
Fast Information Retrieval from Web Pages
HAZEM M. EL-BAKRY

Faculty of Computer Science & Information Systems,
Mansoura University, EGYPT

E-mail: helbakry20@yahoo.com

NIKOS MASTORAKIS
Department of Computer Science,

Military Institutions of University Education (MIUE)
-Hellenic Naval Academy, Greece

Abstract: In this paper, a new fast algorithm for information retrieval is presented. Such algorithm relies on
performing cross correlation in the frequency domain between input data and the input weights of fast neural
networks (FNNs). It is proved mathematically and practically that the number of computation steps required for
the presented FNNs is less than that needed by conventional neural networks (CNNs). The main objective of
Internet users is to find the required information with high efficiency and effectiveness. Finding information on
an object’s visual features is useful when specific keywords for the object are not known. Since intelligent
mobile agent technology is expected to be a promising technology for information retrieval, there is a number of
intelligent mobile agent based-information retrieval approaches have been proposed in recent years. Here, the
work presented in [25] for image-based information retrieval using mobile agents is greatly enhanced. Multiple
information agents continuously traverse the Internet and collect images that are subsequently indexed based on
image information such as the URL location, size, type and the date of indexation. In the search phase, the
intelligent mobile agent receives the image of object as a query and searches the set of web pages that contain
information about the object. This is done by matching the query to images on web pages faster than the work
presented in [25]. Furthermore, by applying cross correlation, object detection becomes position independent.
Moreover, by using neural networks, the object can be detected even with rotation, scaling, noise, distortion or
deformation in shape.

Keywords: Fast information retrieval, Content-based image retrieval, Image clustering, and Intelligent mobile
agent

I. Introduction
With the development of Internet technology, the

fast growing World Wide Web has become one of the
most important sources of information and
knowledge. When searching the Web, a user can be
overwhelmed by thousands of results retrieved by a
search engine, of which few are valuable. The
problem for search engines is not only to find topic
relevant results, but results consistent with the user’s
information need. How to retrieve desired
information from the Internet with high efficiency
and good effectiveness is become the main concern of
internet user-based [1]. Users generally find
information using search engines. The input to these
search engines often consists of keywords or other
written text like a question. But the Web contains not
only text, but also information in other modalities
such as images. They are however not yet being used
as input for general Web searches. When the user
wants to query about an object that has unique visual
features, the image of the object that represents the
visual properties can be used as a query. By enabling
searches on object appearance provide users with a
new, more convenient and direct means for finding
information about objects encountered in everyday
life. Many existing world wide search engines, for
example Google and Yahoo, rely on meta-data
(annotations) or the context in which the image is
found and the query is performed using text-based
information retrieval method, the matching is

performed based on image captions or file names,
thus the performance of image retrieval is based on
the similarity between the user’s text query and image
text annotation not on the image content itself [2].
Content Based Image Retrieval (CBIR) searches for
images by using asset of visual features such as color,
shape and texture, are extracted from the images that
characterize the image content [3]. These techniques
have been used in many areas, such as geographic
information system, biomedical image processing and
digital libraries [4]. One of the main advantages of the
CBIR approach is the possibility of an automatic
retrieval process, instead of the traditional keyword-
based approach, which usually requires very difficult
and time-consuming previous annotation of database
images. Comparatively speaking, CBIR more
objectively reflects the content of images [6]. Most of
CBIR systems are only operate on a local demo
database of a few thousand images stored at the host
web site [7]. Unlike image retrieval from a fixed
database, where each image is treated as an
independent object, for Searching for image on the
Web basically comes down to locating an appropriate
Web page and to retrieve relevant information about
the image from that site[8,9].

Intelligent mobile agent is a program that traverses
the Internet, moves to different sites with different
characteristics, searches for the desired information,
and returns the search report to the user query
[10,11]. When large quantities of data are stored at

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1018 Issue 6, Volume 6, June 2009

mailto:helbakry20@yahoo.com

distributed sites, moving the computations to the data
is a more realistic and feasible approach, compared
with migrating data to the computations. In other
words; instead of gathering information from
distributed sites to be processed at a central site, users
can dispatch mobile agents to a destination site to
perform information retrieval and to return to a user
the results of the analysis. Thus, the data transmitted
over the network are minimized. This is especially
important when using a low-bandwidth access
network. Features of mobile agent, such as cross-
platform migrating, dynamic and distributed
computing make it possible to solve the problems of
low bandwidth and unstable connection in the internet
and to provide the support of searching in the internet
via inconsistent connected devices (e.g. laptop, PDA,
mobile phone, etc). Mobile agents already have been
used to build many distributed applications, including
distributed information retrieval [12], and network
management [13]. Furthermore, they provide an
attractive paradigm for design and implementation of
scalable, flexible, and extensible system for image
retrieval from multiple, distributed heterogeneous
image sources [14].
In this paper, an image-based information retrieval

using intelligent mobile agent is presented. Image
crawler continuously traverses the Internet and collect
images that are subsequently indexed based on
integrated feature vectors. These features along with
additional information such as the URL location and
the date of index procedure are stored in a database.
The user can access and search these indexed contents
through the Web with an advanced and user friendly
interface. The output of the system is a set of links to
the content available in the WWW, ranked according
to their similarity to the submitted image by the user.

