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Abstract: - The purpose of this paper is to address the design of decoupled-level large system controllers using 
an optimal reduced order model whose state variables are all output states. The reduced-order model retains 
their physical meaning and is used to design a decoupled-level linear feedback controller that takes into account 
the realities and constraints of the large systems. The decoupled-level control strategy is used and a global 
control signal is generated from the output variables to minimize the effect of interactions. As a result, the 
effectiveness of this controller is evaluated and considerable savings in computer memory are achieved. In 
conclusion, the controllers determined at the subsystem level depend only on local information operating to the 
particular machine. Example is given to illustrate the advantages of the proposed method. Responses of the 
system with decoupled-level scheme and optimal reduced order scheme are included for comparative analyses. 
It is recommended that the proposed method can be applied to supper large system. 
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1 Introduction 
The design of large system can be formulated as an 
optimal linear regulator control problem whose 
solution is a complete state control scheme [1]. Thus, 
the implementation requires the design of state 
estimators [2]. These increase the hardware cost and 
reduce the reliability of the control system. These 
are the reasons that a control scheme uses only some 
desired state variables such as output states. Upon 
this, a scheme referred to as suboptimal control is 
obtained but only some state variables are used in 
the implemented control scheme while the others 
are omitted for convenience [3]. 

Obviously, this approach is arbitrary and 
cannot be accepted on faith. Performance 
degradation is not evaluated for general system 
sunder different conditions. The recent approach 
using optimal reduced order model is obtained [4] 
[5].However, the optimal control strategy is also 
used for the reduced order model of the large system, 
the computation of an optimal controller becomes 
extremely difficult and time consuming as the order 
of the system increases. For an nth-order system it is 
necessary to solve an n(n+1)/2 Riccati equations in 
order to calculate the controller gain. And the 

problem formulation itself is not straight forward as 
it is complex to determine the design parameters in 
the performance criterion as the order of the system 
increases. To overcome these difficulties, the former 
paper concerned with the development of multi-
level optimal stabilization of interconnected power 
system in ref. [6] is applied to the proposed 
approach. The overall   system is decomposed into 
separate subsystems, each subsystem comprising 
one machine. At the subsystem level, an optimal 
feedback controller is derived by output feedback of 
each machine. The order of this model is obviously 
lower than that of the overall system and the method 
proposed in ref [6].Consequently, considerable 
savings in computer memory are achieved. The 
controllers thus determined at the subsystem level 
depend only on local information operating to the 
particular machine. And, since only the output 
feedback is used via optimal reduced order model, 
the control strategy can be implemented easily. 

In order to take into account the interaction 
between the different subsystems, a global 
controller is designed at a higher level [7]. At this 
level, all subsystems will transfer the necessary 
information to achieve the global objectives. In this 
paper, the global gain is obtained from the optimal 
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reduced order model of the whole system by using 
only output feedback. The evaluation of the global 
gain is much easier than the overall system optimal 
state feedback gains because the optimal reduced 
order model is used. 

The control strategy proposed here is applied to 
a, two-machine system. The results of the study are 
presented to demonstrate the effectiveness of the 
two-level optimal output feedback controller. A 
comparison between the performance of the 
proposed controller and that of the optimal reduced 
order method and the two-level control strategy is 
also included. 

The attractive features of the two-level optimal 
output feedback stabilizers design are as follows: 
(1) The output state variables are some desired or 
available variables; thus, the state variables of the 
reduced order model retain their physical meaning. 
(2) Local controllers determined depend only on 
local output information pertaining to the subsystem. 
Consequently, a considerable savings in 
computation effort at the (machine) subsystem level 
is achieved and no estimator is needed. 
(3) Interaction between the different subsystems is 
minimized by the use of the global controller gain at 
a higher level using the output state variables of the 
overall system via optimal reduced order model. 
The evaluation process is much easier than the 
optimal control strategy and the transient response is 
much better also. 

As a matter of fact this paper is an extension of 
optimal reduced order method proposed by Ali 
Feliachi et. a1 [4][5] and the two-level optimal 
stabilization method proposed by Y.L. Abdel-Magid 
and Gama1 M. Aly [6]. 
 
