
Study on Application of Advanced J2EE in Stocks Exchange

XIAOYAN YANG，WEIFENG YIN, JIFANG LI, DELIAO YU
Computer Science and Information Technology College,

 Zhejiang Wanli University, Ningbo, China, 315100
http://www.zwu.edu.cn

Abstract: Along with Java technology progress, the superiority of J2EE 5.0 is gradually appearing. Furthermore
the invest of stocks is increasingly hot, so the paper tries to design and implement the system of stocks invest
supervision by recent EJB3.0 under Hibernate and Struts conditions based on newly J2EE 5.0 . The paper
explores the implementation of EJB persistence of data .The system is tested by several times, it runs
effectively. In the mealtime, the paper discusses on the new basic functionality of JDK5.0 and J2EE 5 SDK
features

Key-Words: multi-tier, platform-independent, J2EE 5, EJB, stocks, Hibernate, Struts, JDK5.0

1 Introduction
Software evolution is an iterative and incremental
process that encompasses the modification and
alteration of software models at different levels of
abstraction. These modifications are usually
performed independently, but the objects to which
they are applied to, are in most cases mutually
dependent. Inconsistencies may be created if the
effects of an alteration are not properly identified,
recorded, and propagated in other dependent
models. For large systems, it is possible that there
is a considerable number of such model
dependencies, for which manual extraction is not
feasible.

In response to this challenging problem,
building upon the success of its Java
programming language, Sun Microsystems
developed a component-based architecture for
the development and management of
multilayer, server-centric applications known
as the Java 2 Platform, Enterprise Edition
(J2EE). This technology extended the existing
Java 2 Platform, Standard Edition (J2SE) to
provide platform-independent portability to
enterprise applications in addition to other
features like modularity and reusability.

2. The New Functionality of J2SE 5.0
Today Java technology is everywhere—in large
 enterprise systems, desktops, hand-held devices,
and smart cards. Consequently, Java technology is
the platform of choice for developers all over the
world. All this has happened in the short time since
the technology was first introduced in 1995. While

there have been updates and enhancements since the
first version, release 5.0 of the core Java platform
brings to the table more language-level updates and
other enhancements than at any other time, through
the incorporation of a number of Java Specification
Requests.

2.1 Autoboxing
As any Java programmer knows, you cannot put an int
(or other primitive value) into a collection. Collections
can only hold object references, so you have to box
primitive values into the appropriate wrapper class
(which is Integer in the case of int). When you take
the object out of the collection, you get the Integer
that you put in; if you need an int, you must unbox the
Integer using the intValue method. All of this boxing
and unboxing is a pain, and clutters up your code.

Problem: (pre-J2SE 5.0)
– Conversion between primitive types and

wrapper types (and vice-versa)
– You need manually convert a primitive type to

a wrapper type before adding it to a collection
int i = 22;
List l = new LinkedList();
l.add(new Integer(i));

The autoboxing and unboxing feature
automates the process, eliminating the pain and
the clutter.

Solution: Let the compiler do it
Byte byteObj=22;//Autoboxing conversion
int i = byteObj // Unboxing conversion
ArrayList<Integer>al=new ArrayList<Integer>();
al.add(22); // Autoboxing conversion
The Autoboxing and Unboxing feature of J2SE

5.0 eliminates the drudgery of manual conversion

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 73 Issue 1, Volume 6, January 2009

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Integer.html

between primitive types (such as int or long) and
wrapper types (such as Integer or Long).