There are many systems for Content –based image

retrieval (CBIR) using mobile agent are presented e.g.
[5, 15, 16].None of these systems provides a web
search engine; they are based on local image
database. Comparing to image databases, the Web is
an unlimited, immense repository of images, covering
much broader resources, and is increasing
continuously at high speed rate. In [17, 18] mobile
agent is used for web information retrieval based on
text query not image query. Unfortunately, keywords
may not accurately or completely describe image
content.
Two approaches for information retrieval from

distributed database based on mobile agents are
presented in [12]. The first approach utilizes the
mobility of agent for moving the query to the desired
site where the data resided while the second one is
based on reduction of the number of migrating agents.
The work in this paper presents a new approach for
finding information related to an image from the
World Wide Web by matching image itself and
retrieving the web page which contains information
related to the submitted image. This is called image-

based information retrieval. The information retrieved
can be in any format or media, but it’s found using an
image as a query.

The paper is organized as follows: Section II

presents the architecture of the proposed system.
Section III illustrates experiments and evaluation of
the proposed system. The proposed alogrithm for fast
information retrieval is presented in section IV.
Conclusion and future work are presented in section
V.

II. System Architecture
The overall system is split into two parts: (i) the

off-line part and (ii) the on-line or user part.
In the off-line part, several Information Crawlers,

continuously traverse the WWW, collect images and
store them to a database for further processing. Then
the image indexing module processes the image in
order to extract descriptive feature using color and
shape features. These features along with information
of the images such as URL, date of process, size and
a thumbnail are stored in the database.

In the on-line part, a user connects to the system
through a common Web Browser using the HTTP
protocol. The user can then submit queries either by
example images or by sketch. The query then is
processed by the server and the retrieval phase
begins; the indexing module is repeated again for the
submitted image and then the extracted features are
matched against those stored in the database. The
results containing the URL, as well as, the thumbnail
of the similar images are transmitted to the user and
the results are ranked according to their similarity to
the submitted image.

A) Information Crawler

The image collection process is conducted by a
different autonomous Web agent or Crawler run on a
network of computers. The agent traverses the Web
by parsing the hyperlinks, detects images, retrieves
and transfers them for processing to the system
server. The system server extracts features from the
images and then stores it in the database.
 The overall collection process is illustrated in Fig. 1;
it is carried out using several distinct modules:
The Traversal Crawler - assembles lists of candidate

Web pages that may include images or hyperlinks to
them.
The Hyperlink Parser - extracts the URLs of the

images.
 The Retrieval Crawler - retrieves and transfers the

image to the system server for further processing.
This section gives a description of the information

crawler as shown in Fig. 1; Traversal -crawler
browses the WWW to collect images. The web-sites
listed in the categories Shopping and Recreation of
the DMOZ directory [21] are chosen as a starting
point. In the first phase, the Traversal Crawler follows
a breadth first search across the Web. It retrieves

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1019 Issue 6, Volume 6, June 2009

pages via Hypertext Transfer Protocol (HTTP) and
passes the Hypertext Markup Language (HTML)
code to the Hyperlink Parser. In turn, the Hyperlink
Parser detects new URLs, encoded as HTML
hyperlinks, and adds them back to the queue of Web
pages to be retrieved by the Traversal Crawler. The
Hyperlink Parser detects the hyperlinks in the Web
documents and converts the relative URLs to
absolute addresses. By examining the types of the
hyperlinks and the filename extensions of the URLs,
the Hyperlink Parser extracts the URLs of the images.
In the second phase, the list of image URLs from the
Hyperlink Parser is passed to the Retrieval Crawler.
The Retrieval Crawler retrieves the images and
provides them as input to the indexing module. After
the indexing procedure, the extracted features are
added to the database. Another important function of
the Retrieval Crawler is to extract attributes
associated with the image such as URL, date of
processing, size, width, height, file size, type of visual
data, and so forth, and also generate a thumbnail icon,
that sufficiently compacts and represents the visual
information.

B) Indexing Module

After the image detection module collects and
transfers images to the server, image indexing module
processes them in order to extract low level feature of
image. This module consists of two steps; feature
extraction and image clustering.
1. Feature Extraction
The prototype implementation uses Color Coherence

Vectors [19] as a feature extraction and comparison
algorithm. Feature vectors consist of 128 float values;
each vector is computed as follows: the image is
blurred using a simple 3 x 3 convolution filter which
averages the color values of all horizontal and vertical
neighbors of the filtered pixel. The blurred image is
then quantized to a color space of 64 colors. In the
last step, the pixels of the image are classified into
coherent and incoherent pixels. Coherent pixels are
pixels which are part of a horizontally and vertically
connected pixel area of the same color whose size
exceeds a certain threshold. Incoherent pixels are
pixels which are not coherent pixels. For each of the
64 colors, the coherent and incoherent pixel counts
are summed up separately and normalized with regard
to the total image area. This results in a 128
dimensional vector. The Color Coherence Vector
algorithm has the advantage that it is easy to
implement, reasonably fast, and achieves a high
compression rate. Images are reduced to a vector
whose encoding is less than 600 bytes.
2. Clustering Similar Image

The increase of number of images in the database,
the increase in the time required to retrieve results. To
avoid search over the whole images database, the
images with similar features vector should be grouped
together in the same class. K-means clustering
algorithm [20] is used for this operation because it is

quite fast, simple and has been applied and shown to
be useful in many applications. The basic step of k-
means clustering is simple. At the beginning,
numbers of clusters K are determined and random
feature vectors are selected as the initial centroids of
these clusters. The grouping is done by minimizing
the sum of squares of distances between feature
vector and the corresponding cluster centroid.

C) Image Query Module.