 
2 Problem Formulation 
 
 
2.1 Optimal Reduced Order Model 

The linearlized model of the electrical power 
system can be described by the following state space 
representation: 

X AX Bu= +                                                           (1) 

Where X  is 1n×  state vector, and ,A B are 
constant matrices of appropriate dimensions. Since 
the reduced order model derived in refs. [4][5] is 
used in the following study, the process of 
evaluating the reduced order model is abbreviated as 
follows without proof. 

The reduced order model is derived using the 
following system whose first m variables are the 
desired variables z, which are speeds and torque 
angles in the proposed approach: 

The similarity transformation T is obtained in 
ref. [4]. 

X AX Bu= +                                                           (2) 

[ ] ˆIm 0Z X=                                                         (3) 

Where 

X̂ TX=  

1Â TAT −=  

B̂ TB=  

Im m m= ×  identity matrix 
Assume that the eigenvalues, of Â  are distinct, 

this will actually be the case in the power system. 
Let [ ]1 2 nV V V V=  where nV  is the 

right eigenvector of A  associated with nλ . Let 
1W V −=  

Define  ˆWXφ =  
Then:  

uφ φ= Λ + Γ                                                            (4) 

Z Dφ=                                                                    (5) 

Where 

( )1 2
ˆ , , , nWAV diagonal λ λ λΛ = =  

ˆWBΓ =  

[ ]Im 0D V=  

These equations can be re-arranged and written in 
partition form as: 
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1 1 1 1uφ φ= Λ + Γ                                                         (6) 

2 2 2 2uφ φ= Λ + Γ                                                       (7) 

1 1 2 2Z D Dφ φ= +                                                        (8) 

Where 1Λ  contains modes to be retained, and 2Λ  
contains modes to be eliminated 

Assume the reduced order system we are 
sought to determine will be of the form as follows: 

Z FZ Gu= +                                                            (9) 

The evaluation algorithm of F and G proposed in ref. 
[4] are abbreviated as follows: 

1
1 1 1F D D−

−= Λ                                                        (10) 

Let mV  be the modal matrix associated with eqn. (10) 
Define 

( )1
1 2, , ,m m mF V FV diagonal λ λ λ−= =                  (11) 

1
mG V G−=                                                               (12) 

1
2mC V D−=                                                              (13) 

1
1 1 1mV D−Γ = Γ                                                          (14) 

Then  

2S C FC= Λ −                                                       (15) 

( ) 1TF F
−

Λ = − +                                                   (16) 

R S= −Λ                                                                (17) 

Let i m iα λ += , 1,2, ,i n m= − .  

Then ( )2 1 2, , , n mdiagonal α α α −Λ =  
The ( ),i j th  element of the m p×  matrix is given 
by: 

*
ij

ij
i j

R
λ α

Ω =
+

                                                        (18) 

Where the subscript * denotes complex conjugate 

1−Δ = Λ Ω                                                              (19) 

Let     

1 2K C= Γ + Γ                                                         (20) 

Then    

2G K= + ΔΓ                                                          (21) 

And     

G=VmG                                                                  (22)  

 

 
2.2 Decoupled-level Optimal Stabilization 
The method proposed in ref.[6] is abbreviated as 
follows: 

A multi-machine interconnected system S  can 
be described by a linear model of the form 

:S X AX Bu= +                                                    (23) 

Where X is an n-dimensional state vector and 
u  is an m-dimensional control vector. A and B are 
constant matrices of appropriate dimensions. Tile 
system in eqn. (23) can be considered to be 
composed of N interconnected subsystems, each 
subsystem iS , being described as iS : 
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( ): , 1,2, ,i ii i ii i iS X A X B u h x i N= + + =             (24) 

such that 

[ ]1 2
T

NX X X X=                                     (25) 

And 

( )
1

N

i ij j
j
j t

h x A X
=
≠

=∑                                                    (26) 

The two-level control strategy will be of the form 

l g
i i iu u u= +                                                            (27) 

l
iu  is a local feedback control vector assuming 

no interactions between subsystems, i.e., ( ) 0ih x = h 
ί ( x )=0. g

iu  represents a global control signal that 
compensates for the effect of the presence of 
coupling. 