The Java code that does not use
AutoBoxing/UnBoxing functionality yet below.

public class AutoBoxLab{
 /*Suppose the internal variables are in Wrapper
types*/
 Integer iObj;
 Float fObj;
 Long lObj;
 Double dObj;
 public AutoBoxLab() {

 }
 public static void main(String[] args) {
 AutoBoxLab a = new AutoBoxLab();

 /*You have to create instances of Wrapper
classes first*/
 /*before you save them into the internal
variables. This is called boxing*/
 a.iObj = new Integer(22);
 a.fObj = new Float(22.0);
 a.lObj = new Long (22L);
 a.dObj = new Double(22);

 /*In the following code, you are unboxing in
order to get primitive types*/
 System.out.println(" int Value of iObj is: " +
a.iObj.intValue());
 System.out.println(" float Value of iObj is: "
+ a.fObj.floatValue());
 System.out.println(" long Value of iObj is: "
+ a.lObj.longValue());
 System.out.println(" double Value of iObj is:
" + a.dObj.doubleValue());

 }
}

Modify the code so that it uses AutoBoxing and
UnBoxing as shown below. The code that is
highlighted with bold font represents the changed code.
 public static void main(String[] args){
 AutoBoxLab a = new AutoBoxLab();
 //a.iObj = new Integer(22);
 a.iObj = 22; //Using AutoBoxing
 // a.fObj = new Float(22.0);
 a.fObj = 22.0f ; // Using AutoBoxing
 // a.lObj = new Long (22L);
 a.lObj = 22L; // Using AutoBoxing
 // a.dObj = new Double(22);
 a.dObj = 22d; //Using AutoBoxing
 /*System.out.println(" int Value of iObj
is:"+a.iObj.intValue());*/
 System.out.println(" int Value of iObj is:

"+a.iObj); //Using UnBoxing
 /*System.out.println(" float Value of
iObjis:"+a.fObj.floatValue());*/
 System.out.println(" float Value of iObj is: "
+ a.fObj); //Using UnBoxing
 /*System.out.println(" long Value of iObj
is:"+a.lObj.longValue());*/
 System.out.println(" long Value of iObj is: "
+ a.lObj); // Using UnBoxing
 /*System.out.println(" double Value of iObj
is:"+a.dObj.doubleValue());*/
 System.out.println(" double Value of iObj is:
" + a.dObj); //Using UnBoxing

2.2 Type-safe Enumerations

Pre-J2SE 5.0, the standard way to represent an
enumerated type was the "int Enum pattern" as
following:

// int Enum Pattern - has severe problems!
public static final int SEASON_WINTER = 0;
public static final int SEASON_SPRING = 1;
public static final int SEASON_SUMMER = 2;
public static final int SEASON_FALL = 3;

 This pattern has several problems as following:
Not typesafe - Since a season is just an int type,
you can pass in any other int value where a season
is required, or add two seasons together (which
makes no sense).

No namespace - You must prefix constants of
an "int enum" with a string (in this case SEASON_)
to avoid collisions with other int enum types.

Brittleness - Because int enums are compile-
time constants, they are compiled into an
application that use them. If a new constant is
added between two existing constants or the order
is changed, the application must be recompiled. If
it is not, it will still run, but its behavior will be
undefined.

Printed values are uninformative - Because they
are just ints, if you print one out, all you get is a
number, which tells you nothing about what it
represents, or even what type it is.
 It is possible to get around these problems by
using the Typesafe Enum pattern, but this pattern
has its own problems: It is quite verbose, hence
error prone, and its enum constants cannot be used
in switch statements.

Type-safe Enumeration (enum) allows you to
create enumerated types with arbitrary methods
and fields. It provides all the benefits of the
Typesafe Enum pattern without the verbosity and
the error-proneness.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 74 Issue 1, Volume 6, January 2009

2.3 Generics
This long-awaited enhancement to the type system
provides compile-time type safety check. For
example, in pre-J2SE 5.0, when you take an element
out of a Collection, you must cast it to the type of
element that is stored in the collection. Besides
being inconvenient, this is unsafe because the
compiler cannot check whether the type you are
casting to is a correct one or not. This means the
casting can fail at runtime. In general, runtime
failure is order of magnitude more expensive than
compile time error.

