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Abstract: Spanning subgraphs is necessary for the communication in networks. Apart from theoretical existence 

results, effective technique of searching graph factors is an important problem in graph theory, complex 

networks, and applications which is NP hard. In this paper, we first propose a lattice based evolution technique. 

Then we present an evolutionary searching paradigm for the minimum fractal graph factors. A simple Markov 

analysis of the proposed genetic algorithm is given together with some experiments on the effects of parameters 

to the performance of the algorithms. 
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1 Introduction 
Evolutionary computing is the collective name for a 

range of problem-solving techniques based on the 

principles of biological evolution, among which ge-

netic algorithm is one of the most important and   

well-known implementations, see   [5][11][13][16]    

for example. For years, evolutionary computing has 

fond wide applications to a variety of problems 

ranging from optimization and search problems. 

Various generalizations of evolutionary computing 

have emerged including such new techniques as 

swarm intelligence. However, among evolution’s 

many basic features, an essential one is that the 

evaluation is based on a scalar valued fitness func-

tion. This feature restricts more extensive applica-

tions of evolution because on certain circumstances, 

it is difficult to find a scalar fitness function, or 

moreover, it does not exist.  

On the other hand, existence of graph factors is an  

important theoretical problem which naturally ap-

pears in the study of complex networks, biological 

and social systems, etc [1][2][12][15][22]. For ex-

ample, many communication and transportation sys-

tems can be represented as complex networks. A 

wide class of problem solutions is subject to finding 

connected subgraphs [9][20]. Other related works in 

this field include [23][24] and [25]. 

Apart from connective subgraphs, spanning sub-

graphs are also important in the study of communi-

cation in complex networks. One of the reasons is 

that malfunction of one or more nodes in a network 

will generally affect both global and local properties 

of the remaining nodes. In this case, malfunction 

will cause some edges unusable and break the con-

nectivity of the entire network. 

A fractional factor is loosely defined as a span-

ning subgraph with prescribed node degrees. For 

example, a group of individuals interacting with 

each other in social networks combine into a global 

coupled network. A Hamilton cycle, or the longest 

cycle containing all the nodes of the network, is a 

spanning subgraph with each node adjacent to exact 

two edges of the graph G. Plummer and Saito [18], 

Nishimura [17], Ananchuen and Saito [3] obtained 

some properties for regular networks to be r-factor-

critical in term of various concepts of closures, in-

dependence number or domination number, etc.   

Although there are many theoretical results on the 

existence of graph factors, constructive way to find 

out them is more important in real applications. 

However, effective methods to find out factors still 

remain an open, complicated problem, and there are 

seldom any literature concerning about this up to 

now.  

Inspired by these ideas, this paper focuses on the 

constructive study and effective searching of mini-

mum fractional graph factors. In order to do so we 

propose an evolutionary model based on lattices for 

approximate factors. Up to now, we have not found 

this lattice based evolution and applications to graph 

factors.We also present a Markov analysis together 

with some experiments and discussions.  
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2 Problem Fractional Factors of Graphs 

In this section, we will give detailed description of 

the problem. Let ( ) ( )( ),G V G E G=  be a simple and 

undirected graph, where ( )V G  and ( )1E G  denote the 

vertex set and the edge set of G respectively. For 

any ( )S V G⊆ ,we use G S  to denote the subgraph 

generated by the vertices ( ) \V G S .The symbol 

i G( )S  denotes the number of isolated vertices of  

G S .A spanning subgraph is a subgraph that con-

tains all the vertices of the original graph. 

Let H be a spanning subgraph of G. H is called an 

r − factor of G if ( )Hd x r=  for each ( )x V G∈  where 

r is a nonnegative integer [6] and ( )Hd x  is the de-

gree of a node. Fractional factors are natural gener-

alization of factors. More precisely, let ( ) [ ]0,1h e ∈  

be a function defined on ( )E G  and define 

( ) ( ) ( ){ }, :
x

h

G x
e E

d x h e E xy xy E G
∈

= = ∈∑      (1) 

Then ( )h

Gd x  is called the fractional degree of x in G. 

The function ( )h e  is called an indictor function. 

 

Definition 2.1 Let ( ) ( ){ }= : , 0hE e e E G h e∈ ≠  and 

hG be a spanning subgraph of G such that 

( ) h

hE G E=  and ( )h

Gd x r=  for ( )x V G∈ .Then 
hG  is 

said to be a fractional r-factor of the graph G. 

 

One important fact is that the definition of frac-

tional factors is subject to the indicator function. 

Among all the fractional r-factors, fractional          

1-factors
1
 attract special interests in the literature 

and they are also the main focus of this paper.  

Suppose ( )V G N=  and the indicator function 

( ) [ ]0,1h e ∈  for edge e adjacent to node i and j. We 

call ( )h e  the weight on the edge e. Let the symmet-

ric weight matrix be defined as  
ij N N

W w
×

 =    

Where ( )ijw h e=  is the weight on the edge (i, j). 

