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Abstract: In this paper, a new fast algorithm for information retrieval is presented. Such algorithm relies on 
performing cross correlation in the frequency domain between input data and the input weights of fast neural 
networks (FNNs). It is proved mathematically and practically that the number of computation steps required for 
the presented FNNs is less than that needed by conventional neural networks (CNNs). The main objective of 
Internet users is to find the required information with high efficiency and effectiveness. Finding information on 
an object’s visual features is useful when specific keywords for the object are not known. Since intelligent 
mobile agent technology is expected to be a promising technology for information retrieval, there is a number of 
intelligent mobile agent based-information retrieval approaches have been proposed in recent years. Here, the 
work presented in [25] for image-based information retrieval using mobile agents is greatly enhanced. Multiple 
information agents continuously traverse the Internet and collect images that are subsequently indexed based on 
image information such as the URL location, size, type and the date of indexation. In the search phase, the 
intelligent mobile agent receives the image of object as a query and searches the set of web pages that contain 
information about the object. This is done by matching the query to images on web pages faster than the work 
presented in [25]. Furthermore, by applying cross correlation, object detection becomes position independent. 
Moreover, by using neural networks, the object can be detected even with rotation, scaling, noise, distortion or 
deformation in shape.  
 

Keywords: Fast information retrieval, Content-based image retrieval, Image clustering, and Intelligent mobile 
agent 

 

I. Introduction 
With the development of Internet technology, the 

fast growing World Wide Web has become one of the 
most important sources of information and 
knowledge. When searching the Web, a user can be 
overwhelmed by thousands of results retrieved by a 
search engine, of which few are valuable. The 
problem for search engines is not only to find topic 
relevant results, but results consistent with the user’s 
information need. How to retrieve desired 
information from the Internet with high efficiency 
and good effectiveness is become the main concern of 
internet user-based [1]. Users generally find 
information using search engines. The input to these 
search engines often consists of keywords or other 
written text like a question. But the Web contains not 
only text, but also information in other modalities 
such as images. They are however not yet being used 
as input for general Web searches. When the user 
wants to query about an object that has unique visual 
features, the image of the object that represents the 
visual properties can be used as a query. By enabling 
searches on object appearance provide users with a 
new, more convenient and direct means for finding 
information about objects encountered in everyday 
life. Many existing world wide search engines, for 
example Google and Yahoo, rely on meta-data 
(annotations) or the context in which the image is 
found and the query is performed using text-based 
information retrieval method, the matching is 

performed based on image captions or file names, 
thus the performance of image retrieval is based on 
the similarity between the user’s text query and image 
text annotation not on the image content itself [2]. 
Content Based Image Retrieval (CBIR) searches for 
images by using asset of visual features such as color, 
shape and texture, are extracted from the images that 
characterize the image content [3]. These techniques 
have been used in many areas, such as geographic 
information system, biomedical image processing and 
digital libraries [4]. One of the main advantages of the 
CBIR approach is the possibility of an automatic 
retrieval process, instead of the traditional keyword-
based approach, which usually requires very difficult 
and time-consuming previous annotation of database 
images. Comparatively speaking, CBIR more 
objectively reflects the content of images [6]. Most of 
CBIR systems are only operate on a local demo 
database of a few thousand images stored at the host 
web site [7]. Unlike image retrieval from a fixed 
database, where each image is treated as an 
independent object, for Searching for image on the 
Web basically comes down to locating an appropriate 
Web page and to retrieve relevant information about 
the image from that site[8,9]. 
 

Intelligent mobile agent is a program that traverses 
the Internet, moves to different sites with different 
characteristics, searches for the desired information, 
and returns the search report to the user query 
[10,11]. When large quantities of data are stored at 
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distributed sites, moving the computations to the data 
is a more realistic and feasible approach, compared 
with migrating data to the computations. In other 
words; instead of gathering information from 
distributed sites to be processed at a central site, users 
can dispatch mobile agents to a destination site to 
perform information retrieval and to return to a user 
the results of the analysis. Thus, the data transmitted 
over the network are minimized. This is especially 
important when using a low-bandwidth access 
network. Features of mobile agent, such as cross-
platform migrating, dynamic and distributed 
computing make it possible to solve the problems of 
low bandwidth and unstable connection in the internet 
and to provide the support of searching in the internet 
via inconsistent connected devices (e.g. laptop, PDA, 
mobile phone, etc). Mobile agents already have been 
used to build many distributed applications, including 
distributed information retrieval [12], and network 
management [13]. Furthermore, they provide an 
attractive paradigm for design and implementation of 
scalable, flexible, and extensible system for image 
retrieval from multiple, distributed heterogeneous 
image sources [14]. 
In this paper, an image-based information retrieval 

using intelligent mobile agent is presented. Image 
crawler continuously traverses the Internet and collect 
images that are subsequently indexed based on 
integrated feature vectors. These features along with 
additional information such as the URL location and 
the date of index procedure are stored in a database. 
The user can access and search these indexed contents 
through the Web with an advanced and user friendly 
interface. The output of the system is a set of links to 
the content available in the WWW, ranked according 
to their similarity to the submitted image by the user.  