The image query module includes methods for
extracting features from query images, classifying
query image, and determining similarity between
features extracted from the query and those stored in
the database.
1. Query Feature Extraction
When a user initiates a query for information about

the image, the Feature Extractor module performs
feature extraction on the example image and sends the
feature vector, contained in a query message, to the
broker server.
2. Query Classification

Once the broker server receives the query, it will
calculate the distances from the Query-image feature
vector to the centroids of the set of each cluster to
determine which clusters are closest to the query. The
minimum square error is used to obtain the distance
between a Query Image feature vector and the
centroid vector of the cluster, which can be described
as:

⎟
⎠
⎞

⎜
⎝
⎛ −

=

∑ =

k

i C iQ iMin

QCSim

1

),(
rr

rr

 (1)

3. Distance Measure
In content-based image retrieval, a distance

measure is usually used to check similarity or
dissimilarity between two images. The L1 distance is
taken as a measure of similarity between two color
coherence vectors.
Let () ()nn hhhh ,,...,, 11 be a color coherence

vector where is the percentage of coherent pixel of

color i and
ih

ih is the percentage of incoherent pixels
of color i, then the L1 distance is defined as:

 ∑=
′−+′−=′− n

i iiii hhhhhh
1

|)||(| (2)

III. Experimental Results
According to the experiments results, it has been

observed that a single-threaded information crawler
can traverse the web gathering images at an average
rate of one image every 82 seconds. Gathering the
images has the potential to take long time with a
single-threaded information crawler on a single
computer. This problem is address by employing a

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1020 Issue 6, Volume 6, June 2009

parallel information crawler distributed across many
machines (image servers). Experiments indicate that
the framework can allow using 16 information
crawlers to collect over one million images monthly.

The system was developed using c#.net on Pentium
4 3.2GHz CPU (2GB RAM) running on Windows
vista platform. For image related operations, the
Matlab image processing toolbox was used to assist in
extracting visual features. During experiments,
different port numbers are used to simulate different
image servers. Fig.2, shows an overview and example
result from the system: the image of the object is
selected. The object image is used to query the
database to find the most relevant object, which in
turn retrieves the relevant web pages for the user.

A) Implementation Models
1. Centralized-Broker Approach:

The architecture is capable of gathering, indexing,
caching, replicating, and accessing Internet images in
a distributed way, which assures scalability. This
model consists of a central image broker, several
image servers, index agents, search agents, and fetch
agents (all agents are mobile and relocate during their
life cycle). The image broker dispatches index agents
which transport feature extraction algorithms to one
or more image servers. On these servers, the index
agents extract relevant feature vectors from local
images and send or take image entries back to the
image broker. At the image broker, all image entries
are merged into the central index. Each image entry
consists of a feature vector, the URL pointing to the
host where the image was retrieved, an image ID that
uniquely identifies the image at the image server, an
optional thumbnail, and optional further information
on the image such as its size. The globally unique ID
of an image consists of the globally unique URL plus
the locally unique image ID. Based on the index data,
image brokers can either serve requests in a
client/server fashion, or they support intelligent
mobile agent queries as follows; A client sends a
search agent to the broker which queries information
related to a specific image, a sketch, or a feature
vector which is extracted from either of these query
images. The query result consists of extended image
entries which contain the normalized distance
between the query and the entry’s feature vector, in
addition to, the entry itself. The search agent
transports the result set back to the client who selects
images for retrieval based on the included thumbnails.
Once an image is selected for retrieval, the client
sends a fetch agent that migrates between image
servers to collect information about the query image.
An advantage is that this information can then be sent
to Brokers in a compressed form, which reduces the
network load. Another advantage is that one indexer
agent can send the collected data to many Brokers,
saving indexing costs. Finally, a third advantage is
that the server load is reduced since indexer agents
run at the image server, which contributes to the

scalability of the system. A Broker can retrieve
indexing information from many indexers to build an
index of widely distributed data. The Broker can also
retrieve indexing information from other Brokers,
which gives the Broker an indexed view of the other
Brokers.
2. The Broadcasting Approach

In this model, one index agent per image server is
dispatched and takes residence at the image server to
extract features from the images and sets up an index
directly at the image server. The index agent may also
monitor the local image repository for changes, and it
can update its index accordingly and incrementally.
The only communication between the broker and the
index agent is a short notice that the computation of
the index is completed and the index agent is ready to
provide service to search agents. The image broker is
still a central point of access but it resembles more a
yellow page server. It refers search agents to the
image servers where index agents reside.

Once the client selects an image for retrieval, the
process continues as in the gatherer model.

Based on its index the index agent serves queries of
search agents which visit the image server. On each
image server, the search agent merges previously
collected results with the results of its local search,
and prunes the overall number of results.

B) Clustering Approach
In this model, each index Agent creates metadata

(centroid of clusters) describing its own image
collection and sends it to broker server. The broker
collects the metadata from each index agent. This
broker can route every query to the appropriate image
server which contains images belongs to the category
of query image. At each image server, the search
agent matches the query image with the image
collection on the appropriate image server and sends
related web pages which contain the related
information back to the user.

C) Performance Measure

In order to decide the best model for designing the
framework, a comparative analysis is performed
using two important parameters that influence the
performance of the model. These parameters are; size
of intermediate data transfer and number of
comparisons required answering the query. The
response time, i.e., time elapsed between a user
initiating a request and receiving the results, as the
metric for performance measure. This includes the
time taken for agent creation, time taken to visit
mediator server to determine list of image servers to
be visited and processing time at each image server to
obtain the required images.
Response Time: time elapsed between a user

initiating a request and receiving the results,

RT= Y + X/DBR (3)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1021 Issue 6, Volume 6, June 2009

Where: RT: Response Time (sec.), Y:
Communication Initialization Time and Client
Processing Time (sec.),
DBR: Data Bit Rate (Network Data Transmission

speed: bytes/sec.), and X: Amount of transmitted data
(bytes).
X = (Mobile Agents Transfer) + (images descriptor