The global signal gu  is determined such that 

0gBu CX+ =                                                        (28) 

Where 

0
ij

ij

A i j
C

i j
≠⎧

= ⎨ =⎩
                                                    (29) 

And    

gu B CX′= −                                                           (30) 

Where B′  is the pseudo-inverse of B, defined as 

1T TB B B B
−

′ ⎡ ⎤= ⎣ ⎦  

Thus 

1g T Tu B B B CX GX
−

⎡ ⎤= − = −⎣ ⎦                               (31) 

Where 
1T TG B C B B B C
−

′ ⎡ ⎤= = ⎣ ⎦  is so called the 

global gain matrix.  

 
 
3 Control Structure 
In order to stabilize the overall system S, the two-
level control strategy of the form is shown in eqn. 
(27). 

The local optimal feedback control l
iu  can be 

determined as follows: 
Assuming zero interactions at the local level, 

then 

, 1,2, ,l
i ii i ii iX A X B u i N= + =                              (32) 

These equations can be re-arranged and written in 
the form as:  

, 1,2, ,l
i ii i ii iX A X B u i N= + =                              (33) 

With 
T

i ir idX X X⎡ ⎤= ⎣ ⎦  

Where irX modes to be retained and idX  modes to 
be deleted. 

Using the expressions given in the section 2, a 
reduced order model of subsystem i' is obtained 

, 1,2, ,l
ir i ir i iX F X G u i N= + =                             (34) 

The performance of .each subsystem is measured 
when the quadratic cost 

( )
0

1
2

T lT l
i ir i ir i iJ X Q X u Ru dt

∞

= +∫                              (35) 

iJ  attains its minimum value when an optimal 
control l

iu  is applied to each subsystem. iQ  and iR  
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are symmetric positive semi-definite and positive 
definite matrices, respectively. 

The optimal l
iu  minimizing eqn.(35) can be 

determined as 

l
i i iru K X= −                                                            (36) 

1
i i i iK R G P−=                                                          (37) 

Where Pi is the solution of the Riccati equation: 

1 0T T
i i i i i i i i i iPF F P PG R G P Q−+ − + =                        (38) 

A multi-machine interconnected system S 
shown in eqn.(23) can be re-arranged and written in 
the form as: 

X A X B u′ ′ ′ ′= +                                                     (39) 

With 

[ ]Tr dX X X′ ′ ′=  

Where 

[ ]1 2
T

r r r NrX X X X′ ′ ′ ′=  

[ ]1 2
T

d d d NdX X X X′ ′ ′ ′=  

Using the expressions given in section 2, a 
reduced order model of the whole system S is 
obtained as 

g
r rX F X G u′ ′ ′ ′= +                                                   (40) 

The global signal gu  is determined such that 
0g

rG u C X′ ′ ′+ =   
where  

0
ij

ij

F i j
C

i j
′ ≠⎧′ = ⎨ =⎩

                                                    (41) 

From eqn.(31), we get the global gain matrix G as 

1ˆ T TG G G G C
−

′ ′ ′ ′⎡ ⎤= ⎣ ⎦  

The overall control strategy can be shown in Fig.1 

s
1

iCiB

iA

Ĝ

s
1

jCjB

jA

+

+ +

+−

−

iXiX

jXjX
jy

iy
iu

ju

l
iu

l
ju

g
iu

g
ju

 
 
Fig.1 Decoupled-level optimal control strategy via 

output feedback 
 
 
4 System Study 
The model given in [6] is 
X AX Bu= +                                                         (43) 
Where 

1 1 1 1 2 2 2 2
T

q F q FX e V e Vω δ ω δ′ ′⎡ ⎤= Δ Δ Δ Δ Δ Δ Δ Δ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−

−−−−
−−−−

−−

−−−

=

5016.1336478.6770022.1023439.6770

149.03061.00565.000
1234.0

0
056.00

00099.3760000
0146.0178.02473.000433.0178.00
0396758.3980508.1949856.3980
013.0046.00244.0455.0046.00
0000000377
00041.00747.0001431.00747.0244.0

A

T

B ⎥
⎦

⎤
⎢
⎣

⎡
=

000250000000
000000025000

 

Simulation results indicated that the system 
response is highly oscillatory. To improve the 
system damping using the two-level scheme, the 
system is decomposed as follows: 

Machine (1): 
1 1 1 1 1

T

q FX e Vω δ ′⎡ ⎤= Δ Δ Δ Δ⎣ ⎦  

Machine (2): 
2 2 2 2 2

T

q FX e Vω δ ′⎡ ⎤= Δ Δ Δ Δ⎣ ⎦  

The decomposed system and control matrices 
are: 
For system 1: 
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1

0.244 0.747 0.1431 0
377 0 0 0

0 0.046 0.455 0.244
0 398.56 19498.8 50.0

A

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− − −⎣ ⎦  

 

[ ]1 0 0 0 25000 TB =  

The eigenvalues of 1A are -0.127± j5.206 and   
-25.22 ± j64.38. 