 
There are many systems for Content –based image 

retrieval (CBIR) using mobile agent are presented e.g. 
[5, 15, 16].None of these systems provides a web 
search engine; they are based on local image 
database. Comparing to image databases, the Web is 
an unlimited, immense repository of images, covering 
much broader resources, and is increasing 
continuously at high speed rate. In [17, 18] mobile 
agent is used for web information retrieval based on 
text query not image query. Unfortunately, keywords 
may not accurately or completely describe image 
content.  
Two approaches for information retrieval from 

distributed database based on mobile agents are 
presented in [12]. The first approach utilizes the 
mobility of agent for moving the query to the desired 
site where the data resided while the second one is 
based on reduction of the number of migrating agents. 
The work in this paper presents a new approach for 
finding information related to an image from the 
World Wide Web by matching image itself and 
retrieving the web page which contains information 
related to the submitted image. This is called image-

based information retrieval. The information retrieved 
can be in any format or media, but it’s found using an 
image as a query. 
 
The paper is organized as follows: Section II 

presents the architecture of the proposed system. 
Section III illustrates experiments and evaluation of 
the proposed system. The proposed alogrithm for fast 
information retrieval is presented in section IV. 
Conclusion and future work are presented in section 
V. 

II. System Architecture 
The overall system is split into two parts: (i) the 

off-line part and (ii) the on-line or user part. 
In the off-line part, several Information Crawlers, 

continuously traverse the WWW, collect images and 
store them to a database for further processing. Then 
the image indexing module processes the image in 
order to extract descriptive feature using color and 
shape features. These features along with information 
of the images such as URL, date of process, size and 
a thumbnail are stored in the database. 

In the on-line part, a user connects to the system 
through a common Web Browser using the HTTP 
protocol. The user can then submit queries either by 
example images or by sketch. The query then is 
processed by the server and the retrieval phase 
begins; the indexing module is repeated again for the 
submitted image and then the extracted features are 
matched against those stored in the database. The 
results containing the URL, as well as, the thumbnail 
of the similar images are transmitted to the user and 
the results are ranked according to their similarity to 
the submitted image. 
 
A)   Information Crawler 

The image collection process is conducted by a 
different autonomous Web agent or Crawler run on a 
network of computers. The agent traverses the Web 
by parsing the hyperlinks, detects images, retrieves 
and transfers them for processing to the system 
server. The system server extracts features from the 
images and then stores it in the database. 
 The overall collection process is illustrated in Fig. 1; 
it is carried out using several distinct modules:  
The Traversal Crawler - assembles lists of candidate 

Web pages that may include images or hyperlinks to 
them. 
The Hyperlink Parser - extracts the URLs of the 

images. 
 The Retrieval Crawler - retrieves and transfers the 

image to the system server for further processing.  
This section gives a description of the information 

crawler as shown in Fig. 1; Traversal -crawler 
browses the WWW to collect images. The web-sites 
listed in the categories Shopping and Recreation of 
the DMOZ directory [21] are chosen as a starting 
point. In the first phase, the Traversal Crawler follows 
a breadth first search across the Web. It retrieves 
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pages via Hypertext Transfer Protocol (HTTP) and 
passes the Hypertext Markup Language (HTML) 
code to the Hyperlink Parser. In turn, the Hyperlink 
Parser detects new URLs, encoded as HTML 
hyperlinks, and adds them back to the queue of Web 
pages to be retrieved by the Traversal Crawler.  The 
Hyperlink Parser detects the hyperlinks in the Web 
documents and converts the relative   URLs to 
absolute addresses. By examining the types of the 
hyperlinks and the filename extensions of the URLs, 
the Hyperlink Parser extracts the URLs of the images. 
In the second phase, the list of image URLs from the 
Hyperlink Parser is passed to the Retrieval Crawler. 
The Retrieval Crawler retrieves the images and 
provides them as input to the indexing module. After 
the indexing procedure, the extracted features are 
added to the database. Another important function of 
the Retrieval Crawler is to extract attributes 
associated with the image such as URL, date of 
processing, size, width, height, file size, type of visual 
data, and so forth, and also generate a thumbnail icon, 
that sufficiently compacts and represents the visual 
information. 
 
B)   Indexing Module  

After the image detection module collects and 
transfers images to the server, image indexing module 
processes them in order to extract low level feature of 
image. This module consists of two steps; feature 
extraction and image clustering.  
1. Feature Extraction 
The prototype implementation uses Color Coherence 

Vectors [19] as a feature extraction and comparison 
algorithm. Feature vectors consist of 128 float values; 
each vector is computed as follows: the image is 
blurred using a simple 3 x 3 convolution filter which 
averages the color values of all horizontal and vertical 
neighbors of the filtered pixel. The blurred image is 
then quantized to a color space of 64 colors. In the 
last step, the pixels of the image are classified into 
coherent and incoherent pixels. Coherent pixels are 
pixels which are part of a horizontally and vertically 
connected pixel area of the same color whose size 
exceeds a certain threshold. Incoherent pixels are 
pixels which are not coherent pixels. For each of the 
64 colors, the coherent and incoherent pixel counts 
are summed up separately and normalized with regard 
to the total image area. This results in a 128 
dimensional vector. The Color Coherence Vector 
algorithm has the advantage that it is easy to 
implement, reasonably fast, and achieves a high 
compression rate. Images are reduced to a vector 
whose encoding is less than 600 bytes.  
2. Clustering Similar Image 

The increase of number of images in the database, 
the increase in the time required to retrieve results. To 
avoid search over the whole images database, the 
images with similar features vector should be grouped 
together in the same class. K-means clustering 
algorithm [20] is used for this operation because it is 

quite fast, simple and has been applied and shown to 
be useful in many applications. The basic step of k-
means clustering is simple. At the beginning, 
numbers of clusters K are determined and random 
feature vectors are selected as the initial centroids of 
these clusters. The grouping is done by minimizing 
the sum of squares of distances between feature 
vector and the corresponding cluster centroid.   
 
C)   Image Query Module. 

