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Abstract: In this paper, we propose a novel wavelet coefficient threshold (WCT) depended on both time and 
frequency information for providing robustness to non-stationary and correlated noisy environments. A 
perceptual wavelet filter-bank (PWFB) is firstly used to decompose the noisy speech signal into critical bands 
according to critical bands of psycho-acoustic model of human auditory system. The estimation of wavelet 
coefficient threshold (WCT) is then adjusted with the posterior SNR, which is determined by estimated noise 
power, through the well-known “Quantum Neural Networks (QNN)”. In order to suppress the appearance of 
musical residual noise produced by thresholding process, we consider masking properties of human auditory 
system to reduce the effect of musical residual noise. Simulation results showed that the proposed system is 
capable of reducing noise with little speech degradation and the overall performance is superior to several 
competitive methods. 
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1 Introduction 
Speech enhancement has become an important 
problem since there are many areas where it is 
necessary to enhance the perceptual quality of 
speech degraded by background noise, such as voice 
communication and coding systems, car interiors for 
hands free cellular, aircraft cockpits, hearing aids 
and automatic speech recognition (ASR) systems [1-
2]. So far, the researchers provide many approaches 
to enhance speech quality [3-10]. Wavelet 
thresholding is a simple de-noise technique that 
adequately chooses the value of wavelet coefficient 
threshold (WCT) to remove noise form signal in 
many signal-processing applications [7-10]. Donoho 
and Johnston [7-8] proposed a universal threshold 
for removing the additive white Gaussian noise, but 
may not work well in enhancing colored-noise 
corrupted signal. After that, adaptive wavelet-based 
methods in speech enhancement are widely 
presented [9-11]. They utilize variant WCT to 
improve the performance of speech enhancement. 
Bahoura et al. [11] proposed a method of threshold 
adaptation in time domain. Utilizing the use of 
Teager energy operator (TEO) to improve the 
discriminability for a speech frame whether is 
speech-dominated or noise-dominated.  
In fact, the key issue is to select threshold and 
shrinkage function in wavelet thresholding method. 
Traditional wavelet de-noising methods involve 
either hard or soft thresholding. In hard thresholding 

method, the coefficient is set to a specific value 
when its magnitude exceeds the threshold. On the 
other hand, soft thresholding shrinks or scales the 
coefficient that exceeds the threshold value. It is 
known that Quantum Neural Networks (QNN) is 
exploited a new shrinkage function in speech 
enhancement system [12]. To reduce the effect of 
musical residual noise, a number of methods were 
considered [13-14]. Virag [13] made use of masking 
properties of the human auditory system to reduce 
the effect of residual noise. Since human ears cannot 
perceive additive noise when at levels below the 
noise masking threshold (NMT). 
In this paper, we propose a novel WCT depended on 
both time and frequency information for providing 
robustness to non-stationary and correlated noisy 
environments. A perceptual wavelet filter-bank 
(PWFB) is firstly used to decompose the noisy 
speech signal into critical bands according to critical 
bands of psycho-acoustic model of human auditory 
system. The estimation of WCT is then adjusted 
with the posterior SNR, which is determined by 
estimated noise power, through the well-known 
QNN. In order to suppress the appearance of 
musical residual noise produced by thresholding 
process, we consider masking properties of human 
auditory system to reduce the effect of musical 
residual noise. 
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2 Perceptual Wavelet Filter-bank 
The human speech mostly spans within 4 kHz and 
there are only 17 critical bands existed in this 
bandwidth as listed in Table 1 [13]. In order to 
introduce a speech enhancement method based on 
the human auditory model, a perceptual wavelet 
filter-bank (PWFB) is designed to mimic the critical 
bands as widely used in perceptual [15]. The filter 
banks, implemented by using the high-pass filter 
and low-pass filter with the Daubechies family 
wavelet [16], perceptually divide whole band into 
subband domain. In the first level decomposition, 
scaling space and wavelet space will be decomposed 
into two which correspond to the frequency ranges 
of 0–2 and 2–4 kHz. This operation is repeated to at 
most five times. Table 2 shows the coefficients 
through five-stage tree structure of perceptual 
wavelet filter-bank (PWFB). The PWFB 
decomposes the noisy signal ( )x n  into 17-subbands 
corresponding to wavelet coefficient sets 

{ }, ( ) ,   1,....,k m
cw PWFB x n n N= = , (1) 

where {}PWFB ⋅  means the perceptual wavelet 

packet transform. ,k m
cw  defines the thc  wavelet 

coefficient in thk  subband. N  is the length of 
speech frame. 
 

3 The Estimation of Time-Frequency 
Dependent WCT 

Here we use a new adaptive time-frequency 
dependent thresholds estimation method. This 
involves first estimating the standard deviation of 
the noise, σ , for every subband and time frame. 
Consequently, we use a quantile-based noise 
tracking approach to track the slowly varying non-
stationary noise statistics [17]. 
 