Obviously, the modes that should be retained 
are the mechanical modes -0.127 ± j5.206. Using the 
expressions given in section 2.1, a reduced order 
model is obtained. 

1 1 1 1 1r rX F X G u= +                                                       (44) 

where [ ]1 1 1
T

rX ω δ= Δ Δ , 1

0.26 0.07
377 0

F
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

and [ ]1 0.1826 0.734 TG = − − . 

For the comparative reason, the state weighting 

matrix 1

1 0
0 10

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and control weighting matrix 

1 1R = are chosen as that used in refs. [4][5] and [6]. 
The values of the feedback control gains are 
calculated as follows: 

[ ]1 49.3107 0.725K = − −  
For system 2: 

2

0.2473 0.177 0.146 0
377 0 0 0

0 0.0565 0.3061 0.1492
0 677.78 13364.1 50.0

A

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦  

 

[ ]2 0 0 0 25000 TB =  

The eigenvalues of 2A  are -0.988± j8.35 and     
-25.19±j37.13 

Obviously the modes that should be retained 
are the mechanical modes -0.988±j8.35. Using the 
expressions given in section 2.1 a reduced order 
model is obtained. 

2 2 2 2 2r rX F X G u= +                                                     (45) 

where [ ]2 2 2
T

rX ω δ= Δ Δ , 2

0.18 0.18
377 0

F
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

and [ ]2 0.2688 2.6202 TG = − −  

For the comparative reason, the state weighting 

matrix 2

1 0
0 10

Q ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and control weighting matrix 

2 1R =  are chosen as that used in refs. [4][5] and [6]. 
The values of the feedback gains are calculated as 
follows: 

[ ]2 32.8413 0.6864K = − −  
From equation (39), the interconnected system 

S can be rearranged and written as: 
X A X B u′ ′ ′ ′= +                                                     (46) 
Where 

1 1 1 1 2 2 2 2

T

q F q FX e V e Vω δ ω δ′ ′ ′⎡ ⎤= Δ Δ Δ Δ Δ Δ Δ Δ⎣ ⎦
0.244 0.0747 0.1431 0 0 0.0747 0.0041 0
377 0 0 0 0 0 0 0

0 0.046 0.455 0.244 0 0.046 0.13 0
0 398.56 19498.8 50 0 398.58 3967 0
0 0.178 0.0433 0 0.2473 0.178 0.146 0
0 0 0 0 376.99 0 0 0

0
0 0.056 0 0 0.0565 0.3061 0.149

0.1234
0 677.39 1

A

− − −

− −
− − − −

′ = − − − −

− −

− − 0234.22 0 0 677.78 13364.16 50

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

0 0 0 25000 0 0 0 0
0 0 0 0 0 0 0 25000

T

B
⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

 

The eigenvalues of the original system are given in 
Table I 

 
Table I SYSTEM EIGENVALUES 
-0.09 ± j 9.84 -25.17 ± j 67.8 
-0.0017 -25.24 ± J30.31 
-0.243  

The modes that should be retained are the 
modes -0.09 ±  j9.84,-0.0017,-0.243 . Using the 
optimal reduced order method, the following 
reduced order model is obtained with the form of 
eqn. (40): 

r rX F X G u′ ′ ′ ′= +                                                    (47)  

Where 

[ ]1 1 2 2
T

rX ω δ ω δ′ = Δ Δ Δ Δ  

0.237 0.07 0.007 0.073
377 0 0 0
0.059 0.18 0.188 0.184

0 0 377 0

F

− − −⎡ ⎤
⎢ ⎥
⎢ ⎥′ =
⎢ ⎥− − −
⎢ ⎥
⎣ ⎦
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0.022 0.15 0.009 0.23
0.007 0.11 0.029 0.35

T

G
− −⎡ ⎤′=⎢ ⎥− −⎣ ⎦

 

By ref.[8], it can be checked that the 
assumption of weakly coupled subsystems is not 
satisfied in this case and the global signal needs to 
be calculated. 