The image query module includes methods for 
extracting features from query images, classifying 
query image, and determining similarity between 
features extracted from the query and those stored in 
the database.  
1. Query Feature Extraction 
When a user initiates a query for information about 

the image, the Feature Extractor module performs 
feature extraction on the example image and sends the 
feature vector, contained in a query message, to the 
broker server. 
2. Query Classification 

Once the broker server receives the query, it will 
calculate the distances from the Query-image feature 
vector to the centroids of the set of each cluster to 
determine which clusters are closest to the query. The 
minimum square error is used to obtain the distance 
between a Query Image feature vector and the 
centroid vector of the cluster, which can be described 
as:      
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3. Distance Measure 
In content-based image retrieval, a distance 

measure is usually used to check similarity or 
dissimilarity between two images. The L1 distance is 
taken as a measure of similarity between two color 
coherence vectors.  
Let ( ) ( )nn hhhh ,,...,, 11 be a color coherence 

vector where is the percentage of coherent pixel of 

color i and 
ih

ih is the percentage of incoherent pixels 
of color i, then the L1 distance is defined as: 

 ∑=
′−+′−=′− n

i iiii hhhhhh
1

|)||(|      (2) 

III. Experimental Results 
According to the experiments results, it has been 

observed that a single-threaded information crawler 
can traverse the web gathering images at an average 
rate of one image every 82 seconds. Gathering the 
images has the potential to take long time with a 
single-threaded information crawler on a single 
computer. This problem is address by employing a 
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parallel information crawler distributed across many 
machines (image servers). Experiments indicate that 
the framework can allow using 16 information 
crawlers to collect over one million images monthly. 

The system was developed using c#.net on Pentium 
4 3.2GHz CPU (2GB RAM) running on Windows 
vista platform. For image related operations, the 
Matlab image processing toolbox was used to assist in 
extracting visual features. During experiments, 
different port numbers are used to simulate different 
image servers. Fig.2, shows an overview and example 
result from the system: the image of the object is 
selected. The object image is used to query the 
database to find the most relevant object, which in 
turn retrieves the relevant web pages for the user. 
 
A) Implementation Models 
1. Centralized-Broker Approach: 

The architecture is capable of gathering, indexing, 
caching, replicating, and accessing Internet images in 
a distributed way, which assures scalability. This 
model consists of a central image broker, several 
image servers, index agents, search agents, and fetch 
agents (all agents are mobile and relocate during their 
life cycle). The image broker dispatches index agents 
which transport feature extraction algorithms to one 
or more image servers. On these servers, the index 
agents extract relevant feature vectors from local 
images and send or take image entries back to the 
image broker. At the image broker, all image entries 
are merged into the central index. Each image entry 
consists of a feature vector, the URL pointing to the 
host where the image was retrieved, an image ID that 
uniquely identifies the image at the image server, an 
optional thumbnail, and optional further information 
on the image such as its size. The globally unique ID 
of an image consists of the globally unique URL plus 
the locally unique image ID. Based on the index data, 
image brokers can either serve requests in a 
client/server fashion, or they support intelligent 
mobile agent queries as follows; A client sends a 
search agent to the broker which queries information 
related to a specific image, a sketch, or a feature 
vector which is extracted from either of these query 
images. The query result consists of extended image 
entries which contain the normalized distance 
between the query and the entry’s feature vector, in 
addition to, the entry itself. The search agent 
transports the result set back to the client who selects 
images for retrieval based on the included thumbnails. 
Once an image is selected for retrieval, the client 
sends a fetch agent that migrates between image 
servers to collect information about the query image. 
An advantage is that this information can then be sent 
to Brokers in a compressed form, which reduces the 
network load. Another advantage is that one indexer 
agent can send the collected data to many Brokers, 
saving indexing costs. Finally, a third advantage is 
that the server load is reduced since indexer agents 
run at the image server, which contributes to the 

scalability of the system. A Broker can retrieve 
indexing information from many indexers to build an 
index of widely distributed data. The Broker can also 
retrieve indexing information from other Brokers, 
which gives the Broker an indexed view of the other 
Brokers.  
2. The Broadcasting Approach 

In this model, one index agent per image server is 
dispatched and takes residence at the image server to 
extract features from the images and sets up an index 
directly at the image server. The index agent may also 
monitor the local image repository for changes, and it 
can update its index accordingly and incrementally. 
The only communication between the broker and the 
index agent is a short notice that the computation of 
the index is completed and the index agent is ready to 
provide service to search agents. The image broker is 
still a central point of access but it resembles more a 
yellow page server. It refers search agents to the 
image servers where index agents reside. 

Once the client selects an image for retrieval, the 
process continues as in the gatherer model. 

Based on its index the index agent serves queries of 
search agents which visit the image server. On each 
image server, the search agent merges previously 
collected results with the results of its local search, 
and prunes the overall number of results. 

B) Clustering Approach 
In this model, each index Agent creates metadata 

(centroid of clusters) describing its own image 
collection and sends it to broker server. The broker 
collects the metadata from each index agent. This 
broker can route every query to the appropriate image 
server which contains images belongs to the category 
of query image. At each image server, the search 
agent matches the query image with the image 
collection on the appropriate image server and sends 
related web pages which contain the related 
information back to the user. 