Transfer).
Each image descriptor consists a thumbnail, the ID

of that image (unique within the domain of the image
server), a measure of similarity to the original query
image, and the URL of the image server from which
the full size of image can be retrieved.
The Response Time can be written as

RT = time (migrating mobile agents) + time (Total

Access Delay) + time (Transferred images
descriptors)

RT = C +(S * N)/ DBR + ∑ D
+∑ (Mn*Ms)/DBR (4)

Where: N: number of servers will be visited, S: size

of mobile agent, Mn: the number of retrieved images
descriptor, Ms: image descriptor size, D: access delay
at each server, and C: processing time at mediator
server.
Client processing time and intelligent mobile agent

creation time will be excluded from calculation,
because it will be equal in three approaches. Image
size, images numbers are the same at the three
approaches. Other parameters have been used for
comparison such as:

1) Size of Intermediate Data Transfer
 In the centralized approach, the size of data

transfer is equal to the summation of image
descriptors (feature vector+ thumbnail image +image
ID +server URL). In the clustering approach size of
transfer data is equal to the summation of centroid of
image clusters in all image servers. In the
Broadcasting approach, the size of intermediate data
transported over the network is in complexity O

((i-1)*Xi), where Xi denote to the number of

cluster on the i-th image server and N denote to the
total number of image servers in the system. Fig. 3
shows the amounts of intermediate data transported of
the network in the centralized approach vs. the
clustering approach.

∑=

N
i 2

(

The graph is plotted based on the size of all feature
vectors of images from all servers. It is observed that;
the amount of data transported in indexing phase in
clustering approach is too small compared to the
centralized gatherer approach due to two reasons:
Firstly, because each image server in the indexing
phase of the clustering approach has to communicate
only its local centroid for each cluster. Thus, the
communication load of clustering per image server is
of the order O(NClusters), i.e. for a large number of

images per server, the price of distributed clustering
is still low compared to centralized gatherer approach
that would require sending over the network a large
sample of all data stored within the image server. The
second reason is that there is no need to update the
cluster centroids with each new image because
slightly outdated cluster centroids do not significantly
affect the retrieval process.

2) Number of Comparisons
One of the main factors which affects the response

time is the number of comparison performed to
retrieve images and location of processing. For the
clustering approach, number of comparisons that
performed to response query is in order O
[(NClusters) performed on mediator + (Number of
images respective clusters) performed on image
servers], where NClusters denote to number of
clusters in the network. In broadcasting and
centralized approaches, intelligent mobile agent
perform comparisons in order of O [(the summation
of images stored in all servers) performed on
mediator only]. The increase in the number of
comparisons which are required to be performed to
response query will increase the response time.
Moreover, distributing this task between different
image servers overcome problems of centralized
server and make all hosts participating in the system
act as servers. Fig. 4, shows the number of
comparison in broadcasting and clustering
approaches.

3) The Response Time
Number of visited servers during query processing
varies at Broadcasting and Clustering approaches. For
the broadcasting approach, the search agent will visit
all servers in the network in order to find the results
for the query so number of servers that will be visited
is equal to the total number of servers in the network.
But in clustering approach, number of visited servers
is only that having the same category as the query
image. By calculating total access delay of the system
which is used to implement these approaches, it is
clear that by allowing search agent to visit all servers,
total access delay increase proportionally. Fig. 5,
shows the effect of increasing number of image
servers on access delay in the two cases. Total access
delay is the summation of access delay time of all
image servers while access delay time in clustering is
the access delay of servers only that maintain images
belonging to the category of the query. This can be
concluded as fewer numbers of migrations of mobile
agents used to execute the tasks will cause lower
network traffic and consume less bandwidth, and the
total time taken to retrieve the query results is
minimized.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1022 Issue 6, Volume 6, June 2009

IV. Fast Information Retrieval by using
High Speed Neural Networks

Finding a certain information in the input one
dimensional matrix is a searching problem. Each
position in the input matrix is tested for the presence
or absence of the required information. At each
position in the input matrix, each sub-matrix is
multiplied by a window of weights, which has the
same size as the sub-matrix. The outputs of neurons
in the hidden layer are multiplied by the weights of
the output layer. When the final output is high, this
means that the sub-matrix under test contains the
required information and vice versa. Thus, we may
conclude that this searching problem is a cross
correlation between the matrix under test and the
weights of the hidden neurons.

The convolution theorem in mathematical analysis
says that a convolution of f with h is identical to the
result of the following steps: let F and H be the results
of the Fourier Transformation of f and h in the
frequency domain. Multiply F and H in the frequency
domain point by point and then transform this product
into the spatial domain via the inverse Fourier
Transform. As a result, these cross correlations can be
represented by a product in the frequency domain.
Thus, by using cross correlation in the frequency
domain, speed up in an order of magnitude can be
achieved during the detection process [22]. In
information retrieval phase, a sub matrix I of size
1xn (sliding window) is extracted from the tested
matrix, which has a size 1xN, and fed to the neural
network. Let Wi be the matrix of weights between the
input sub-matrix and the hidden layer. This vector has
a size of 1xn and can be represented as 1xn matrix.
The output of hidden neurons hi can be calculated as
follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih (5)

where g is the activation function and b(i) is the bias
of each hidden neuron (i). Eq. 5 represents the output
of each hidden neuron for a particular sub-matrix I. It
can be obtained to the whole input matrix Z as
follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk) Z(uk)(iWg(u)ih (6)

Eq.6 represents a cross correlation operation. Given
any two functions f and d, their cross correlation can
be obtained by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

y
y)d(y)f(xd(x)f(x) (7)

Therefore, Eq. 7 may be written as follows [22]:

()ibiWZgih +⊗= (8)

where hi is the output of the hidden neuron (i) and hi
(u) is the activity of the hidden unit (i) when the
sliding window is located at position (u) and (u) ∈
[N-n+1].