The global control matrix G is evaluated from 
eqn.(42) and given by 

0.118 0.36 0.02 0.209
0.0975 0.2974 0.0141 0.1465

G
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

After the interconnected system level control, 
the interconnected system S in eqn.(43) can be 
written as follows: 

X AX Bu= +                                                         (48) 

Where 

1 1 1 1 2 2 2 2
T

q F q FX e V e Vω δ ω δ′ ′⎡ ⎤= Δ Δ Δ Δ Δ Δ Δ Δ⎣ ⎦
0 0 0 0 0 0 0 0

377 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

2950 8601 19499 50 500 5624 3967 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

2438 6758 10234 0 353 4340 13364 50

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − −⎢ ⎥′ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − − − −⎢ ⎥⎣ ⎦

 

It is shown from eqn.(48) that the interaction 
between subsystems should be minimized by using 
the output states feedback control only. 

The transient responses of the angular 
frequencies with and without global control to a 5% 
change in the mechanical torque of machine 1 are 
shown in Figure 2.  

The overall system eigenvalues are given in 
Table II ., and the results in refs. [4][5] [6] are listed 
for comparative analyses. 
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(b) 

Fig.2 Transient responses of the angular 
frequencies with and without global control to a 5% 

change in the mechanical torque of machine 1. 
 

 
Table II SYSTEM EIGENVALUES 

Optimal [1] -0.74 ± j 9.88 
-1.91 ± j 1.85 
-25.17 ± j 6.78 
-25.24 ± j 30.31 

Optimal Reduced Order[4] [5] -0.6 ± j 10.2 
-1.2 ± j 1.91 
-23.3 ± j 67.2 
-2.49 ± j 29.8 

Two-level Stabilization[6] -0.0305 ± j 0.1356 
-0.0744 ± j 0.1010 
-0.0926 
-5.8469 

Proposed Method -3.8171 ± j 8.5218 
-8.5314 ± j18.3696 
-16.9549 ± j19.9542 
-21.3228 ± j66.0701 
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It is shown from Table II. That the relative 
stability of the proposed method is much better than 
others. 

The transient responses of the angular 
frequencies to a 5% change in the mechanical torque 
of machine 1 and machine 2 are shown in Figure 3 
and Figure 4 respectively. 

The transient responses following a 5% change 
in the mechanical torque of both machines at the 
same time are shown in Figure5.  
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(b) 

Fig .3 Transient response following a 5% change in 
mechanical torque of machine 1 . 
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(b) 

Fig . 4   Transient response following a 5% change 
in mechanical torque of machine 2. 
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(b) 

Fig. 5 Transient response following a 5% 
change in the mechanical torque of both machines at 

the same time. 
 

 
From Figure 3-5, it seems like the transient 

responses of the Decoupled-level method [6] may 
be better than the proposed method in some cases. 

The proposed method is still charming and 
worthy of suggesting for the following reasons: 
1. The decoupled-level method uses all states as 
control signals, but however the proposed method 
uses only the output states such as torque angles and 
speeds. 

This takes into account the realities and 
constraints of the electrical power system and 
reduces the hardware cost and increases the 
reliability of the system. 
2. From Table II, it is shown that the relative 
stability of the proposed method is much better than 
the others. This results from that the optimal 
reduced order model can retain the worst 
eigenvalues [4][5]. 
3. It is simpler to design a PSS with a reduced order 
model than a whole system model. 
 
 
5 Conclusion 
Optimal output states feedback stabilization of a 
multi-machine interconnected system is achieved 
using a two-level control strategy. Local controllers 
determined at the lower level depend only on local 
output information pertaining to the particular 
subsystem. Consequently, a considerable savings in 
computational time is achieved. 

Effort at the subsystem level is achieved. The 
optimal reduced order model is used to retain the 
physical meaning of the output -states. By using the 
output feedback only, this approach reduced the 
implementation cost (hardware) and increases the 

reliability of the control system. Interaction between 
the different subsystems is minimized by use of the 
global controller at a higher level with only output 
feedback. Thus, a new optimal Decoupled-level 
control strategy by using only the output states 
feedback is reached.  

The results obtained with the study systems 
demonstrate that the proposed controller is very 
effective and has the high relative stability. 
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