base case
of the normalized sc (let’s call it sc1) and therefore
there exists an isomorphism between the accepted ex-
ecutions of sc0 and sc1.

Now suppose that this property also holds for the
statecharts of the next iterations in the construction
(sc2, . . . , scn) and in all regions of those statecharts.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1332 Issue 11, Volume 7, November 2010

Notice that all these statecharts are label equivalent to
sc0, because the isomorphic relation is an equivalence
relation, and therefore transitive. From the equiva-
lence of scn, we prove the equivalence of scn+1 to
sc0, with an analysis by cases. There are four compo-
nents in the construction of paths: any connection in
some path is the result of either δ or δ′ transition func-
tion application, originates from a termination state (t
of T) or is a δ′-connection to a start state (s of S).

If an equivalence class Csi of scn+1 is connected
to some equivalence class Csj , which was already
present in scn, because there is a δ application from a
state σ in Csj to a state σ′ in Csi, then by the definition
of indistinguishable states, the definition of Proc. 48
and our inductive hypothesis applied on scn, all paths
resulting from this δ application will be present in
both the original sc0 and scn+1. For if this would
not be the case, then there exist states σ and σ′ in the
equivalence class Csj with different outgoing edges to
equivalence classes Csi and Csk of scn, in which case
we get a contradiction with either the inductive hy-
pothesis or the definition of indistinguishable states.
By the definition of Proc. 48 we can’t create new
paths, because then we would have to have added δ
applications, not in sc0.

If the edge between Csj and Cs′i, is a result of δ′
application, we can follow a similar reasoning as for
the case of δ. We can always “postpone” the proof of
this case up until the relevant equivalence class Cs′i
is constructed and the inductive hypothesis becomes
available, because the region hierarchy is a finite tree
(no looping proof).

In the case of termination or start states the δ′ ap-
plications are equal to the ones of sc0 by the construc-
tion of Proc. 48 therefore sc0 is equivalent to scn+1.

There is one case where this argument isn’t
clear to guarantee a non-looping induction hypothe-
sis: the case where there are two (or more) equiva-
lence classes Csi and Cs′j which are connected in a
loop through δ′-applications. In this case, however,
we can “postpone” the induction hypothesis again by
the same reasoning as the one that was illustrated in
Fig. 14.2.

By induction we can conclude that the simplified
sc scn+m (the result of equivalence class connection
from the start state) is label-equivalent to the original
sc0. This concludes the proof.

Proposition 49 Procedure 48 terminates and results
in an equivalent simplified sc. The resulting sc has a
minimal number of states in all regions.

Remark that Proc. 40 is completely independent
of Proc. 48, and therefore they can be applied in any

order to a simplified sc. The net result of our two nor-
malization procedures taken together, is a normalized
simplified sc. The path length and number of states is
minimal, just as we set as the objective of this section.

Proposition 50 A normalized simplified sc is a sim-
plified sc which doesn’t change under the application
of Proc. 40 or Proc. 48. No simplified sc with less
states or shorter paths is label-equivalent to this nor-
malized simplified sc.

The proof of this statement is left to the reader.

5 Conclusion

To derive state machine normal forms in a mathe-
matically correct manner we highlighted part of our
simplified state machine theory in this paper. We in-
troduced s-paths and c-paths in simplified state ma-
chines. We defined nrs-paths, nrc-paths and concor-
dant partial orderings <s and <c on the set of states
of state machine model M . We constructed cc-paths
and reasoned on UML state machine semantics to ex-
traxt all legal execution traces from the state machine
model description. Restricting the introduction of this
theory to the most essential definitions and properties
allowed us to concisely represent the complex math-
ematical system needed to formulate and prove state
machine normalization procedures. With behavioral
equivalence matched to formal equivalence we are
able to make value propagation and executions calcu-
lation algorithms more efficient. Normal forms also
allow us to reason on many equivalent state machines
at once thus making this theory even more interesting.

We conclude this paper with a remark on the com-
parison of value propagation and verification through
model checking. Since we can more or less efficiently
calculate the possible values of all variables in all
reachable and useful states of the sc, we can check
for temporal properties on each of the executions of
the simplified sc model M separately by modeling
the possible values in a Kripke Model and applying
well known model checking techniques to it. Binding
our abstraction to model checking algorithms allows
the transformation of statecharts into infinite Kripke
Models, in which every state knows all possible val-
ues of all variables and of the event queue (see for ex-
ample [13], [14]). Any temporal property formulated
in a language like LTL or CTL (see [1],[3],[4],[5]) can
be checked on these Kripke Models.