Generics provides a way for you to
communicate the element type of a collection (or
simply type of a collection) to the compiler, so that
it can be checked at compile time. Once the
compiler knows the element type of the collection,
the compiler can check whether you are inserting
an element of correct type to the collection. When
an element is taken out of a collection, the
compiler insert the correct casts.

2.4 Enhanced for Loop
 Problem: (pre-J2SE 5.0)

– Iterating over collections is tricky
– Often, iterator only used to get an element
– Iterator is error prone
(Can occur three times in a for loop)

 Solution: Let the compiler do it
– New for loop syntax
for (variable : collection)
– Works for Collections and arrays

 Enhanced for Loop Example below.
 Old code:
void cancelAll(Collection c) {
for (Iterator i = c.iterator(); i.hasNext();){
TimerTask task = (TimerTask)i.next();
task.cancel();
}
}
 New Code:
void cancelAll(Collection<TimerTask> c) {
for (TimerTask task : c)
task.cancel();

}

2.5 Static Imports
Problem: (pre-J2SE 5.0)
– Having to fully qualify every static referenced
from
external classes
 Solution: New import syntax
– import static TypeName.Identifier;
– import static Typename.*;

– Also works for static methods and enums.

2.6 Variable Arguments
This Variable Arguments feature of J2SE 5.0
eliminates the need for manually boxing up
argument lists into an array when invoking
methods that accept variable-length argument lists.
 In past releases, a method that took an arbitrary
number of values required you to create an array
and put the values into the array prior to invoking
the method. For example, here is how one used the
MessageFormat class to format a message:

Object[]arguments={
 new Integer(7), new Date(),
 "a disturbance in the Force"};

 String result = MessageFormat.format(
 "At {1,time} on {1,date}, there was {2} on
planet"+"{0,number,integer}", arguments);

 // arguments is an array
It is still true that multiple arguments must be

passed in an array, but the varargs feature
automates and hides the process. Furthermore, it is
upward compatible with preexisting APIs. So, for
example, the MessageFormat.format method now
has this declaration:

 public static String format(String pattern,
 Object... arguments);

The three periods after the final parameter's type
indicate that the final argument may be passed as an
array or as a sequence of arguments. Varargs can be
used only in the final argument position. Given the
new varargs declaration for MessageFormat.format,
the above invocation may be replaced by the
following shorter and sweeter invocation:

String result = MessageFormat.format(
 "At {1,time} on {1,date}, there was {2} on
planet " + "{0,number,integer}.",
 7, new Date(), "a disturbance in the Force");
 e.g Math.sin(x) becomes sin(x).

3. J2EE Framework
The goal of J2EE is to create a reliable, high-
performance, secure, transactional, distributed
architecture that would support concurrent user access.
The architecture was also to allow the creation of
applications that would seamlessly integrate with
existing (presumably non-Java-based) systems while
supporting future modifications and scaling to match
demand with relative ease.
 Advanced J2EE Platform Development explores
the characteristics of real-world multi-tier software as
implemented in J2EE, delivering a warts-and-all
picture of the development environment as it's used

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 75 Issue 1, Volume 6, January 2009

http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html

for tying together user interfaces, business logic,
databases, and legacy systems such as mainframes.
This is a useful, eminently practical guide to J2EE
software design.

The traditional Application of three-layer
distributed framework is shown in Fig 1.

Fig. 1 Traditional three-layer framework
The figure 1 shows that computing is

concentrated on the server under the environment
of Browser-based and Internetworking.
Initially released in 1999, the specification has
been revised several times, with the most recent
release being the J2EE 1.5 specification.

The J2EE provides a design of framework
that simplify the design of middle-ware of
enterprise application, main including reusable
componet,JSP,EJB ,simpler JDBC ,XML and so
on. EJB (Enterprise JavaBeans) is the foundation
of J2EE. As in the following Fig2.