 
C) Performance Measure 

In order to decide the best model for designing the 
framework, a comparative analysis is performed 
using two important parameters that influence the 
performance of the model. These parameters are; size 
of intermediate data transfer and number of 
comparisons required answering the query. The 
response time, i.e., time elapsed between a user 
initiating a request and receiving the results, as the 
metric for performance measure. This includes the 
time taken for agent creation, time taken to visit 
mediator server to determine list of image servers to 
be visited and processing time at each image server to 
obtain the required images.  
Response Time: time elapsed between a user 

initiating a request and receiving the results,    
 

RT= Y +   X/DBR                   (3) 
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Where: RT:  Response Time (sec.), Y: 
Communication Initialization Time and Client 
Processing Time (sec.), 
DBR: Data Bit Rate (Network Data Transmission 

speed: bytes/sec.), and X: Amount of transmitted data 
(bytes). 
X = (Mobile Agents Transfer) + (images descriptor 

Transfer). 
Each image descriptor consists a thumbnail, the ID 

of that image (unique within the domain of the image 
server), a measure of similarity to the original query 
image, and the URL of the image server from which 
the full size of image can be retrieved. 
The Response Time can be written as 
 
RT = time (migrating mobile agents) + time (Total 

Access Delay) + time (Transferred images 
descriptors) 
 

RT = C +(S * N)/ DBR + ∑ D 
+∑ (Mn*Ms)/DBR                         (4) 

 
Where: N: number of servers will be visited, S: size 

of mobile agent, Mn: the number of retrieved images 
descriptor, Ms: image descriptor size, D: access delay 
at each server, and C: processing time at mediator 
server. 
Client processing time and intelligent mobile agent 

creation time will be excluded from calculation, 
because it will be equal in three approaches. Image 
size, images numbers are the same at the three 
approaches. Other parameters have been used for 
comparison such as: 
 

1) Size of Intermediate Data Transfer 
 In the centralized approach, the size of data 

transfer is equal to the summation of image 
descriptors (feature vector+ thumbnail image +image 
ID +server URL). In the clustering approach size of 
transfer data is equal to the summation of centroid of 
image clusters in all image servers. In the 
Broadcasting approach, the size of intermediate data 
transported over the network is in complexity O 

( (i-1)*Xi), where Xi denote to the number of 

cluster on the i-th image server and N denote to the 
total number of image servers in the system. Fig. 3 
shows the amounts of intermediate data transported of 
the network in the centralized approach vs. the 
clustering approach.  

∑=

N
i 2

(

The graph is plotted based on the size of all feature 
vectors of images from all servers. It is observed that; 
the amount of data transported in indexing phase in 
clustering approach is too small compared to the 
centralized gatherer approach due to two reasons: 
Firstly, because each image server in the indexing 
phase of the clustering approach has to communicate 
only its local centroid for each cluster. Thus, the 
communication load of clustering per image server is 
of the order O(NClusters), i.e. for a large number of 

images per server, the price of distributed clustering 
is still low compared to centralized gatherer approach 
that would require sending over the network a large 
sample of all data stored within the image server. The 
second reason is that there is no need to update the 
cluster centroids with each new image because 
slightly outdated cluster centroids do not significantly 
affect the retrieval process. 

 
2) Number of Comparisons 
One of the main factors which affects the response 

time is the number of comparison performed to 
retrieve images and location of processing. For the 
clustering approach, number of comparisons that 
performed to response query is in order O 
[(NClusters) performed on mediator + (Number of 
images respective clusters) performed on image 
servers], where NClusters denote to number of 
clusters in the network. In broadcasting and 
centralized approaches, intelligent mobile agent 
perform comparisons in order of O [(the summation 
of images stored in all servers) performed on 
mediator only].  The increase in the number of 
comparisons which are required to be performed to 
response query will increase the response time. 
Moreover, distributing this task between different 
image servers overcome problems of centralized 
server and make all hosts participating in the system 
act as servers. Fig. 4, shows the number of 
comparison in broadcasting and clustering 
approaches. 
 

3) The Response Time 
Number of visited servers during query processing 
varies at Broadcasting and Clustering approaches. For 
the broadcasting approach, the search agent will visit 
all servers in the network in order to find the results 
for the query so number of servers that will be visited 
is equal to the total number of servers in the network. 
But in clustering approach, number of visited servers 
is only that having the same category as the query 
image. By calculating total access delay of the system 
which is used to implement these approaches, it is 
clear that by allowing search agent to visit all servers, 
total access delay increase proportionally. Fig. 5, 
shows the effect of increasing number of image 
servers on access delay in the two cases. Total access 
delay is the summation of access delay time of all 
image servers while access delay time in clustering is 
the access delay of servers only that maintain images 
belonging to the category of the query. This can be 
concluded as fewer numbers of migrations of mobile 
agents used to execute the tasks will cause lower 
network traffic and consume less bandwidth, and the 
total time taken to retrieve the query results is 
minimized. 
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IV. Fast Information Retrieval by using 
High Speed Neural Networks  

Finding a certain information in the input one 
dimensional matrix is a searching problem. Each 
position in the input matrix is tested for the presence 
or absence of the required information. At each 
position in the input matrix, each sub-matrix is 
multiplied by a window of weights, which has the 
same size as the sub-matrix. The outputs of neurons 
in the hidden layer are multiplied by the weights of 
the output layer. When the final output is high, this 
means that the sub-matrix under test contains the 
required information and vice versa. Thus, we may 
conclude that this searching problem is a cross 
correlation between the matrix under test and the 
weights of the hidden neurons.   