Sometimes complex networks also have weighted 

edges in the form of a matrix. Therefore an interest-

ing problem is how to find fractional factors with a 

prescribed weight matrix.  

We start with fractional 1-factors. First we sup-

pose G has a fractional 1-factor F. In the following 

an edge will be denoted by e=(i, j) for simplicity. 

Then for all , 1, 2, ,i j N= ⋅ ⋅ ⋅  we set define 

                                                 
The notations V,E are often used when there is no confusion 

caused. 

1, ,

0,otherwise.

ij

ij

e F
x

∈
= 


                       (2) 

 
Table 2.1 Finding a minimum 1-factor in weighted network 

Input: G with the edge weight matrix W = [wi j] 

Output: F: a fractional 1-factor 

Steps: 

1. If rank(A) < rank(A, I), then G has no fractional 1-factors. Oth-

erwise if rank(W) = rank(W, I) ≤  N, then G has fractional 1-

factors. 

2. Solve the linear equations (2.4). Let F be a fractional 1-factor 

with minimum edges among all the fractional 1-factors, then output 

F. 

END 

Consequently, for a network with given edge 

weight matrix 
ij N N

W w
×

 =    where [ ]0,1ijw ∈ , the 

problem of finding a fractional 1-factor is equivalent 

to solving a group of linear equations as follows:   

{ }
1

1,

0,1 , =1,2, ,   

N

ij ij
j

ij

w x

x i N

=

 =

 ∈ ⋅⋅⋅

∑
               (3) 

If written in matrix form, the group of equations 

is IWX = ,where I is a matrix with diagonal members 

equals to 1, and ,ij ijN N N N
W w X x

× ×
   = =    .This im-

plies that there are at most N equations with N N×  

variables 
ijx  in IWX = .To solve the existence prob-

lem of fractional 1-factors we need to estimate the 

rank ( ) ( ),rank W rank W I N= ≤ . 

Now we consider minimal fractional factors. For 

any network with given edge weight 
ijw , finding a 

fractional 1- factor with minimum edges is a linear 

programming:  

{ }

,

1

min

1,

0,1 ,

1,2, , .

iji j

N

ij ij
j

ij

x

w x

x

i N

=



 =

 ∈

 = ⋅⋅ ⋅

∑

∑                           (4) 

There are at most N N×  equations with N N×  

variables 
ijx  in (2.4). So it is straight forward to pre-

sent an algorithm as in Table 2.1 for this problem.  

 

 

3 Lattice Based Evolution 

Evolution is an optimization scheme based on the 

mechanisms of natural selection with an important 

principle of survival of the fittest [11][13], etc. For a 

binary coding scheme with length L, all possible 

chromosomes form a space.  
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1 2
1

L

L i
i

A A A A A
−

= × ×⋅ ⋅ ⋅× =∏               (5) 

The system at time t is expressed by an architec-

ture A(t) with environment variable I(t). Evolution is 

a process 
tτ : 

: ( ) ( ) ( ) ( 1)t A t I t H t A tτ × × → +           (6) 

where H(t) is a variable relating to history status of 

the system. Suppose ( ),ℜ 〈  is a lattice. Then a lattice 

based fitness measure 
tµ  is a mapping 

: ( ) ( )t A t H tµ →× ℜ                    (7) 

In this setting, a lattice based evolution has the 

following formal description: 

( )

( )
( )

,

  ( )

 : ( ) ( ) ( ) ( 1)  

 ( 1) ( ) ( )

( 1) ( )

t

t

t

t

optimize A t

A t I t H t A t

H t H t I t

I t I t

µ

τ

τ

τ

→

=




× × +


+ =
 +

 

Next we give some details about the proposed lat-

tice measure. In the following we will use :µ Ω→ℜ  

to denote a general lattice measure where ( ),ℜ 〈   is a 

linear lattice. A linear lattice is a lattice where the 

partial order is defined by a cone.  

 

Definition 3.2  Suppose ℜ  is a real linear space. 

C ⊂ℜ  is a nonempty convex set satisfying 

( )
( )
1 If , then  for 0.

2 If , then -  for 0.

x C ax C

x C x C x

α∈ ∈ ≥

∈ ∈ =    
 

A partial ordering induced by a cone C means 

that x yp  if y x C− ∈ . We often write x y≤  instead 

of x yp  for simplicity. As usual, a measure will 

have some additive properties.  

 

Definition 3.3 Suppose Β  is a set consisting of 

some subsets of B ⊂ Ω  as its elements. We call Β  a 

fieldσ −  if the following conditions are satisfied:  

( )
( )

( )
1

1 .

2  provided  for 1,2, .

3 If  then  where \ .

j jj

B

E E j

E E E B E

∞

=

∈Β

∈Β ∈Β = ⋅⋅ ⋅

∈Β ∈Β =

U
 

 

Definition 3.4 Suppose Β  is a fieldσ − . A function 

µ  on Β  is called a lattice measure and ( ), ,B µΒ  is 

called a lattice measure space if 

( ) ( )
( ) ( )
( )

( ) ( )1 11

1 0   .