Fig. 2 J2EE multi-tier infrastructure

4. Java EE 5 SDK Features
Java Platform, Enterprise Edition 5 (Java EE 5)
focuses on making development easier, yet retains
the richness of the J2EE 1.4 platform. Offering
new and updated features such as Enterprise
JavaBeans (EJB) Technology 3.0, JavaServer
Faces (JSF) Technology, and the latest web
services APIs, Java EE 5 makes coding simpler

and more straightforward, but maintains the power
that has established Java EE as the premier
platform for web services and enterprise
application development.
 The Java EE 5 SDK and Java Application
Platform SDK provide support for Java EE 5
specifications, and the Java Application Platform
SDK features additional runtimes such as Open
ESB, Portlet Container, and Sun Java System
Access Manager.

 4.1 Highlights
 (1) First robust, commercial, compatible Java EE 5
implementation. It is free for development,
deployment, and redistribution.
 (2) Ease of development with major revamp of
programming model.

(3) EJB 3.0 support for POJOs means less to learn,
less to code, and less to maintain.
 (4) New Java Persistence API makes object-

relational mapping cleaner and easier.
 (5) New and updated web services (JAX-WS 2.0

and JAXB 2.0) simplifies SOA implementation.
 (6) JavaServer Faces 1.2 facilitates building Web

2.0 applications with Ajax.
 (7) Higher throughput, faster response time, and

improved management features to streamline
deployment.

(8) 30 percent faster startup time with 30 percent
less memory

(9)Web services performance increased by up to
5 times.
Improved web services management.

 (10) Integrated with Sun's NetBeans open source
IDE and supports an Eclipse plug-in, offering
developers the choice of complete end-to-end
development and runtime environment.

 (11) Provides a visual SOA development and
deployment environment with integrated NetBeans
environment.

(12)Integrated composite application support
through JBI and BPEL
 The code for Sun Java System Application Server
9.1 is 100 percent derived from open-source Project
GlassFish.

As the industry’s first compatible
implementation of the Java Platform, Enterprise
Edition (Java EE) 5 specification, the Java EE 5
SDK provides the foundation for delivering
enterprise-class application services and web
services. It offers a unique modular architecture
based on some of the industry’s most proven, high-
performance, and standards-compliant components.
Sun Java System Application Server 9.1 is
designed for developer productivity with tools to

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 76 Issue 1, Volume 6, January 2009

help deploy applications quickly. With a small-
footprint adoption of Java EE platform that is
suitable for broad adoption and embedding in
third-party systems and applications, Sun Java
System Application Server 9.1 brings Java EE 5
technology into volume markets. It is completely
free of license fees for development, deployment,
and redistribution, with support available for an
additional charge. Sun Java System Application
Server 9.1 is the default container for NetBeans.

4.2 Java EE 5 Platform Support
With a primary focus on ease of development, the
Java EE 5 platform offers developers ready access
to a secure, portable, and scalable platform for
their enterprise applications. Java EE 5 technology
makes coding simpler and more straightforward.
Sun Java System Application Server 9.1 supports
all the technologies required by the Java EE 5
specification. These include but are not limited to:

Java annotations can now be used to specify
the mapping of Java business objects to a relational
database. The persistence implementation in the
application server supports both the generation of
database schemas from Java objects and the
mapping of existing database schemas to Java
objects. In addition to using persistence inside the
EJB container, one can use the Persistence API
directly with Java SE. This allows maximum
flexibility in the application Enterprise JavaBeans
(EJB) 3.0 that includes two new sets of APIs: a) A
simplified EJB API which promotes ease of
development, b) A new API for management of
persistence and object-relational mapping.

Java annotations can now be used to specify the
mapping of Java business objects to a relational
database. The persistence implementation in the
application server supports both the generation of
database schemas from Java objects and the
mapping of existing database schemas to Java
objects.

In addition to using persistence inside the EJB
container, one can use the Persistence API directly
with Java SE. This allows maximum flexibility in
the application persistence needs, with a common
solution for both client and server environments.