The convolution theorem in mathematical analysis 
says that a convolution of f with h is identical to the 
result of the following steps: let F and H be the results 
of the Fourier Transformation of f and h in the 
frequency domain. Multiply F and H in the frequency 
domain point by point and then transform this product 
into the spatial domain via the inverse Fourier 
Transform. As a result, these cross correlations can be 
represented by a product in the frequency domain. 
Thus, by using cross correlation in the frequency 
domain, speed up in an order of magnitude can be 
achieved during the detection process [22]. In 
information retrieval  phase, a sub matrix I of size 
1xn (sliding window) is extracted from the tested 
matrix, which has a size 1xN, and fed to the neural 
network. Let Wi be the matrix of weights between the 
input sub-matrix and the hidden layer. This vector has 
a size of 1xn and can be represented as 1xn matrix. 
The output of hidden neurons hi can be calculated as 
follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih                   (5) 

where g is the activation function and b(i) is the bias 
of each hidden neuron (i). Eq. 5 represents the output 
of each hidden neuron for a particular sub-matrix I. It 
can be obtained to the whole input matrix Z as 
follows: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk)   Z(uk)(iWg(u)ih           (6) 

Eq.6 represents a cross correlation operation. Given 
any two functions f and d, their cross correlation can 
be obtained by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

y
y)d(y)f(xd(x)f(x)                  (7) 

Therefore, Eq. 7 may be written as follows [22]: 

( )ibiWZgih +⊗=                    (8) 

where hi is the output of the hidden neuron (i) and hi 
(u) is the activity of the hidden unit (i) when the 
sliding window is located at position (u) and (u) ∈ 
[N-n+1].  

Now, the above cross correlation can be expressed in 
terms of one dimensional Fast Fourier Transform as 
follows [22]: 

( ) ( )( )iW*FZF1FiWZ •−=⊗                 (9) 

F: is the Fast Fourier Transform. 

F*: is the conjugate Fast Fourier Transform. 

F-1: is the Inverse Fast Fourier Transform. 

⊗: is the cross correlation operator. 

•: is the dot product (element by element) operator. 

Hence, by evaluating this cross correlation, a speed 
up ratio can be obtained comparable to CNNs. Also, 
the final output of the neural network can be 
evaluated as follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u)              (10) 

where q is the number of neurons in the hidden layer. 
O(u) is the output of the neural network when the 
sliding window located at the position (u) in the input 
matrix Z. Wo is the weight matrix between hidden and 
output layer. 
The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 
1-  For a tested matrix of 1xN elements, the 1D-FFT 
requires a number equal to Nlog2N of complex 
computation steps [23]. Also, the same number of 
complex computation steps is required for computing 
the 1D-FFT of the weight matrix at each neuron in the 
hidden layer.  
2-  At each neuron in the hidden layer, the inverse 
1D-FFT is computed. Therefore, q backward and 
(1+q) forward transforms have to be computed. 
Therefore, for a given matrix under test, the total 
number of operations required to compute the 1D-
FFT is (2q+1)Nlog2N. 

3- The number of computation steps required by 
FTDNN is complex and must be converted into a real 
version. It is known that, the one dimensional Fast 
Fourier Transform requires (N/2)log2N complex 
multiplications and Nlog2N complex additions [23]. 
Every complex multiplication is realized by six real 
floating point operations and every complex addition 
is implemented by two real floating point operations. 
Therefore, the total number of computation steps 
required to obtain the 1D-FFT of a 1xN matrix is: 

ρ=6(N/2)log2N + 2Nlog2N                  (11) 
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which may be simplified to: 

ρ=5Nlog2N                             (12) 

4- Both the input and the weight matrices should be 
dot multiplied in the frequency domain. Thus, a 
number of complex computation steps equal to qN 
should be considered. This means 6qN real operations 
will be added to the number of computation steps 
required by FNNs.  

5- In order to perform cross correlation in the 
frequency domain, the weight matrix must be 
extended to have the same size as the input matrix. 
So, a number of zeros = (N-n) must be added to the 
weight matrix. This requires a total real number of 
computation steps = q(N-n) for all neurons. 
Moreover, after computing the FFT for the weight 
matrix, the conjugate of this matrix must be obtained. 
As a result, a real number of computation steps = qN 
should be added in order to obtain the conjugate of 
the weight matrix for all neurons.  Also, a number of 
real computation steps equal to (N) is required to 
create butterflies complex numbers (e-jk(2Πn/N)), where 
0<K<N. These (N/2) complex numbers are multiplied 
by the elements of the input matrix or by previous 
complex numbers during the computation of FFT. To 
create a complex number requires two real floating 
point operations. Thus, the total number of 
computation steps required for FNNs becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N        (13) 

which can be reformulated as: 
           σ=(2q+1)(5Nlog2N)+q(8N-n)+N          (14) 

6- Using sliding window of size 1xn for the same 
matrix of 1xN pixels, q(2n-1)(N-n+1) computation 
steps are required when using CNNs for certain 
information detection or processing (n) input data. 
The theoretical speed up factor η can be evaluated as 
follows: 

   N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η         (15) 

FNNs accepts serial input data with fixed size (n). 
Therefore, the number of input neurons equals to (n). 
Instead of treating (n) inputs, our new approach is to 
collect all the input data together in a long vector (for 
example 100xn). Then the input data is tested by 
FNNs as a single pattern with length L (L=100xn). 
Such a test is performed in the frequency domain. 
Complex-valued neural networks have many 
applications in fields dealing with complex numbers 
such as telecommunications, speech recognition and 
image processing with the Fourier Transform [24]. 
Complex-valued neural networks mean that the 
inputs, weights, thresholds and the activation function 
have complex values. In this section, formulas for the 
speed up ratio with different types of inputs will be 
presented. The special case of only real input values 
(i.e. imaginary part=0) will be considered. Also, the 

speed up ratio in the case of a one and two 
dimensional input matrix will be concluded. The 
operation of FNNs depends on computing the Fast 
Fourier Transform for both the input and weight 
matrices and obtaining the resulting two matrices. 
After performing dot multiplication for the resulting 
two matrices in the frequency domain, the Inverse 
Fast Fourier Transform is calculated for the final 
matrix. Here, there is an excellent advantage with 
FNNs that should be mentioned. The Fast Fourier 
Transform is already dealing with complex numbers, 
so there is no change in the number of computation 
steps required for FNNs. Therefore, the speed up ratio 
in the case of FNNs can be evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 

real inputs requires (2n) real operations. This 
produces (n) real numbers and (n) imaginary 
numbers. The addition of these numbers requires (2n-
2) real operations. Therefore, the number of 
computation steps required by CNNs can be 
calculated as: 