2 0 provided .

3  pairwise disjoint sets   

and   then .                          

j

j j j jjj

E for any E

If E

E E E

µ

µ θ θ

µ µ∞ ∞∞
= ==

∈ Β

= ∈ Β

∈ Β

∈ Β = ∑

f

U U

  

Now we present an example of lattice measure. 

Suppose    
d

C R⊂  is the positive cone 

( ){ }1 , , : 0, 1, ,              d iC r r r d i d= = ⋅ ⋅ ⋅ ≥ = ⋅ ⋅ ⋅ . For a search 

space Ω  with a mapping :     df C RΩ → ⊂ , let 

2    
ΩΒ = and  

 ( ) ( )= ,
x B

B f x Bµ
∈

∈ Β∑                  (8) 

Then clearly the measure µ  is a lattice measure. 

 

 

3.1 Dynamic Niche Scheme 

Dynamic niche sharing model is proposed by B.L. 

Miller and Shaw M.J. in 1996 [16]. It attempts to 

identify peaks of the forming niches and uses dy-

namically identified peaks to classify all individuals 

as either belonging to one the dynamic niches, or 

else belonging to the non-peak category.  

In the dynamic niche sharing scheme, the shared 

fitness value for an individual within a dynamic 

niche is its raw fitness value divided by the dynamic 

niche population size. Otherwise, the individual be-

longs to the non-peak category, and its niche count 

is calculated using the standard niche count. Appli-

cations have proved that dynamic niche sharing is 

more efficient than standard sharing techniques.  

For the purpose of the graph factor problem in 

this paper, we present a variant dynamic model, the 

dynamic collaborative co-evolution model. The pro-

posed model combines the advantages of dynamic 

niche sharing and co-evolution strategy. We define 

the model to be dynamic in the following sense. 

First, the population is dynamically divided into 

sub-populations. This dynamical process is con-

trolled by the niche core. Secondly, the niches are 

dynamic which are determined by a niche core set 

consisting of present best solutions of the problem. 

Thirdly, the niche core set is dynamic in the sense 

that it is dependent upon the evolution process of all 

sub-populations. 

    Dynamic collaborative niche model is suitable for 

locating niches automatically. Since optimal solu-

tions are not equally distributed in general, this dy-

namic model can effectively reduce computing time 

by eliminating those areas where there are no opti-

mal solutions. By this technique we can find all pos-

sible optimal solutions in a relatively small comput-

ing complexity. Generally, there are two types of 

collaborations between sub-populations, the share 

collaboration via niche core, and the complete col-

laboration. In general, the first collaborative mode is 

direct and simple. However, in other problems, 

complete collaboration will be acceptable in that we 

can share good genes and parameters such as niche 

radii information, weights that have proved to be 
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effective in other niches. This can speed up the evo-

lution process in whole.  

In a dynamic collaborative niche model, the niche 

core represents niche centers of niches in all sub-

populations. The core set contains optimal solutions 

of the co-evolution model finally. During evolution 

process, individuals in this set are possible optimal 

solutions. To initiate this set, we can choose some 

individuals randomly in the phenotype space, for 

instance.  

Populations are dynamically divided into sub-

populations via niche core. The dynamic scheme 

should be determined beforehand via certain meas-

urement. For example, fitness value, distances be-

tween niches are possible measurements to deter-

mine the dynamic scheme. Each subpopulation will 

generate its niches during evolution which will be 

added to the niche core set.  

For complete collaboration, one natural scheme is 

migration. In this scheme, evolutions are independ-

ent in all sub-populations via dynamic niche shar-

ing. When new niches are generated, a portion of 

the best niches is selected in one subpopulation, and 

this portion migrates to other subpopulations by a 

predefined probability. In this mode, subpopulations 

will exchange good genes. Other schemes include 

mutual migrations, one-direction migration, infiltra-

tion, and so on. Figure 3.1 gives an illustration.  

 

              population

                    population

selection

crossover

mutation

Generate a 

number of 

new 

individuals 

to replace 

least fitted 

members

niche operations

niche core

niche

nicheniche

no

stop

criteria
OK

yes

( )tΞ

( 1)tΞ +

Save c the 

current 

best 

individuals

Add the 

saved c

best 

individuals 

to replace 

some 

members

 
Fig. 3.1 An evolution flow chart. 

 

• Dynamic Fitness Sharing 

Suppose Ω  is the search space of binary strings with 

length L and ( ),ℜ 〈  is a linear lattice. Denote the 

population by  ( ) ( ){ }: 1, ,t ti iϖ β= Ξ = ⋅⋅ ⋅  at the t genera-

tion with β number of ( )tiΞ . Suppose each niche 

has a size iδ . Then the size of the whole population 

is 
1 ii

n
β δ==∑ . Let the raw fitness function be as fol-

lows  

:f Ω→ℜ                          (9) 

 

For ,x y∈Ω  define the distance between them by 

d(x, y) = the Hamming distance of x, y. For one 

niche, the radius is the maximum distance of any 

two members. Suppose a member x currently be-

longs to a niche ( )tiΞ  with radius iσ . Then define 

the niche share area of an individual x by 

( ) ( )( )1 ,  x d x z
i

z

m H σ
ϖ

−

∈

= ∑                     (10) 

Where H(t) is defined in (11) with h(t) a strictly in-

creasing function defined in [0,1]. 