JavaServer Faces 1.2 technology simplifies the
building of user interfaces for web-based
applications through its well-defined component,
state, and event framework. JavaServer Faces
technology works extremely well with Ajax
technology, providing encapsulation to handle
browser differences and to hide the complexities
around JavaScript. Java BluePrints covers key issues
and solutions for common problems encountered

during the design and building of an Ajax
application on the Java EE platform. Several
JavaServer Faces and Ajax components that work
with Sun Java System Application Server 9.1 are
included as part of the catalog JavaServer Faces 1.2
technology simplifies the building of user interfaces
for web-based applications through its well-defined
component, state, and event framework. JavaServer
Faces technology works extremely well with Ajax
technology, providing encapsulation to handle
browser differences and to hide the complexities
around JavaScript. Java BluePrints covers key issues
and solutions for common problems encountered
during the design and building of an Ajax
application on the Java EE platform. Several
JavaServer Faces and Ajax components that work
with Sun Java System Application Server 9.1 are
included as part of the catalog.

4.3 Improving Developer Productivity
The Java EE 5 SDK increases developer
productivity with the implementation of the new
simplified Java EE 5 APIs and annotations that
reduce significantly the amount of code a developer
needs to write. Sun Java System Application Server
9.1 is included as part of the Java EE 5 SDK bundle
with which developers can quickly learn, develop,
and deploy new enterprise Java technologies. More
than 6 million developers have downloaded earlier
versions of the Java EE SDK. The Java EE 5 SDK
also bundles:

BluePrints and Samples guidelines for
developing Web 2.0-based applications with Ajax
and other popular technologies; the Open ESB
runtime (JBI, BPEL engine, and SOAP HTTP
binding) that provides developers with a runtime
environment for constructing complex composite
applications. In addition, Sun Java System
Application Server 9.1 is bundled with Java DB
based on Apache Derby database, hence making it
possible to develop and deploy out-of-the-box,
end-to-end Java EE applications.

Sun Java System Application Server 9.1 also
extends ease of deployment through an option for
faster startup (on-demand initialization), and
reduces the memory requirements.

NetBeans IDE 6.1 supports development of
Java EE 5 applications, including web modules and
Enterprise JavaBeans (EJB) 3.0 modules, and
deploys to the Sun Java System Application Server
9.1. Sun Java System Application Server 9.1 also
supports an Eclipse IDE plug-in that gives
developers a choice in development environments,
though this means that many advanced features of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 77 Issue 1, Volume 6, January 2009

http://www.netbeans.org/
http://java.sun.com/blueprints/ajax.html
http://java.sun.com/blueprints/ajax.html
http://glassfishplugins.dev.java.net/

NetBeans (notably Java EE 5 application
development) will not be supported by Eclipse.

4.4 Foundation for SOA
Java EE 5 SDK is an ideal platform to develop SOA
applications. Apart from Sun Java System
Application Server 9.1 and NetBeans, Java EE 5
SDK bundles the Open ESB runtime, hence
complementing cutting edge Java EE 5 technologies
for building SOA components, managing a web
services stack and providing a framework for a
federated identity management system. Sun Java
System Application Server 9.1 is integrated with the
Metro web services stack that supports the latest
web services standards that make implementing
SOA easier, including JAX-WS 2.0 that specifies a
web services API for the Java platform, and JAX-B
2.0 that specifies Java and XML binding. With JAX-
WS 2.0 the code developers need to write can be
significantly reduced. The Open ESB runtime
contains JBI, a BPEL engine, and SOAP HTTP
binding, and provides developers with a runtime
environment for constructing complex composite
applications. In other words, it provides an open and
extensible architecture for collaboration between
integration technology and web services in a SOA.
The Open ESB runtime will help streamline
development work for platform providers, tools
vendors and systems integrators while future
proofing customers' investments and ending vendor
lock-in to proprietary integration architecturesSun
Java System Application Server 9.1 works with
Access Manager and Liberty SSO , hence providing
a framework for a federated identity Management
system. This allows individuals to use the same user
name, password, or other personal identification to
sign on to the networks of more than one enterprise
in order to conduct transactions. In this manner,
business partners can share applications without
needing to adopt the same technologies for directory
services, security, and authentication. Sun Java
System Application Server 9.1 can connect to and
work with a number of web services registries. A
web services registry allows an enterprise to track
and manage large and increasing numbers of web
services that they are offering. By providing the
ability to connect to the registry, Sun Java System
Application Server 9.1 addresses both issues of web
services access and SOA governance.