Now, the above cross correlation can be expressed in
terms of one dimensional Fast Fourier Transform as
follows [22]:

() ()()iW*FZF1FiWZ •−=⊗ (9)

F: is the Fast Fourier Transform.

F*: is the conjugate Fast Fourier Transform.

F-1: is the Inverse Fast Fourier Transform.

⊗: is the cross correlation operator.

•: is the dot product (element by element) operator.

Hence, by evaluating this cross correlation, a speed
up ratio can be obtained comparable to CNNs. Also,
the final output of the neural network can be
evaluated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u) (10)

where q is the number of neurons in the hidden layer.
O(u) is the output of the neural network when the
sliding window located at the position (u) in the input
matrix Z. Wo is the weight matrix between hidden and
output layer.
The complexity of cross correlation in the frequency
domain can be analyzed as follows:
1- For a tested matrix of 1xN elements, the 1D-FFT
requires a number equal to Nlog2N of complex
computation steps [23]. Also, the same number of
complex computation steps is required for computing
the 1D-FFT of the weight matrix at each neuron in the
hidden layer.
2- At each neuron in the hidden layer, the inverse
1D-FFT is computed. Therefore, q backward and
(1+q) forward transforms have to be computed.
Therefore, for a given matrix under test, the total
number of operations required to compute the 1D-
FFT is (2q+1)Nlog2N.

3- The number of computation steps required by
FTDNN is complex and must be converted into a real
version. It is known that, the one dimensional Fast
Fourier Transform requires (N/2)log2N complex
multiplications and Nlog2N complex additions [23].
Every complex multiplication is realized by six real
floating point operations and every complex addition
is implemented by two real floating point operations.
Therefore, the total number of computation steps
required to obtain the 1D-FFT of a 1xN matrix is:

ρ=6(N/2)log2N + 2Nlog2N (11)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1023 Issue 6, Volume 6, June 2009

which may be simplified to:

ρ=5Nlog2N (12)

4- Both the input and the weight matrices should be
dot multiplied in the frequency domain. Thus, a
number of complex computation steps equal to qN
should be considered. This means 6qN real operations
will be added to the number of computation steps
required by FNNs.

5- In order to perform cross correlation in the
frequency domain, the weight matrix must be
extended to have the same size as the input matrix.
So, a number of zeros = (N-n) must be added to the
weight matrix. This requires a total real number of
computation steps = q(N-n) for all neurons.
Moreover, after computing the FFT for the weight
matrix, the conjugate of this matrix must be obtained.
As a result, a real number of computation steps = qN
should be added in order to obtain the conjugate of
the weight matrix for all neurons. Also, a number of
real computation steps equal to (N) is required to
create butterflies complex numbers (e-jk(2Πn/N)), where
0<K<N. These (N/2) complex numbers are multiplied
by the elements of the input matrix or by previous
complex numbers during the computation of FFT. To
create a complex number requires two real floating
point operations. Thus, the total number of
computation steps required for FNNs becomes:

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N (13)

which can be reformulated as:
 σ=(2q+1)(5Nlog2N)+q(8N-n)+N (14)

6- Using sliding window of size 1xn for the same
matrix of 1xN pixels, q(2n-1)(N-n+1) computation
steps are required when using CNNs for certain
information detection or processing (n) input data.
The theoretical speed up factor η can be evaluated as
follows:

 N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η (15)

FNNs accepts serial input data with fixed size (n).
Therefore, the number of input neurons equals to (n).
Instead of treating (n) inputs, our new approach is to
collect all the input data together in a long vector (for
example 100xn). Then the input data is tested by
FNNs as a single pattern with length L (L=100xn).
Such a test is performed in the frequency domain.
Complex-valued neural networks have many
applications in fields dealing with complex numbers
such as telecommunications, speech recognition and
image processing with the Fourier Transform [24].
Complex-valued neural networks mean that the
inputs, weights, thresholds and the activation function
have complex values. In this section, formulas for the
speed up ratio with different types of inputs will be
presented. The special case of only real input values
(i.e. imaginary part=0) will be considered. Also, the

speed up ratio in the case of a one and two
dimensional input matrix will be concluded. The
operation of FNNs depends on computing the Fast
Fourier Transform for both the input and weight
matrices and obtaining the resulting two matrices.
After performing dot multiplication for the resulting
two matrices in the frequency domain, the Inverse
Fast Fourier Transform is calculated for the final
matrix. Here, there is an excellent advantage with
FNNs that should be mentioned. The Fast Fourier
Transform is already dealing with complex numbers,
so there is no change in the number of computation
steps required for FNNs. Therefore, the speed up ratio
in the case of FNNs can be evaluated as follows:

1) In case of real inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by (n)

real inputs requires (2n) real operations. This
produces (n) real numbers and (n) imaginary
numbers. The addition of these numbers requires (2n-
2) real operations. Therefore, the number of
computation steps required by CNNs can be
calculated as:

θ=q(2n-1)(N-n+1) (16)
The speed up ratio in this case can be computed as

follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η (17)

The theoretical speed up ratio for searching short
successive (n) data in a long input vector (L) using
FNNs is shown in Figures 6, 7, and 8. Also, the
practical speed up ratio for manipulating matrices of
different sizes (L) and different sized weight matrices
(n) using a 2.7 GHz processor and MATLAB is
shown in Figure 9.