( ) [ ],

1, 0;

1 ( ) 0,1 ;  

0, 1.

t

t

H h t t

t

≤


= − ∈
 ≥

             (11) 

    An example of the function h(t) is 

( )th tα= ,with  0α >                (12) 

    Now we write  

( )

( )
,if  is within niche number ;

1,   otherwise.

x

x j

m
x j

dm δ






  (13) 

    Then the dynamic sharing fitness value of a 

member x is defined by 

=
( )

( )
( )

f x
df x

dm x
                    (14) 

    This is a shifted fitness value. If one particle 

is more like the existing optima, then its fitness 

value is reduced. Otherwise, it is left unchanged.   

 

• Cooperation and Co-evolution 
It is natural to view a Genetic Algorithm as a coop-

erative learner [8]. Clearwater et al. [8] define coop-

eration as follows: ”Cooperation involves a collec-

tion of agents that interact by communicating 

information to each other while solving a problem.” 

Clearly, by viewing the population members of a 

GA as agents, and the crossover operation as infor-

mation exchange, the GA can be considered to be a 

cooperative system.  

    Inspired by this approach, we present a parallel 

cooperative learning model (PCLM). The coopera-

tive system is called co-evolution. We divide the 

whole population into several sub-populations 

which will evolve in parallel. An mechanism is as-

signed to each sub-population which can be imple-

mented by an agent. These agents act as CPUs in 

traditional parallel architecture and form one of the 

two models: the master-slave model and the island 

model.  

In the master-slave model, one special agent is 

defined as master agent. Each sub-population is as-

signed a slave agent. The master agent supervise the 

whole population and assign whole tasks and opera-
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tions. The master agent chooses good individuals 

(seeds) from the whole population and migrate the 

seeds to all sub-populations. Agents of the subpopu-

lations received seeds and perform sorting, selection 

and discarding. Migration operations can be one-to-

more, or one-to-one (Figure 3.2).  

The second model is the island model. In this 

model, one agent is assigned to each sub-population. 

Agent supervises the evolution process of its sub-

population. Sub-populations exchange good indi-

viduals at a certain time interval mutually. Migra-

tion operations can be one-to-more, or one-to-one 

(Figure 3.2).  

 
Fig. 3.2 Master-slave and island model. 

The role of migration operators is to exchange 

good individuals between sum-populations. For is-

land model, there are two migration schemes, the 

one-to-more and one-to-one scheme.  

In the one-to-more scheme, each sub-population 

shares the current best individual with all other sub-

populations in every generation. Whenever it re-

ceives one good individual, the worst is discarded 

according to fitness value. In the one-to-more 

scheme, the special one is often selected as the 

global best individual. The one-to-more migration 

will speed up convergence and reduce population 

diversity.  

The second migration is one-to-one. Diversity is 

one of the main concerns in this scheme. In this 

scheme, each subpopulation defines a send rate and 

sends probability and send best individuals accord-

ing to the rate. The rate determines how many indi-

viduals are selected to send while the probability 

determined how often this operation occurs. The 

selection of sent members can be random, or fitness 

preferential. The destination of sending can be to-

tally mutual, neighbour wise, or ring topology. In 

the neighbourhood topology, one can define 

neighbours by geometric or concept hierarchy (Fig-

ure 3.3).  

 

4 Evolution Scheme for Minimal Factors 

In this section, we will present an evolution scheme 

for the searching of minimal 1-factors for weighted 

graphs. From previous discussions we know that 

multi-population and coevolution schemes will be 

used to guarantee better evolution performance. 

However, there are still some problems concerning 

the coding and genetic operations. Now we will fo-

cus on these technical details.  

 
Fig. 3.3 One to one and one to more migration. 

In order to do so, we need to design an encoding 

scheme and fitness evaluation method. First we start 

with the encoding scheme. Let χ  be the set of 

symmetric matrices as in Section 2 consisting of 1 

and 0 as its elements. Then for X χ∈  we define the 

genotype of X straight by  

11 1 1, , , , , ,N N NNx x x x⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                 (15) 

Here we use redundant encoding scheme in order 

to simplify genetic operations in the following. Next 

we explain genetic operations. First we start with 

the one-point crossover scheme. Multi-point cross-

over can be described similarly. Choose randomly 

two cross positions denoted by i, j. Then the cross-

over algorithm is described as follows  

Crossover algorithm 
for(int m=i;m<N;m++) { 

for(int n=i;n<N;n++) 

{ 

if((m==i)&&(n<j))  continue; 

if((m<j)&&(n==i))  continue; 

//swap 

swap(x[m,n], y[m,n]); 

} 

} 

 

According to the traditional definition of muta-

tion, in order to keep the symmetry of the matrix, 

we need to mutate a pair of positions simultaneously. 