NetBeans IDE 6.1 provides SOA visual design
tools for architects and programmers. XML Schema
tools are used to visualize and edit XML Schema,
and visualize the relationships between Schema
elements. The tool for web services orchestration is

used to author, build, deploy, and test BPEL
processes.

4.5 Open Source and Project GlassFish
Community
 In June 2005, Sun launched the Project GlassFish
community with the goal of developing a free, open-
source, commercial-grade application server that
implements the newest features of the Java EE 5
platform and related enterprise technologies. Open
source accelerates the development and distribution
of new features and ensures continued quality of the
product by allowing many eyes to look at the code.
Opening the development process enables more
developers to work with the platform and makes
developers more productive.

The code for Sun Java System Application
Server 9.1 is derived from Project GlassFish.
GlassFish is released under an OSI approved
license (CDDL). Members participate in this
robust community by exchanging information
through a discussion forum and mailing list, filing
defects and request for enhancements in the public
issue tracker, and proposing changes to the source
code.

The Aquarium, a group blog, collects news
from and about the GlassFish community and
offers tech tips from a variety of sources.
Application Server-related add-ons, plug-ins, and
technology projects can also be found on the
GlassFish project web site.

4.6 Web Services Management
 Web services are first-class manageable objects in
Sun Java System Application Server 9.1. Web
services deployed to the Application Server are
thus automatically discovered and can then be
managed and monitored. If monitoring is enabled
for a web-service endpoint, information such as
response time, throughput, and number of requests
and faults is collected and can be viewed through
the admin GUI. SOAP message content can also be
examined. Meanwhile, a web-service testing page
can automatically be generated—eliminating the
need for explicit web-service client development.
Web service can be virtualized by applying XSLT
transformation rules to request/response. Web
services audit, message-level security, governance
(publish/unpublish to registry) and self
management is supported. (Also see the article,
"Managing and Monitoring Web Services in
Project GlassFish.")

4.7 Call Flow Monitoring

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 78 Issue 1, Volume 6, January 2009

http://java.sun.com/webservices/downloads/
https://glassfish.dev.java.net/
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt.html
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt.html

Sun Java System Application Server 9.1 can be
configured to monitor an incoming request as it
flows through various containers in the application
server and through the user application code. For
example, the Application Server can break down the
time spent in the web container, web application
code, EJB container, and EJB application code. The
collected information is stored in a database and is
then available for query and analysis. When filtering
is enabled in call flow, Application Server generates
call flow data for only those requests that match the
criteria—host or user id.

Afterwards, you can inject requests into a
running system—specifically to generate trace
information. You can then watch your requests flow
through the system and evaluate the performance of
specific types of requests in the context of normal
load, bypassing requests from other sources.

4.8 Self-Management Rules
With the powerful and flexible infrastructure of Sun
Java System Application Server 9.1, it is possible to
automate application server management tasks by
setting up a self-management rule. A self-
management rule consists of an event and an action.
Examples of events include message logging,
monitoring threshold, timer, and JMX notifications.
Actions are pieces of logic defined by the user,
which are then encapsulated in JMX managed beans
(MBean). When an event that matches one of the
events defined in a self-management rule is
triggered , the associated action is executed. For
example, an administrator might define a
management rule such that he or she receives email
when a SEVERE message is logged in the
application server.