Table 1.  The characteristics of critical bands under 4 kHz 

Bark-Band 
Number 

Lower 
Edge 
(Hz) 

Upper 
Edge 
(Hz) 

Center 
frequency 
(Hz) 

Bandwidth 
(Hz) 

1 0 100 50 100 
2 100 200 150 100 
3 200 300 250 100 
4 300 400 350 100 
5 400 510 450 110 
6 510 630 570 120 
7 630 770 700 140 
8 770 920 840 150 
9 920 1080 1000 160 
10 1080 1270 1170 190 
11 1270 1480 1370 210 
12 1480 1720 1600 240 
13 1720 2000 1850 280 
14 2000 2320 2150 320 
15 2320 2700 2500 380 
16 2700 3150 2900 450 
17 3150 3700 3400 550 

Table 2.  The coefficients of perceptual wavelet filter-
banks  

Bark-Band 
Number 

Transform 
stage  

Coefficients 
index 

Coefficients 
length 

1 5 0-7 8 
2 5 8-15 8 
3 5 16-23 8 
4 5 24-31 8 
5 5 32-39 8 
6 5 40-47 8 
7 5 48-55 8 
8 5 56-63 8 
9 4 64-79 16 
10 4 80-95 16 
11 4 96-111 16 
12 4 112-127 16 
13 4 128-143 16 
14 4 144-159 16 
15 3 160-191 32 
16 3 192-223 32 
17 3 224-255 32 

 
The noise level estimation is given by  

int( )
2, ,

0

int( )

k
segq L

k m k m k
c seg

j

w q Lσ
⋅

=

= ⋅∑ɶ , (2) 

where int( )⋅  is the nearest integer rounding function. 

The nominal value of q  is 0.2. ,k mσɶ  is denoted as 

the corresponding estimated noise level of the thm  
frame in the thk  subband. These are estimated 
using the segment of previous data 

{ }, | 0,..., 1k m k
c seqw c L= − . 

where k
seqL  means the length of the segment in the 

thk  subband. 
The initial WCT, ,

0
k mWCT ,  for thk  subband at the 

thm  frame, can be estimated as in [17]:  
, ,

0 22log( log ( ))k m k m k k
frm frmWCT L Lσ= ⋅ɶ , (3) 

where k
frmL  means the frame length at the thk  

subband.  
The posteriori SNR on thk  subband can be 
evaluated as 

2,

,
10 2,

10 log
k m
ck m

pot
k m

w
SNR

σ

 
 = ⋅
 
 
ɶ

, (4) 

where 
2,k mσɶ  and 

2,k m
cw  denote the estimated 

subband noise power and observed signal power. 
To remedy the drawbacks of the traditional 
threshold algorithms, we adopt a new method of S-
curve of Quantum Neural Network (QNN) to choice 
appropriate WCT [18]. The S-curse in QNN model 
is multi-level, which expression is 

1

1 1
( )

1 exp( ( ))

sn

is i

QNN x
n x θ=

=
+ − −∑ , (5) 
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where sn  is the number of curve level and iθ   is the 
position of the level respectively. x  is herein 
defined as ,( )k m

potx SNR Tα= ⋅ − . 

 

4 Perceptual Suppression using Noise 
Masking Threshold (NMT) 

In order to improve the final perceptual quality, a 
suppression method of musical residual noise can 
adopt a perceptual gain factor into wavelet 
thresholding. The time-frequency adapted wavelet 
threshold is finally modified as below: 

, , ,
0

2,

,

,

where  

1 1 max 1,  0
( , )

k m k m k m
final pecp

k m

k m
pecp

WCT WCT Gain

Gain
NMT k m

σ

= ⋅

  
  = + −  
  
  

ɶ

 (6) 

denotes a perceptual gain factor given by [17]. 
From Eq.(6), it is known that if the energy of 

musical residual noise, 
2,k mσɶ , is greater than the 

NMT, ( , )NMT k m , in a subband, the wavelet 
coefficient thresholds become small adjusted by the 
gain factor to suppress infecting noise. However, if 
the energy of residual noise is smaller than the NMT, 
the corrupting noise cannot be perceived by the 
human ear. We do not need to change the WCTs for 
retaining the speech quality. 
In order to calculate the NMT on each subband, the 
estimated spectra of enhanced speech must be first 
determined and it be roughly estimated by the 
spectral-subtraction method. Netx, the subband 
energy ( , )k mε  is calculated by 

2,( , )
h

l

k
k m

k

k m wε =∑ , (7) 

where kh  and kl  denote the upper and the lower 
frequencies at critical band can be found in [13]. 
An excitation pattern ( , )B k m  can be regarded as an 
energy distribution along the basilar membrane. 