Therefore these two operations are illustrated in 

Figure 4.1.  

 

4.1  Cooperation and Co-evolution 
Now we define the fitness function of the 1-factor 

problem. If we use 
ijδ  as the Kronecker symbol, that 

is, 1ijδ =  if  i = j and zero else, and let 
ij N N
δ

×
 Θ =   . 

For a matrix 
ijA a =   , we define its absolute trace to 

be   
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( )
1

ast

N

A ii
i

aTr
=

=∑                        (16) 

i-
th
 r
o
w

i-
th
 r
o
w

 
Fig. 4.1 Crossover and mutation operations. 

Then the degree of a connection matrix towards 

forming a 1-factor can be measured by 

( ) ( )
1 1

= =1  
N N

ik ki ii
asti k

w xf X WXTrδ
= =

− −Θ∑ ∑                (17) 

By the definition of factors, isolated nodes are 

prohibited. Therefore, we need a restriction function 

to avoid isolated node. Suppose the minimal node of 

the graph is defined by d(X).  

( )
1 1

=  min
N

ij
i N j

d X x
≤ ≤ =

∑                         (18) 

Then one possible restriction function is as fol-

lows: 

( ) ,where   0p X ε ε≥ >                       (19) 

In the formula ε is a parameter to control the de-

gree of restriction. Next we consider the problem of 

minimal factors. By definition, a minimal factor is a 

subgraph which has least number of edges. Thus 

this can be measured by  

( ) 2

2
1 1

=
N N

ij
i j

f X x
= =
∑∑                                (20) 

Now we define the fitness function as follows 

( ) ( ) ( )( )2

1 2: , = ,f R f X f X f Xχ →             (21) 

Then the natural partial ordering in 2R  can be de-

fined by l the positive cone: 

( ){ }2, : 0,  0 & 0C x y R x or x y= ∈ > = >    (22) 

Therefore the searching of minimal factors is an 

optimization with restriction 

( )
( )

minmize  . .f X w r t

p X ε




≥

p
                  (23) 

Let ( )f χϒ = . Then clearly ϒ  under the partial or-

der p  is a lattice. 

 

 

4.2 Lattice Based Evolution 
Suppose Ω  is the search space and ( ),ℜ p  is a lattice. 

A fitness function is defined on Ω  by :f Ω→ℜ .We 

assume that the image set ( )fℜ = Ω , that is, the map 

f  is a surjection. If this is not satisfied, then we need 

to show that the image set ( )f Ω  is a sub-lattice in 

advance. Therefore, for each y∈ℜ , the set ( )1f y−  is 

not empty. In the following, we will use ( )1f y−  to 

denote one of its members x and hence f (x) = y. 

    In order to describe evolution on the lattice ℜ , 

we need first to define the selection operation which 

is different with traditional scalar valued fitness 

functions. Now we assume that the population is 

{ }1, , nx xΞ = ⋅⋅ ⋅  with corresponding fitness values 

( )i iy f x= . By applying the elitist selection scheme, 

the current best individual is defined by   
1

1( ),where nx f y y y y−= = ∧ ⋅ ⋅ ⋅ ∧             (24) 

Notice that this best individual is possibly a new 

one which is not in the current population. This 

member is formally denoted by the function 

{ }1min , , nx x x= ⋅⋅⋅ . Based on this definition, we 

propose a sorting algorithm on lattices.  

 

Sorting algorithm on lattices 

1. Input sequence { }1, , nx xΞ = ⋅⋅ ⋅ . 

2. Output sorted sequence ( ) { }1, , nsort z zΘ = Ξ = ⋅⋅ ⋅ . 

3. { } { }1 1 1 1min , , .Set 1 and , ,n nz x x i P x x= ⋅ = = ⋅ . 

4. Begin loop. 

5. 1miniz P= . 

6. If i iz P∈ , then let 1 \i i iP P z+ = . Let i = i + 1 and 

goto Step 4. 

7. If i iz P∉ , then let .Let i = i + 1 and goto Step 5. 

8. End loop. 

 

It is clear that the sorted sequence is totally or-

dered, that is 

( ) ( ) ( )1 2   nf z f z f z⋅ ⋅ ⋅p p p                 (25) 

The proposed sorting operation here is variation 

of normal sorting in that the resulting sequence may 

be different with the original one. Therefore we can 

propose a lattice based genetic algorithm as follows.  

  

Lattice based genetic algorithm 

1. Initialize population ( ) { }10 , , nx xΞ = ⋅⋅ ⋅ . 

2. Begin loop. Set t = 1. 

3. Compute fitness values of the current population. 

Perform lattice based sorting. 

4. Check terminal condition. If check result is yes 

then go to Step 7. Otherwise go to Step 5. 

5. Perform genetic operations. Do selection, cross-

over, mutation and lattice sorting successively. 