4.9 Java Web Start Software
In addition to defining server-side components like
EJB components and servlets, the Java EE platform
defines application clients. Typically, these are rich
UI applications that run on client machines and
connect to the Application Server for retrieval and
processing of backend data. With Sun Java System
Application Server 9.1, users can deploy a Java EE
application client to the Application Server and then
take advantage of Java Web Start software for
distribution of the application to client machines. By
visiting a single URL in a user's browser, Java Web
Start software transparently retrieves and installs the
bits necessary to run the Java EE application client.
The downloaded bits are cached and can be reused
in subsequent sessions. That means no more
manually copying and installing the application
client bits on individual client machines.

4.10 Performance
In addition to startup, memory footprint, and
deployment performance improvements, Sun Java
System Application Server 9.1 features increased
runtime performance. The server includes a highly
scalable HTTP connection handler that is
implemented with lower-level Java NIO primitives
and that can handle thousands of connections with
a small number of threads. Sun Java System
Application Server 9.1 supports the use of the Fast
Infoset standard to reduce the size and processing
time of XML and SOAP messages. Depending on
the size of the XML messages, processing time is 3
to 5 times faster, and message size is 1.3 to 5 times
smaller. See Sun's Fast Infoset article for more
details. Sun Java System Application Server 9.1
also provides 64-bit support in the Solaris
operating system, so the server benefits from more
than 4 gigabytes of virtual address space.

4.11 Changing the Economics of Application
Servers

Sun Java System Application Server 9.1
enables enterprises to standardize on the new
Java EE 5 compatible application server for
developing and deploying enterprise-class
applications and services—without incurring
product license fees. The small footprint and free
development and deployment licenses also make it
extremely suitable for bundling and distribution with
Java EE applications, subject to Sun’s current terms
and conditions. Unlike other commercially available
application servers, Sun Java System Application
Server is built on the very platform that defines the
Java EE standard—Java EE 5 Reference
Implementation source code. The same development
team that delivers the Reference Implementation
developed Sun Java System Application Server 9.1.
This assures the most rigorous Java EE standard
compliance and web services interoperability
through support of the WS-I Basic Profile.
Enterprises and application vendors benefit from this
Java EE standard-focused approach because it
reduces the risks of proprietary lock-in, and enables
compliant applications that are portable across
compliant application servers—without costly
modifications. Sun Java System Application Server
is designed to help enterprises and service providers
maximize their freedom of choice through Java
technology’s Write Once, Run Anywhere™
simplicity and is optimized for web services. It helps
enterprises and service providers lower their total
cost of ownership, accelerate time to market, and
increase productivity.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 79 Issue 1, Volume 6, January 2009

http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

4.12 Sun Java System Application Server 9.1 FC
The Application Server builds on the quality and
feature-rich Beta 2 to provide greater value-add
features for the enterprise. The Application Server
9.1 features include clustering, in-memory
replication, more improvements to the Grizzly-based
HTTP engine, enhanced administrative functionality,
improved self-management capabilities, update
center functionality that allows installation and/or
updates of additional components, and much more
Application Server Core Services.

Sun Java System Application Server is the first
free Java EE 5 compatible application server for
development, deployment, and redistribution.
Supports the Enterprise JavaBeans (EJB) 3.0 that
includes two new sets of APIs: a) A simplified EJB
API which promotes ease of development, b) A new
API for management of persistence and object-
relational mapping. Supports Java annotations that
can be used to significantly improve the developer
productivity.

Includes JavaServer Faces 1.2 APIs for building
powerful GUIs for Java EE applications. Offers new
capabilities to develop Web 2.0 and Ajax
applications. It now supports the blueprints for Ajax
that allows development of impressive dynamic
client side web applications. Is included as part of
the Java EE 5 SDK bundle. Other components of the
Java EE 5 SDK are the BluePrints and Samples
guidelines; the Open ESB runtime that includes JBI,
BPEL engine, and SOAP HTT, and Java DB based
on Apache Derby database.