θ=q(2n-1)(N-n+1)                  (16) 
The speed up ratio in this case can be computed as 

follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η          (17) 

The theoretical speed up ratio for searching short 
successive (n) data in a long input vector (L) using 
FNNs is shown in Figures 6, 7, and 8. Also, the 
practical speed up ratio for manipulating matrices of 
different sizes (L) and different sized weight matrices 
(n) using a 2.7 GHz processor and MATLAB is 
shown in Figure 9.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by 

(n2) real inputs requires (2n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires 
(2n2-2) real operations. Therefore, the number of 
computation steps required by CNNs can be 
calculated as: 

θ=2q(2n2-1)(N-n+1) 2                (18)  

The speed up ratio in this case can be computed as 
follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η      (19) 

The theoretical speed up ratio for detecting (nxn) real 
valued submatrix in a large real valued matrix (NxN) 
using FNNs is shown in Figures 10, 11, 12. Also, the 
practical speed up ratio for manipulating matrices of 
different sizes (NxN) and different sized weight 
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matrices (n) using a 2.7 GHz processor and 
MATLAB is shown in Figure 13.  

2) In case of complex inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 

complex inputs requires (6n) real operations. This 
produces (n) real numbers and (n) imaginary 
numbers. The addition of these numbers requires (2n-
2) real operations. Therefore, the number of 
computation steps required by CNNs can be 
calculated as: 

θ=2q(4n-1)(N-n+1)                    (20)  

The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η         (21) 

The theoretical speed up ratio for searching short 
complex successive (n) data in a long complex-valued 
input vector (L) using FNNs is shown in Figures 14, 
15, and 16. Also, the practical speed up ratio for 
manipulating matrices of different sizes (L) and 
different sized weight matrices (n) using a 2.7 GHz 
processor and MATLAB is shown in Figure 17.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by 

(n2) real inputs requires (6n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires 
(2n2-2) real operations. Therefore, the number of 
computation steps required by CNNs can be 
calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (22)  

The speed up ratio in this case can be computed as 
follows: 

   N )n-q(8N )N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η       (23) 

The theoretical speed up ratio for detecting (nxn) 
complex-valued submatrix in a large complex-valued 
matrix (NxN) using FNNs is shown in Figures 18, 19, 
and 20. Also, the practical speed up ratio for 
manipulating matrices of different sizes (NxN) and 
different sized weight matrices (n) using a 2.7 GHz 
processor and MATLAB is shown in Figure 21.  
In practical implementation, the multiplication 
process consumes more time than the addition one. 
The effect of the number of multiplications required 
for CNNs in the speed up ratio  is more than the 
number of multiplication steps required by the FNNs. 
Also, the variations in Pc clock have an effect on 
practical computations. 
For a one dimensional matrix, from Figures 
6,7,8,9,10,11,12, and 13, we can conclude that the 

response time for vectors with short lengths are faster 
than those which have longer lengths. For example, 
the speed up ratio for the vector of length 10000 is 
faster that of length 1000000. The number of 
computation steps required for a vector of length 
10000 is much less than that required for a vector of 
length 40000. So, if the vector of length 40000 is 
divided into 4 shorter vectors of length 10000, the 
number of computation steps will be less than that 
required for the vector of length 40000. Therefore, for 
each application, it is useful at the first to calculate 
the optimum length of the input vector. The same 
conclusion can be drawn in case of processing the 
two dimensional input matrix as shown in Figures 
10,11,12,13,18,19,20, and 21. From these Figures, it 
is clear that the maximum speed up ratio is achieved 
at image size (N=200) when n=20, then at image size 
(N=300) when n=25, and at image size (N=400) when 
n=30. This confirms our previous results presented in 
[26] on fast subimage detection based on neural 
networks and image decomposition. Using this 
technique, it was proved that the speed up ratio of 
neural networks becomes faster when the input image 
is divided into many subimages and each subimage is 
processed in the frequency domain separately using a 
single fast neural processor. Another point of interest 
should be noted. In CNNs, if the whole input data (N) 
is available, then there is a waiting time for each 
group of (n) input data so that CNNs can release their 
output for the previous group of (n) data. In contrast, 
FNNs can process the total N data directly with zero 
waiting time. For example, if the total (N) input data 
is appeared at the input neurons, then: 
1- CNNs can process only data of size (n) as the 
number of input neurons = (n). 
2- The first group of (n) data is processed by CNNs.   
3- The second group of (n) data must wait for a 
waiting time = τ, where τ is the response time 
consumed by CNNs for treating each group of (n) 
input data. 
4- The third group of (n) data must wait for a waiting 
time   = 2τ corresponding to the total waiting time 
required by CNNs for treating the previous two 
groups. 
5- The fourth (n) data must wait for a waiting time = 
3τ. 
6- The last group of (n) data must wait for a waiting 
time = (N-n)τ. 
As a result, the wasted waiting time in the case of 
CNNs is (N-n)τ. In the case of FNNs, there is no 
waiting time as the whole input data (Z) of length (N) 
will be processed directly and the time consumed is 
the only time required by FNNs themselves to 
produce their output. 