6. Check restriction condition. If check result fails, 

then replace the failed individual by random gener-

ated new individuals. 
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7. ( ) ( )1t tΞ ⇒Ξ + , t = t + 1. Go to Step 3. 

8. End loop. 

 

 

5 Markov Chain Analysis 

In this section, we will present a simple conver-

gence analysis of the lattice based evolution by 

Markov chains. Suppose Ω  is the search space and 

( ),ℜ p  is a lattice. Denote the population by 

( ) ( ){ }: 1, ,it t iϖ β= Ξ = ⋅⋅⋅  the population set at time 

t with a fixed number of subpopulations ( )i tΞ . 

Suppose each subpopulation has a fixed size δ . 

Then the size of the whole population is n βδ= . 

First we define a scalar energy function in order 

to switch the minimal optimization to maximal. 

Therefore if an individual X is more fitted, it has 

greater energy.  

  ( )
( ) ( )1 2

1
 =   

1
F X

f X f X+ +
            (26) 

    Notice that the niching operations are needed for 

the searching of multiple solutions. When we ana-

lyze the convergence behaviour of the evolution one 

solution should be specified. Therefore we assume 

that there is no niching operations. Hence the popu-

lation ( )tϖ  at time t is dependent only on the popu-

lation at time t -1 and hence it is a Markov chain.  

    Let L N N= ×  be the string length of the geno-

type where N is the number of nodes of the graph. 

The size of the search space is 2Lm = Ω =  and the 

set of possible populations is nΩ  with the number of 

different populations being  
1

1

1

1

1
 

1

m

m

T m

m

C
M

C

δ

δ

β−
+ +

−
+ +

 + −
=   − 

                    (27) 

    Each individual in the search space can be con-

sidered as an integer with binary bits just as its 

genotype string. We will use this integer to repre-

sent a string or an individual later. For a specific 

population, we can take it as one string with length 

nL. Define ( )i ϖ∗  to be the best individual defined 

by (21) in the population ϖ .  

    By Section 4 we know that each population gen-

erated by evolution is totally ordered. In fact, their 

best individuals form a totally ordered set. Therefore, 

we only consider those populations with their mem-

bers totally ordered in ascending order. Denote this 

set of populations by A  and let M A= .             

Therefore  

( ){ }:  is totally ordered i ϖ ϖ∗ ∈Α         (28) 

    Let ( ),Z i ϖ  be the occurrences of the individual i 

in the whole population ϖ , and ( ),jZ i ϖ  be the 

occurrences of the individual i in the subpopulation 

jΞ  Then  

( ) ( )
( ) ( )

1 1

0 0

1

, = , , =   

, ,

m m

ji i

jj

Z i n Z i

Z i Z i
β

ϖ ϖ δ

ϖ ϖ

− −
= =

=




=

∑ ∑

∑
     (29) 

For genetic operators, the following selection 

probability will be applied for subpopulation 

jΞ andϖ .  

( )
( ) ( )

( ) ( )
1

,
, =

,

j

j m

j
r

F i Z i
r i

F r Z r

ϖ
ϖ

ϖ
=
∑

          (30) 

( ) ( ) ( )

( ) ( )
1

,
, =

,
m

r

F i Z i
r i

F r Z r

ϖ
ϖ

ϖ
=
∑

             (31) 

    We will use ij M M
Q Q

×
 =    to denote the transi-

tion matrix of the Markov chain. Suppose the initial 

distribution vector of the M possible populations is  

{ }(0) (0) (0) (0)

1 2q = , , , Mq q q⋅ ⋅ ⋅                 (32) 

Then after t generations the distribution is 

{ }( ) ( ) ( ) ( ) (0)

1 2q = , , , = qt t t t t

Mq q q Q⋅ ⋅ ⋅           (33) 

Suppose the members of the matrix tQ  are de-

noted by ( )t t

ij M M
Q Q

×
 =   . Convergence problems 

concern in fact the limit distribution
( )

q
∞

. Define 

( ),P j ϖ  to be the probability that individual j oc-

curs in the population ϖ  .Next in order to simplify 

notations we will ignore the effect of subpopulations 

and suppose c = 1 (which is called the modified elit-

ist strategy). Notice that the best individual itself 

permits genetic operations, and hence it is clear that 

([21][13]) the transition probability is  

( ) ( )

( )
( )

,

,

,
,

= !  , !

0,      otherwise 

Z j B

j

P j
i B

Q n Z j Bµ β

µ
κ


 ∗ ∈




∏   (34) 

Similar to [21][19] the transition matrix 

( ),Q Qµ Β=  from a population µ  to a populationΒ  

has J sub-matrices ( )Q i  of size ( ) ( )N i N i×  for 

1, ,i J= ⋅ ⋅ ⋅  as the dialog elements as follows (some 

components to the lower left of the diagonal matri-

ces can have non-zero values)  
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( )

( )

( )

1   0     0

                 0

               0

                 0

                         

Q

Q Q i

Q J

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

                (35) 

Let ( ), , 1, 2, ,i j j N iλ = ⋅⋅⋅  be the eigenvalues of 

( )Q i  and λ∗be an eigenvalue such that 

          
( ) ,

1 1
= max max <1 i j

i J j N i
λ λ∗ ≤ ≤ ≤ ≤

                 (36) 

Denote κ  the set of the populations which in-

clude the individual with a maximal fitness value 

among all the accessible individuals. Thus we have 

two results leading to probabilistic convergence of 

the evolution.  