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by

(n2) real inputs requires (2n2) real operations. This
produces (n2) real numbers and (n2) imaginary
numbers. The addition of these numbers requires
(2n2-2) real operations. Therefore, the number of
computation steps required by CNNs can be
calculated as:

θ=2q(2n2-1)(N-n+1) 2 (18)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η (19)

The theoretical speed up ratio for detecting (nxn) real
valued submatrix in a large real valued matrix (NxN)
using FNNs is shown in Figures 10, 11, 12. Also, the
practical speed up ratio for manipulating matrices of
different sizes (NxN) and different sized weight

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1024 Issue 6, Volume 6, June 2009

matrices (n) using a 2.7 GHz processor and
MATLAB is shown in Figure 13.

2) In case of complex inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by (n)

complex inputs requires (6n) real operations. This
produces (n) real numbers and (n) imaginary
numbers. The addition of these numbers requires (2n-
2) real operations. Therefore, the number of
computation steps required by CNNs can be
calculated as:

θ=2q(4n-1)(N-n+1) (20)

The speed up ratio in this case can be computed as
follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η (21)

The theoretical speed up ratio for searching short
complex successive (n) data in a long complex-valued
input vector (L) using FNNs is shown in Figures 14,
15, and 16. Also, the practical speed up ratio for
manipulating matrices of different sizes (L) and
different sized weight matrices (n) using a 2.7 GHz
processor and MATLAB is shown in Figure 17.

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by

(n2) real inputs requires (6n2) real operations. This
produces (n2) real numbers and (n2) imaginary
numbers. The addition of these numbers requires
(2n2-2) real operations. Therefore, the number of
computation steps required by CNNs can be
calculated as:

θ=2q(4n2-1)(N-n+1)2 (22)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η (23)

The theoretical speed up ratio for detecting (nxn)
complex-valued submatrix in a large complex-valued
matrix (NxN) using FNNs is shown in Figures 18, 19,
and 20. Also, the practical speed up ratio for
manipulating matrices of different sizes (NxN) and
different sized weight matrices (n) using a 2.7 GHz
processor and MATLAB is shown in Figure 21.
In practical implementation, the multiplication
process consumes more time than the addition one.
The effect of the number of multiplications required
for CNNs in the speed up ratio is more than the
number of multiplication steps required by the FNNs.
Also, the variations in Pc clock have an effect on
practical computations.
For a one dimensional matrix, from Figures
6,7,8,9,10,11,12, and 13, we can conclude that the

response time for vectors with short lengths are faster
than those which have longer lengths. For example,
the speed up ratio for the vector of length 10000 is
faster that of length 1000000. The number of
computation steps required for a vector of length
10000 is much less than that required for a vector of
length 40000. So, if the vector of length 40000 is
divided into 4 shorter vectors of length 10000, the
number of computation steps will be less than that
required for the vector of length 40000. Therefore, for
each application, it is useful at the first to calculate
the optimum length of the input vector. The same
conclusion can be drawn in case of processing the
two dimensional input matrix as shown in Figures
10,11,12,13,18,19,20, and 21. From these Figures, it
is clear that the maximum speed up ratio is achieved
at image size (N=200) when n=20, then at image size
(N=300) when n=25, and at image size (N=400) when
n=30. This confirms our previous results presented in
[26] on fast subimage detection based on neural
networks and image decomposition. Using this
technique, it was proved that the speed up ratio of
neural networks becomes faster when the input image
is divided into many subimages and each subimage is
processed in the frequency domain separately using a
single fast neural processor. Another point of interest
should be noted. In CNNs, if the whole input data (N)
is available, then there is a waiting time for each
group of (n) input data so that CNNs can release their
output for the previous group of (n) data. In contrast,
FNNs can process the total N data directly with zero
waiting time. For example, if the total (N) input data
is appeared at the input neurons, then:
1- CNNs can process only data of size (n) as the
number of input neurons = (n).
2- The first group of (n) data is processed by CNNs.
3- The second group of (n) data must wait for a
waiting time = τ, where τ is the response time
consumed by CNNs for treating each group of (n)
input data.
4- The third group of (n) data must wait for a waiting
time = 2τ corresponding to the total waiting time
required by CNNs for treating the previous two
groups.
5- The fourth (n) data must wait for a waiting time =
3τ.
6- The last group of (n) data must wait for a waiting
time = (N-n)τ.
As a result, the wasted waiting time in the case of
CNNs is (N-n)τ. In the case of FNNs, there is no
waiting time as the whole input data (Z) of length (N)
will be processed directly and the time consumed is
the only time required by FNNs themselves to
produce their output.

V. Conclusion
A new fast algorithm for information retrieval has

been presented. This has been achieved by
performing cross correlation in the frequency domain

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1025 Issue 6, Volume 6, June 2009

between input image and the input weights of FNNs.
It has been proved mathematically and practically that
the number of computation steps required for the
presented FNNs is less than that needed by CNNs.
Simulation results using MATLAB has confirmed the
theoretical computations. Furthermore, by applying
cross correlation, object detection has been become
position independent. Moreover, by using neural
networks, the object has been detected even with
rotation, scaling, noise, distortion or deformation in
shape. An approach for image-based information
retrieval using intelligent mobile agent has been
introduced. The proposed approach relies on using
different web crawlers to collect images from the
World Wide Web located on different servers;
consequently similar images at each image server are
clustered together. The mobile agents travel across
the image servers and analyze image databases at
their resource to perform feature extraction, clustering
similar images at each node together to speed up the
retrieving process. The advantages of the image-
based information retrieval using mobile agents are a
natural parallelization of the computation and the
reduction of bandwidth by avoiding the transfer of
huge intermediate data through the network.