V. Conclusion 
A new fast algorithm for information retrieval  has 

been presented. This has been achieved by 
performing cross correlation in the frequency domain 
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between input image and the input weights of FNNs. 
It has been proved mathematically and practically that 
the number of computation steps required for the 
presented FNNs is less than that needed by CNNs. 
Simulation results using MATLAB has confirmed the 
theoretical computations. Furthermore, by applying 
cross correlation, object detection has been become 
position independent. Moreover, by using neural 
networks, the object has been detected even with 
rotation, scaling, noise, distortion or deformation in 
shape. An approach for image-based information 
retrieval using intelligent mobile agent has been 
introduced. The proposed approach relies on using 
different web crawlers to collect images from the 
World Wide Web located on different servers; 
consequently similar images at each image server are 
clustered together. The mobile agents travel across 
the image servers and analyze image databases at 
their resource to perform feature extraction, clustering 
similar images at each node together to speed up the 
retrieving process. The advantages of the image-
based information retrieval using mobile agents are a 
natural parallelization of the computation and the 
reduction of bandwidth by avoiding the transfer of 
huge intermediate data through the network.  

The image based information retrieval system has 
been tested by three approaches; central indexing, 
broadcasting and clustering approach. These have 
been subsequently simulated to quantify their 
effectiveness in the information retrieval function. It 
has been concluded that the three approaches did not 
differ much in discovering the requisite information, 
but differ in the size of intermediate data transfer and 
the response time to the user’s query. Future work 
will optimize the routing path of search agent in the 
system. Search agent will not have to visit image 
servers by their order list; instead, it will determine its 
route using an optimization technique. The future 
work also will concern on investigating the 
performance of the proposed system using other 
clustering algorithms and other distance measures. 
 

References 

[1] W. Qu, M. Kitsuregawa,  and K.Li, "Performance 
analysis on mobile agent-based parallel 
information retrieval approaches," ICPADS13th 
International Conference on Parallel and 
Distributed Systems, Hsinchu , Vol.1,  pp. 1-8, 5-
7 Dec  2007. 

[2] Y. Lu, P. Gao, R. Lv, and Z. Su, “Study of 
content-based image retrieval using parallel 
computing technique,” Conference on High 
Performance Networking and Computing 
Proceedings of the 2007 Asian technology 
information program's (ATIP's) 3rd workshop on 
High performance computing in China: solution 
approaches to impediments for high performance 
computing. pp. 186-191, 2007. 

[3] A. W. M. Smeulders, “Content-based image 
retrieval: the end of the early years”. IEEE 
transaction on Pattern Analysis and Machine 
Intelligence, vol.22, pp. 1349- 1380, 2000. 

[4] M.L. Kherfi, and D. Ziou, "Image Retrieval From 
the World Wide Web Issues, Techniques, and 
Systems," ACM Computing Surveys, vol. 36, pp. 
35–67, 2004. 

[5]  V. Roth, U. Pinsdorf, and J. Peters, "A 
Distributed Content Based Search Engine Based 
on Mobile Code," Proceedings of the 2005 ACM 
symposium on Applied computing (session: 
Agents, interactions, mobility and systems 
(AIMS)), New Mexico, pp 66–73, 2005. 

[6] H. Liu, G. He, "Shape Feature Extraction of High 
Resolution Remote Sensing Image Based on 
SUSAN and Moment Invariant," cisp, ,  2008 
Congress on Image and Signal Processing, Vol. 
2,  pp. 801-807, 2008. 

[7] I. King, C.H. Ng, and K.C. Sia, “Distributed 
content-based visual information retrieval system 
on peer-to-peer networks,” ACM TOIS, vol. 22(3), 
pp. 477–501, 2004. 

[8] B. Luo, X. G. Wang, and X. O. Tang. “A World 
Wide Web Based Image Search Engine Using 
Text and Image Content Features.” Proceedings of 
the SPIE Electronic Imaging 2003, Internet 
Imaging IV, Chinese Univ. of Hong Kong, vol. 
5018, pp.123-130 2003. 

[9]  I. Kompatsiaris, E. Triantafylluo, and M. G. 
Strintzis, “A World Wide Web Region-Based 
Image Search Engine,”International Conference 
on Image Analysis and Processing, IEEE 2001, 
Palermo , Itale, pp.392-397, 2001. 

[10] W.Qu, K.li, and C.zhang , "Efficient 
Information Retrieval by Dispatching Mobile 
Agents in Parallel," mue, 2008 International 
Conference on Multimedia and Ubiquitous 
Engineering, Busan, Korea, vol.00, pp. 73-76, 
2008. 

[11] W. Qu, H. Shen, and J. Sum, “New Analysis 
on Mobile Agents Based Network Routing”, 
Applied Soft Computing Journal, vol.6(1), pp.108-
118, 2005. 

[12] A.M. Riad, and H.A. Ali, “ New Approach 
for Information Retrieval based-on  Mobile 
Agent,” Egyptian Computer Journal, ISSR, vol. 
10, no.1,  pp. 110-123, Cairo Univ., 2002. 

[13] C. Timon, Y. Eldon, and A. Chang, "Mobile 
Agents in Distributed Network Management," 
July 2003, vol. 46, no. 7, Communications Of The 
ACM. 