Theorem 5.1 There exists a constant C such that 
( )

1-
tt

q Cµ
µ κ

λ λ∗ ∗
∈

≥∑                        (37) 

Proof For a population κΒ∉  , by matrix theory 

there exist constants ,

,

i j

Bµρ  independent with t satisfy-

ing:  

( )
( )

,

, , ,
1

=  
N i

t i j t

B B i j
i j

Qµ µρ λ
=

∑ ∑                         (38) 

for µ κ∉ ,and 0 for µ κ∈ .for a population B κ∉  

( ) ( ) ( )
( )

0 0 ,

, , ,
1

= = 
N i

n i j t

i j
i j

q q Q qµ µρ λΒ Β Β Β Β
Β Β =
∑ ∑ ∑∑        (39) 

    Hence for B κ∉  we obtain 

( )
( )

0 ,

, ,
1

=  
N i

i j t

B B i j
B B i j

q qµ µ
κ κ µ

ρ λ
∉ ∉ =
∑ ∑∑ ∑ ∑                   (40) 

( )
( )

0 ,

,
1

           
N i

ti j

B
B i j

qµ µ
κ µ

ρ λ∗
∉ =

≤ ∑∑ ∑∑           (41) 

This means the probability that the generated 

population Β  is not included in the set κ  is upper-

bounded by 
t

C λ∗  in terms of the constant C. Also 

we have 1λ∗ <  (see [21]).  

Theorem 5.2 There exists a constant A independent 

on the mutation probability µ  satisfying 

( )* 1- 1
L

A
ττλ µ µ −

≤ −                       (42) 

where the mutation order τ  is the minimal value of 

the Hamming distance d(i, j) 

( ) ( )
( )= max ,min

i f i f j

d i jτ
 
 
 p

                    (43) 

Proof Following the lines of [21] we have 

( )
( )

( )

,1 1

max
N i

k vk N i v

Q iλ∗
≤ ≤ =

≤ ∑                      (44) 

    By the total ordered property this means that the 

upper bound of λ∗  is the maximum probability that 

( )( ) ( )f i f jµ∗ p  for any individual j in the next 

generation. Let ( )i i µ∗ ∗= . Now we compute the 

probability p that ( ) ( )f j f i∗p  for some individual 

j in the next generation. Clearly  

( )1 ii
L

ip A
ττµ µ −

≥ −                           (45) 

where µ  is the mutation probability, and 
iA  is the 

probability that the population after the selection 

and crossover operations includes at least one indi-

vidual i∗  among n-1 individuals other than the re-

served and added individual i∗ . The Hamming dis-

tance 
iτ  is defined as  

( ) ( )
( )= min ,i

f j f i
d i jτ

∗p

                            (46) 

    Note that 
iA  has a positive value independent 

from µ . Define 

min  , =  maxi i
i i

A A τ τ=                       (47) 

    And the result follows. 

 
Table 6.1 An Example Weights Matrix 

0.00 0.55 0.85 0.00 0.65 0.30 0.55 0.45 0.00 0.00 N 0.55 0.00 0.25 

0.00 0.30 0.20 0.30 0.20 0.40 0.55 N 0.85 0.25 0.00 0.80 0.80 0.20 

0.40 0.75 0.55 0.00 N 0.00 0.00 0.80 0.00 0.60 0.00 0.55 0.80 0.90 

0.20 N 0.65 0.30 0.80 0.60 0.00 0.25 0.95 0.50 0.00 0.85 N 0.30 

0.20 0.20 0.00 0.25 0.00 0.85 0.00 0.65 0.35 N 0.55 0.30 0.40 0.55 

0.95 0.85 0.00 0.25 0.65 0.45 N 0.45 0.20 0.75 0.80 0.50 0.00 0.25 

0.00 0.00 0.75 N 0.00 0.40 0.55 0.90 0.00 0.65 0.65 0.00 0.00 0.20 

N 0.00 0.55 0.00 0.20 0.85 0.35 0.45 0.75 0.20 0.00 N 
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Fig. 6.1 Energy curve of evolution. 

 

 

6 Experiments and Discussions 

In this section, we present some experiments to 

show the effects of the proposed algorithms. We 

will also give some analysis on the relationship be-

tween the parameters and the convergence behav-

iour. 

    First we will use a graph with 50 nodes. The con-

necting weights are generated randomly in the inter-

val [0,1]. In order to make the edges space, we as-

sume that the weights are reassigned to zero if they 

are less than a certain value, say 0.2. We will not 

use weights continuously spread in the interval [0,1]. 
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Instead, we set these weights vary at certain small 

interval, 0.05 for example in these experiments. This 

can make the existence of 1-factor more easily.  