( , )B k m  can be calculated by convolving the 
subband energy ( , )k mε  with the spreading function 

( )F k . ( , )B k m  is given by [13, 19]: 
( , ) ( ) ( , )B k m F k k mε= ∗ . (8) 

A relative threshold offset ( )O k , which can be 
found in [13, 19], specifies whether a speech frame 
is tone-like or noise-like. This threshold should be 
imposed when adjusting the log subband energy. 
Therefore, a threshold ( , )B k mɶ  is computed as the 
sum of the log energy for the excitation pattern and 
the offset ( )O k , written as 

10( , ) 10 log ( , ) ( )B k m B k m O k= ⋅ +ɶ , (9) 
where the values of the offset ( )O k  are all negative. 
Convolving the subband energy ( , )k mε  with the 
spreading function ( )F k  increases the energy in 

each subband, so to multiply each ( , )B k mɶ  by the 
inverse of the energy gain is necessary for re-
normalization. Accordingly, a normalized threshold 
is given by 

( , ) ( , ) ( , )Th k m B k m G k m= −ɶ , (10) 
where ( , )G k m  denotes the gain factor between the 
spread energy ( , )B k m  and the subband energy 

( , )k mε  in dB. 
( , )G k m  is expressed as 

10

( , )
( , ) 10 log

( , )

B k m
G k m

k mε
 

= ⋅  
 

. (11) 

Additionally, the normalized threshold ( , )Th k m  is 
compared with the absolute-hearing threshold (AHT) 
which is frequency-dependent and can be closely 
approximated as [13, 19], 

20.8 0.6( 3.3)

4

AHT( ) 3.64 6.5

                 0.001     [dB]

ff f e

f

− − −= −
+

 (12) 

with f  in kilohertz. 
Finally, the NMT ( , )NMT k m  is obtained by 

{ }( , ) max AHT( ),  ( , )NMT k m f Th k m= , (13) 

where f  is chosen as the central frequency of the 
critical band. 
 
 

5 Implementation of the Proposed 
Algorithm 

Figure 2 shows the system block diagram for the 
proposed wavelet-based speech enhancement 
algorithm. The wavelet packet filter-bank is first 
applied to decompose the noisy speech signal into 
multi-resolution time-spectral subbands. Thresholds 
are independently estimated across successive 
speech frames in each decomposed subband, and are 
adapted as time-variant values based on the adaptive 
noise estimation algorithm. The suppression of 
background noise is then achieved by soft 
thresholding the decomposed wavelet coefficients. 
Finally, these thresholded wavelet coefficients are 
reconstructed to obtain the enhanced speech samples 
using the inverse wavelet packet filter-bank.  
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Figure 2. The architecture of proposed speech enhancement method based on the time-frequency adaptation of 
the wavelet threshold 
 
 

Table 3.  The average SegSNR results of speech 
enhancement under various noisy conditions 

average SegSNR (dB) 
Noise type 

Proposed S.H. Chen M. Bahoura 

F16 noise 10.62 10.12 7.81 

White noise 9.57 9.34 6.98 

Babble noise 7.74 7.40 5.37 

Factory noise 8.65 9.12 7.12 

Vehicle noise 12.65 10.57 8.24 

 
Table 4.  MOS results of the listening test  

The mean opinion score  
Noise type 

Proposed S.H. Chen M. Bahoura 

F16 noise 3.57 3.54 2.12 

White noise 3.74 3.12 2.89 

Babble noise 2.56 2.67 1.68 

Factory noise 3.13 2.89 1.45 

Vehicle noise 3.89 3.16 2.45 

 

6 Experimental Results 
In this experiments, the speech databases are 
Mandarin and spoken by 22 males and 10 females. 
The frame size is 256 at the sampling rate of 8 kHz 
with 16-bit resolution. Noisy speech signals were 
obtained by corrupted the clean speech with White, 
F16 and Babble (speech-like) noises extracted from 
the Noisex-92 database [20]. The recorded speech 
signal was tested in the noisy environment including 
SNRs range from - 5dB to 10 dB. In our 
experiments, the subjective evaluation and objective 
evaluation are applied to evaluate the performance 
of the speech enhancement method. 
 

3.1 Segment SNR Improvement 
The average SegSNR can be used to estimate the 
amount of noise reduction, residual and speech 
distortion. Table 3 shows that the average SegSNR 
results of the speech enhancement evaluations in 
different SNR levels. From this Table we can see 
that the proposed algorithm has much better 
enhancement performance than others.  
 
3.2 Subjective Listening Tests  
The mean opinion score (MOS) [21] was used to 
represent the global perception of the residual noise, 
background noise and speech distortion. The MOS 
is subjectively evaluated the subjective listening 
tests by a five-scale absolute opinion from 1 (poor) 
to 5 (excellent). The results of subjective listening 
tests are presented in Table 4. The subjective 
listening tests show that the proposed enhancement 
method produces the highest quality speech 
perceived by the actual human listeners among the 
algorithms being tested especially for low SNR. The 
perceptual method is better able to remove the 
background noise than that without perceptual 
model. 
 

7 Conclusion 
In the paper, a novel speech enhancement algorithm 
using time-frequency wavelet threshold is presented. 
In order to exploit the physiology of human auditory 
system to recovery high-quality speech from noisy 
speech, the noisy speech is first decomposed into 
critical bands by perceptual wavelet packet 
transform. Then, an adaptive wavelet threshold is 
adjusted according to posterior SNR based on S-
curve of Quantum Neural Network (QNN). 
Experimental results show that the proposed 
algorithm is better able to perceptually reduce the 
non-stationary and colored noise and is free from 
musical residual noise. 
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