[14] J. Guan, and B. Zhao, "Distributed 
Geographic Information Querying Approach 
based on Mobile Agent," Proceedings of the 
Fourth International Conference on Computer 
and Information Technology (CIT’04) 2004 IEEE, 
Wuhan, China, pp. 782-787,2004. 

[15] D. Picard, M. Cord, and A. Revel. “CBIR in 
distributed databases using a multi-agent system,” 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1026 Issue 6, Volume 6, June 2009



[21] Dmoz open directory project, 
http://www.dmoz.org, downloaded 16 June 2008. 

In IEEE International Conference on Image 
Processing (ICIP’06), Atlanta, GA, USA,pp. 
3205-3208,2006. [22] H. M. El-Bakry, “New Faster Normalized Neural 

Networks for Sub-Matrix Detection using Cross 
Correlation in the Frequency Domain and Matrix 
Decomposition,” Applied Soft Computing journal, 
vol. 8, issue 2, March 2008, pp. 1131-1149.  

[16] D. Picard, A.Revel and M. Cord . 
“Performances of mobile-agents for interactive 
image retrieval,” In: 2006 IEEE/WIC/ACM 
International Conference on Web Intelligence (WI 
06), IEEE Computer Society, pp. 581–586, 2006.  [23] J. W. Cooley, and J. W. Tukey, "An algorithm 

for the machine calculation of complex Fourier 
series," Math. Comput. 19, 1965, pp. 297–301. 

[17] A. Revel, “Web-agents inspired by ethology: 
a population of “ant”-like agents to help finding 
user-oriented information.,” in IEEE WIC’2003 : 
International Conference on Web Intelligence., 
Halifax, Canada, October 2003, IEEE Computer 
Society, pp. 482–485, 2003. 

[24] A. Hirose, “Complex-Valued Neural Networks 
Theories and Applications”,  Series on innovative 
Intelligence, vol.5. Nov. 2003. 

[25] A. M. Riad, A. Atwan, and S. Abd El-Ghany, 
“Analysis of Performance of Mobile Agents in 
Distributed Content Based Image Retrieval,” The 
2008 International Conference on Computer 
Engineering & Systems ( ICCES’08), November 
25 - 27, 2008. 

[18]  A. Revel, “From robots to web-agents: 
Building cognitive software agents for web-
information retrieval by taking inspiration from 
experience in robotics,” in ACM International 
conference on Web Intelligence, France,  pp. 434–
437, 2005. [26] H. M. El-Bakry, “Face detection using fast 

neural networks and image decomposition,” 
Neurocomputing Journal, vol. 48, 1039-1046, 
2002.  

[19]  G. Pass, R. Zabih, and J. Miller. 
“Comparing images using color coherence 
vectors”. In Proc. ACM Conference on 
Multimedia, Boston, Massachusetts, U. S. A., 
November 1996. 

 
 

[20] J. A. Hartigan, and M.A. Wong, “Algorithm 
AS136: A k means clustering Algorithm”, 
Applied Statistics, Vol. 28, pp. 100-108, 1979. 

 
 
 

            Hyperlink Parser 

Retrieval Crawler 

 

HTTP 

download 

Hyperlin
k extractor

HTML 

XML 

Parser

 

 

 

Hyperlink 

parser 

Audio URLs 

Video URLs 

Applet URLs 

Image URLs 

HTML URLs 

Image 
download 

Indexing 

Module 

URL 

Buffer 

Seed 
URL 

Traversal Crawler  
 
 
 

Image 

Database

 
 
 
 

 
 
 
 
 

Fig. 1. Information Crawler Components.  
 

 
 
 

 
 
 
 
 
 
 
 

 
Fig. 2. Image-based information retrieval.  
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Fig. 6. A comparison between the number of computation steps required by FNNs and CNNs in case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=400). 
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Fig. 7. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=625). 
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Fig. 8. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued one 

dimensional input matrix and complex-valued weight matrix (n=900). 
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Fig. 9.  Practical speed up ratio for neural networks in case of one dimensional real-valued input matrix and complex-valued 

weights. 
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Fig. 10. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued 

two dimensional input matrix and complex-valued weight matrix (n=20). 
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Fig. 11. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued 

two dimensional input matrix and complex-valued weight matrix (n=25). 
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Fig. 12. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued 

two dimensional input matrix and complex-valued weight matrix (n=30). 
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Fig. 13. Practical speed up ratio for neural networks in case of two dimensional real-valued input matrix and complex-

valued weights. 
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Fig. 14. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued one dimensional input matrix and complex-valued weight matrix (n=400). 
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Fig. 15. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued one dimensional input matrix and complex-valued weight matrix (n=625). 
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Fig. 16. A comparison between the number of computation steps required by FNNs and conventional neural networks in the 

case of complex-valued one dimensional input matrix and complex-valued weight matrix (n=900). 
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Fig. 17.  Practical speed up ratio for neural networks in case of one dimensional complex-valued input matrix and complex-

valued weights. 

 

 

 

 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1034 Issue 6, Volume 6, June 2009



0

5E+10

1E+11

2E+11

2E+11

3E+11

3E+11

4E+11

4E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix 

N
um

be
r 

of
 C

om
pu

ta
tio

n 
St

ep
s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

 

Fig. 18. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued two dimensional input matrix and complex-valued weight matrix (n=20). 
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Fig. 19. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued two dimensional input matrix and complex-valued weight matrix (n=25). 
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Fig. 20. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued two dimensional input matrix and complex-valued weight matrix (n=30). 
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Fig. 21. Practical speed up ratio for neural networks in case of two dimensional complex-valued input matrix in and 

complex-valued weights. 
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