    An example weight matrix is partly listed in the 

following table (Table 6.1, 10_10 sub-matrix), 

where the dot itself denotes zero, and the symble N 

denotes a new line in the matrix.  

We now set the population size as 500. When we 

use the elitist selection scheme, the energy curve of 

the evolution process after 45000 running is shown 

in Figure 6.1.  

Part of the incident edges of the approximate 1-

factor is listed in Table 6.2 (40*40 sub-matrix).  
Table 6.2 Edge Matrix of Example One 
0000000000000000000000000100000000000000N 0000000000000000000000000000000000000000N 

0000000000000000000000000000000000010000N 0000100000000000000000000000000000000000N 

0001000000000100000001000000100000100000N 0000000000000000100000000000000000000000N 

0000000000000000000000000000000100000000N 0000000000000000000000000000000000000000N 

0000000000000000010000000000000000000000N 0000000000000000000000000000000000000000N 

0000000000000000000000000000100000000000N 0000000000000000000000000000000000000000N 

0000000000000000000000000000000000000000N 0000100000000000000000000000000000000000N 

0000000000000000000000000000000000000100N 0000000000000000000000000000000000001000N 
0000010000000000000000000000000000000000N 0000000010000000000000000000000000000000N 

0000000000000000000000000000000000000000N 0000000000000000000000000010000000000000N 

0000000000000000000000000000000000000000N 0000100000000000000000000000000000000000N 

0000000000000000000000000000000000000010N 0000000000000000000000000000000000010000N 

0000000000000000000000000000010000000000N 1000000000000000000000000000000000000000N 

0000000000000000000100000000000000000000N 0000000000000000000000000000000010000000N 

0000100000100000000000000000000001000000N 0000000000000000000000001000000000000000N 

0000000000000000000000000000000000000001N 0000001000000000000000000000000000000000N 
0000000000000000000000000001000000000000N 0000000000000000000000000000100000000000N 

0000100000000000000000000000000000000000N 0010000000000000000000010000000000000000N 

0000000000000001000000000000000000000000N 0000000000000010000000000000000000000000N 

0000000000000000000000100000000000000000N 0000000000000000000000000000001000000000N 
 

At this stage, we can draw the image of the cur-

rent graph. Figure 6.2 gives two evolved graphs.  

 
Fig. 6.2 Evolved graphs with incident edges in blue. 

    In this experiment, we apply the elitist selection 

scheme. The number of elitist individuals is a posi-

tive parameter en  called the elitist population size. 

Experiments show that the behaviour of evolution is 

subject to the value of en . When the parameter en  

varied from 1 to 4, the energy of best individual af-

ter 10000 times of evolution decreased significantly. 

However, when 4en >  our experiments show that 

this best energy no longer decreases in a determinis-

tic manner. Figure 6.3 gives this effect.  
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Fig. 6.3 Best energy comparison after 10000 times of evolution 

with elitist population size from 1 to 20. 

    We also present another figure (Figure 6.4) which 

shows the energy curve together with parameter en  

ranging from 1 to 20.  
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Fig. 6.4 Energy curve of evolution with elitist population size rang-

ing from 1 to 20. 

    Next we present an experiment to examine the 

effect of population size to the convergence rate. 

We only present experiments with single population. 

Let pN  be the population size. The experiments 

variation of the parameter pN  is from 4 to 82. By 

experiment it is clear to see the effect of population 

size to the convergence rate.  

    Figure 6.5 shows that when the population size 

varies from 4 to 15, the best energy decreases rap-

idly. This shows that a suitable large population will 

improve behaviour of evolution. When the popula-

tion size is larger than 20 however, the energy de-

crease is not significant. Figure 6.6 presents a set of 

energy curves illustrating energies of population 

size from 4 to 40 while Figure 6.7 gives some de-

tails.  
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Fig. 6.5 Last energy comparison of evolution with population size 

from 4 to 82. 

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Population size from 4 to 44

E
n
e
rg
y
 c
u
rv
e
 s
e
t 
a
ft
e
r 
1
0
0
0
0
-t
h
 e
v
o
lu
ti
o
n

 
Fig. 6.6 Energy curves of evolution with population size from 4 to 

15. 
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Fig. 6.7 Local energy curve view with varying population. 

 

 

7 Conclusion 
In this paper we propose an evolutionary technique 

to find minimal 1-factors for graphs. Although we 

have not found similar approach that combines evo-

lutionary technique with graph factors, it shows 

apart from theoretical existence results, the new 

computing technique can provide a new powerful 

roadway to find out these factors. We proposed a 

lattice based genetic algorithm in which the fitness 

function is not scalar and presents a simple Markov 

analysis.  

    Finally we would point out that the theoretical 

analysis by Markov chains of latticed based GA has 

a long way to go. Also, experiments show that the 

convergence of GA in searching factors is slow and 

hence technique to speed up the convergence is nec-

essary before the proposed algorithm can be used in 

real-time networks.  
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