The image based information retrieval system has
been tested by three approaches; central indexing,
broadcasting and clustering approach. These have
been subsequently simulated to quantify their
effectiveness in the information retrieval function. It
has been concluded that the three approaches did not
differ much in discovering the requisite information,
but differ in the size of intermediate data transfer and
the response time to the user’s query. Future work
will optimize the routing path of search agent in the
system. Search agent will not have to visit image
servers by their order list; instead, it will determine its
route using an optimization technique. The future
work also will concern on investigating the
performance of the proposed system using other
clustering algorithms and other distance measures.

References

[1] W. Qu, M. Kitsuregawa, and K.Li, "Performance
analysis on mobile agent-based parallel
information retrieval approaches," ICPADS13th
International Conference on Parallel and
Distributed Systems, Hsinchu , Vol.1, pp. 1-8, 5-
7 Dec 2007.

[2] Y. Lu, P. Gao, R. Lv, and Z. Su, “Study of
content-based image retrieval using parallel
computing technique,” Conference on High
Performance Networking and Computing
Proceedings of the 2007 Asian technology
information program's (ATIP's) 3rd workshop on
High performance computing in China: solution
approaches to impediments for high performance
computing. pp. 186-191, 2007.

[3] A. W. M. Smeulders, “Content-based image
retrieval: the end of the early years”. IEEE
transaction on Pattern Analysis and Machine
Intelligence, vol.22, pp. 1349- 1380, 2000.

[4] M.L. Kherfi, and D. Ziou, "Image Retrieval From
the World Wide Web Issues, Techniques, and
Systems," ACM Computing Surveys, vol. 36, pp.
35–67, 2004.

[5] V. Roth, U. Pinsdorf, and J. Peters, "A
Distributed Content Based Search Engine Based
on Mobile Code," Proceedings of the 2005 ACM
symposium on Applied computing (session:
Agents, interactions, mobility and systems
(AIMS)), New Mexico, pp 66–73, 2005.

[6] H. Liu, G. He, "Shape Feature Extraction of High
Resolution Remote Sensing Image Based on
SUSAN and Moment Invariant," cisp, , 2008
Congress on Image and Signal Processing, Vol.
2, pp. 801-807, 2008.

[7] I. King, C.H. Ng, and K.C. Sia, “Distributed
content-based visual information retrieval system
on peer-to-peer networks,” ACM TOIS, vol. 22(3),
pp. 477–501, 2004.

[8] B. Luo, X. G. Wang, and X. O. Tang. “A World
Wide Web Based Image Search Engine Using
Text and Image Content Features.” Proceedings of
the SPIE Electronic Imaging 2003, Internet
Imaging IV, Chinese Univ. of Hong Kong, vol.
5018, pp.123-130 2003.

[9] I. Kompatsiaris, E. Triantafylluo, and M. G.
Strintzis, “A World Wide Web Region-Based
Image Search Engine,”International Conference
on Image Analysis and Processing, IEEE 2001,
Palermo , Itale, pp.392-397, 2001.

[10] W.Qu, K.li, and C.zhang , "Efficient
Information Retrieval by Dispatching Mobile
Agents in Parallel," mue, 2008 International
Conference on Multimedia and Ubiquitous
Engineering, Busan, Korea, vol.00, pp. 73-76,
2008.

[11] W. Qu, H. Shen, and J. Sum, “New Analysis
on Mobile Agents Based Network Routing”,
Applied Soft Computing Journal, vol.6(1), pp.108-
118, 2005.

[12] A.M. Riad, and H.A. Ali, “ New Approach
for Information Retrieval based-on Mobile
Agent,” Egyptian Computer Journal, ISSR, vol.
10, no.1, pp. 110-123, Cairo Univ., 2002.

[13] C. Timon, Y. Eldon, and A. Chang, "Mobile
Agents in Distributed Network Management,"
July 2003, vol. 46, no. 7, Communications Of The
ACM.

[14] J. Guan, and B. Zhao, "Distributed
Geographic Information Querying Approach
based on Mobile Agent," Proceedings of the
Fourth International Conference on Computer
and Information Technology (CIT’04) 2004 IEEE,
Wuhan, China, pp. 782-787,2004.

[15] D. Picard, M. Cord, and A. Revel. “CBIR in
distributed databases using a multi-agent system,”

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1026 Issue 6, Volume 6, June 2009

[21] Dmoz open directory project,
http://www.dmoz.org, downloaded 16 June 2008.

In IEEE International Conference on Image
Processing (ICIP’06), Atlanta, GA, USA,pp.
3205-3208,2006. [22] H. M. El-Bakry, “New Faster Normalized Neural

Networks for Sub-Matrix Detection using Cross
Correlation in the Frequency Domain and Matrix
Decomposition,” Applied Soft Computing journal,
vol. 8, issue 2, March 2008, pp. 1131-1149.

[16] D. Picard, A.Revel and M. Cord .
“Performances of mobile-agents for interactive
image retrieval,” In: 2006 IEEE/WIC/ACM
International Conference on Web Intelligence (WI
06), IEEE Computer Society, pp. 581–586, 2006. [23] J. W. Cooley, and J. W. Tukey, "An algorithm

for the machine calculation of complex Fourier
series," Math. Comput. 19, 1965, pp. 297–301.

[17] A. Revel, “Web-agents inspired by ethology:
a population of “ant”-like agents to help finding
user-oriented information.,” in IEEE WIC’2003 :
International Conference on Web Intelligence.,
Halifax, Canada, October 2003, IEEE Computer
Society, pp. 482–485, 2003.

[24] A. Hirose, “Complex-Valued Neural Networks
Theories and Applications”, Series on innovative
Intelligence, vol.5. Nov. 2003.