Our theory on memory value propagation and
normalization can further enrich model checking tech-
niques by excluding unreachable and useless states. It
allows us to first divide state machines into cc-paths or

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1333 Issue 11, Volume 7, November 2010

executions, determines reachability by event seman-
tics in each of these executions (questions which are
normally verified only at the time of model check-
ing), afterwards determines fairness, liveness and ex-
clusion (with causal loop detection) retaining only a
finite number of cc-paths and executions with in ev-
ery state all possible values of all variables. This tech-
nique can also be restricted to memory locations or
states of interest to the state machine designer, guid-
ing him throughout the construction process by an-
swering temporal questions albeit reducing calcula-
tion time even further.

Making strong abstractions and using the macro-
structures of the state machine we tackle one of the
biggest challenges to behavioral designs: concurrent,
lazy-locking memory behavior. Our theory is far from
perfect and tends to struggle with looping constructs
but promises guidance to better understanding and de-
sign of state machines.

References:

[1] Christel Baier and Joost-Pieter Katoen. Prin-
ciples of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

[2] G Booch, J Rumbaugh, and I Jacobson. The Uni-
fied Modeling Language User Guide (2nd edi-
tion). Addison-Wesley Professional, 2005.

[3] Laura F. Cacovean, Emil M. Popa, and
Cristina I. Brumar. Algebraic algorithm of ctl
model checker. WSEAS Trans. Info. Sci. and
App., 4(1):1–8, 2007.

[4] Laura F. Cacovean, Emil M. Popa, and
Cristina I. Brumar. Implementation of ctl model
checker update. In ICCOMP’07: Proceedings
of the 11th WSEAS International Conference on
Computers, pages 432–437, Stevens Point, Wis-
consin, USA, 2007. World Scientific and Engi-
neering Academy and Society (WSEAS).

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concur-
rent systems using temporal logic specifications.
ACM Transactions on Programming Languages
and Systems, 8:244–263, 1986.

[6] Benjamin De Leeuw and Albert Hoogewijs.
Management and object behavior of statecharts
through statechart dna. WSEAS Trans. Info. Sci.
and App., 6(5):859–871, 2009.

[7] Benjamin De Leeuw and Albert Hoogewijs.
Statechart dna. In ICAI’09: Proceedings
of the 10th WSEAS international conference
on Automation & information, pages 293–299,
Stevens Point, Wisconsin, USA, 2009. World
Scientific and Engineering Academy and Soci-
ety (WSEAS).

[8] Benjamin De Leeuw and Albert Hoogewijs.
Statecharts disantengled. In ECC’10: Proceed-
ings of the 4th European Computing Confer-
ence, pages 39–51, Stevens Point, Wisconsin,
USA, 2010. World Scientific and Engineering
Academy and Society (WSEAS).

[9] Guang R Gao and Vivek Sarkar. Location
Consistency-A New Memory Model and Cache
Consistency Protocol. IEEE Trans. Comput.,
49(8):798–813, 2000.

[10] Daniel Ioan Hunyadi and Mircea Adrian Musan.
Uml data models from an orm (object-role mod-
eling) perspective: data modeling at conceptual
level. WSEAS Transactions on Information Sci-
ence and Applications, 5(5):796–805, 2008.

[11] Tihamr Levendovszky, Lszl Lengyel, and Has-
san Charaf. Extending the dpo approach for
topological validation of metamodel-level graph
rewriting rules. WSEAS Transactions on Infor-
mation Science and Applications, 2(2):226–231,
2005.

[12] W Pugh and T Lindholm. JSR-133: Java Mem-
ory Model and Thread Specification, final re-
lease, September 2004.

[13] Sara Van Langenhove and Albert Hoogewijs.
SVtL: System verification through logic tool
support for verifying sliced hierarchical state-
charts. Lecture Notes in Computer Science,
4409:142–155, 2007.

[14] Sara Van Langenhove, Albert Hoogewijs, and
Benjamin De Leeuw. Uml based verification
of software. In Proceedings of the 32nd Spring
School in Theoretical Computer Science, Con-
currency theory and Applications, page 1, Lu-
miny, France, 4 2004.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 1334 Issue 11, Volume 7, November 2010