[25] A. M. Riad, A. Atwan, and S. Abd El-Ghany,
“Analysis of Performance of Mobile Agents in
Distributed Content Based Image Retrieval,” The
2008 International Conference on Computer
Engineering & Systems (ICCES’08), November
25 - 27, 2008.

[18] A. Revel, “From robots to web-agents:
Building cognitive software agents for web-
information retrieval by taking inspiration from
experience in robotics,” in ACM International
conference on Web Intelligence, France, pp. 434–
437, 2005. [26] H. M. El-Bakry, “Face detection using fast

neural networks and image decomposition,”
Neurocomputing Journal, vol. 48, 1039-1046,
2002.

[19] G. Pass, R. Zabih, and J. Miller.
“Comparing images using color coherence
vectors”. In Proc. ACM Conference on
Multimedia, Boston, Massachusetts, U. S. A.,
November 1996.

[20] J. A. Hartigan, and M.A. Wong, “Algorithm
AS136: A k means clustering Algorithm”,
Applied Statistics, Vol. 28, pp. 100-108, 1979.

 Hyperlink Parser

Retrieval Crawler

HTTP

download

Hyperlin
k extractor

HTML

XML

Parser

Hyperlink

parser

Audio URLs

Video URLs

Applet URLs

Image URLs

HTML URLs

Image
download

Indexing

Module

URL

Buffer

Seed
URL

Traversal Crawler

Image

Database

Fig. 1. Information Crawler Components.

Fig. 2. Image-based information retrieval.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1027 Issue 6, Volume 6, June 2009

http://www.dmoz.org/

0
100
200
300
400
500
600
700
800

Si
ze

 O
f d

at
a

tra
ns

fe
r(

K
 B

yt
e)

Clustering
Centralized
Broadcasting

1 2 3 4 5 6 7 8 9 101112131415
Number of image Categories

Fig. 3. Size of intermediate data vs. Increase in image categories

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

N
um

be
r o

f i
m

ag
e

se
rv

er
s

Broadcasting
Clustering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of image servers

Fig. 4. Number of comparison in clustering and
broadcasting approaches

0
25
50 75

100
125
150
175
200 225
250
275

To
ta

l D
el

ay
 T

im
e

(s
ec

on
ds

)

Broadcasting

Clustering

1 2 3 4 5 6 7 8 9 1011121314151617181920
Number of image servers

Fig. 5. The total access delay vs. number of
image servers

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1028 Issue 6, Volume 6, June 2009

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 6. A comparison between the number of computation steps required by FNNs and CNNs in case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=400).

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 7. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=625).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1029 Issue 6, Volume 6, June 2009

0

1E+11

2E+11

3E+11

4E+11

5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 8. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued one

dimensional input matrix and complex-valued weight matrix (n=900).

0
5

10
15
20
25
30
35
40

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 9. Practical speed up ratio for neural networks in case of one dimensional real-valued input matrix and complex-valued

weights.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1030 Issue 6, Volume 6, June 2009

0

2E+10

4E+10

6E+10

8E+10

1E+11

1E+11

1E+11

2E+11

2E+11

2E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 10. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued

two dimensional input matrix and complex-valued weight matrix (n=20).

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 11. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued

two dimensional input matrix and complex-valued weight matrix (n=25).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1031 Issue 6, Volume 6, June 2009

0
5E+10
1E+11

1.5E+11
2E+11

2.5E+11
3E+11

3.5E+11
4E+11

4.5E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 12. A comparison between the number of computation steps required by FNNs and CNNs in the case of real-valued

two dimensional input matrix and complex-valued weight matrix (n=30).

0

5

10

15

20

25

30

35

40

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 13. Practical speed up ratio for neural networks in case of two dimensional real-valued input matrix and complex-

valued weights.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1032 Issue 6, Volume 6, June 2009

0
5E+10
1E+11

1.5E+11
2E+11

2.5E+11
3E+11

3.5E+11
4E+11

4.5E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 14. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued one dimensional input matrix and complex-valued weight matrix (n=400).

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 15. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued one dimensional input matrix and complex-valued weight matrix (n=625).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1033 Issue 6, Volume 6, June 2009

0.00E+00
1.00E+11
2.00E+11
3.00E+11
4.00E+11
5.00E+11
6.00E+11
7.00E+11
8.00E+11
9.00E+11
1.00E+12

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06

Length of one dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 16. A comparison between the number of computation steps required by FNNs and conventional neural networks in the

case of complex-valued one dimensional input matrix and complex-valued weight matrix (n=900).

0
10
20
30
40
50
60
70
80

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 17. Practical speed up ratio for neural networks in case of one dimensional complex-valued input matrix and complex-

valued weights.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1034 Issue 6, Volume 6, June 2009

0

5E+10

1E+11

2E+11

2E+11

3E+11

3E+11

4E+11

4E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r

of
 C

om
pu

ta
tio

n
St

ep
s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 18. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued two dimensional input matrix and complex-valued weight matrix (n=20).

0

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

7E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s

Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 19. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued two dimensional input matrix and complex-valued weight matrix (n=25).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1035 Issue 6, Volume 6, June 2009

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

8.00E+11

9.00E+11

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

N
um

be
r o

f C
om

pu
ta

tio
n

St
ep

s
Number of Computation Steps Required
by Conventional Neural Networks
Number of Computation Steps Required
by Fast Neural Networks

Fig. 20. A comparison between the number of computation steps required by FNNs and CNNs in the case of complex-

valued two dimensional input matrix and complex-valued weight matrix (n=30).

0

10

20

30

40

50

60

70

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 21. Practical speed up ratio for neural networks in case of two dimensional complex-valued input matrix in and

complex-valued weights.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1790-0832 1036 Issue 6, Volume 6, June 2009