 Extends the ease of deployment through an
option for faster startup (on-demand initialization),
and also reduction in the memory requirements.
 Offers support for NetBeans, and Eclipse
(through a plug-in).

Automatically discovers, and then manages and
monitors web services that are deployed to the
Application Server.

Offers 3 to 5 times improved web services
performance. This is achieved through
implementation of Fast Infoset technology.

Can monitor an incoming request as it flows
through various containers in the application server
and through the user application code.

Can automate application server management
tasks by setting up a self-management rules that
monitor events as they occur, and trigger an
appropriate action.

Includes a Generic Resource Adapter. This will
ensures support for IBM MQ Series.

Offers comprehensive support for web services,
and support for WS-I Basic Profile 1.0 ensures
interoperability.

Lowers TCO through rigorous compliance with
the latest Java EE 5 standard and is free for
development and deployment.

Allows existing applications to become new
web services through integrated support of SOAP
and WSDL.

Supports database connectivity to Oracle, Sybase,
IBM, Microsoft SQL Server, MySQL, and Derby.

Supports various security standards: Single
Socket Layer (SSL)v2, SSLv3, Transport Layer
Security (TLS) 1.0, X.509 certificates, PKCS #11,
FIPS-140, and 168-bit step-up certificates.

Offers enhanced and easy web-based
administration, as well as full administration from a
command-line interface.

Provides 64-bit support in the Solaris operating
system, so the server benefits from more than 4
gigabytes of virtual address space.

4.13 Java EE 5 Development Environment
Support for new standardized Java EE 5 deployment
APIs.

Deploys Java EE 5 Connector Architecture-
compliant connectors.
Supports NetBeans IDE 6.1 software integrated
development environments.

Web Services Metadata for the Java Platform 1.0.
Java API for XML-Based Web Services (JAX-WS)
2.0.

Java Architecture for XML Binding (JAXB) 2.0.
Streaming API for XML (StAX) 1.0.

Supports third-party Java EE software integrated
development environments, such as Eclipse and
Borland Jbuilder.

4.14 Serious Software Made Simple
Sun provides a complete portfolio of affordable,
interoperable, and open software systems designed to
help maximize the utilization and efficiency of the
enterprise IT infrastructure. Built from the secure,
highly available foundations of UNIX and Java, these
systems deliver implementations that are preintegrated
and backward compatible. Sun’s portfolio consists of
Solaris and Linux software for SPARC® and x86
platforms, the N1 platform for dynamic and utility
computing, and the Sun Java System—five integrated
software systems for the data center, the desktop, the
developer, mobile devices, and smart card identity
implementations.

The Java System is a radical new approach that
changes forever the way businesses acquire, develop,
and manage software. Only Sun has the experience
and the end-to-end portfolio to deliver such a unique
and industry-revolutionizing strategy. With the Java
System, network services and critical business

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 80 Issue 1, Volume 6, January 2009

applications are up and running faster, easier, and at a
lower cost than ever before, so the enterprise can
focus on innovation, competition, and bottom-line
results.

5. The system realization of
stock supervision based on J2EE
Enterprise applications are large-scale business
applications that are complex, data-centric, and
mission critical. Their complexity is often based
on their encapsulation of the intricate business
processes, rules, and standards of the application
domain for which they are created.

Stated simply, these are applications that
companies rely on for the smooth functioning of
their business.

5.1 Main technologies of the
supervision system
The system of stock supervision includes Page of
client layer, Data model layer and Transaction
controlling layer. The page of client adopts JSP2.0,
the data model layer adopts the new EJB3.0 of
Hibernate framework, EJB3.0 obviously reduces
the complexity of the bottom development,
Transaction controlling layer use the Struts1.29
（MVC）. The editor of Java development kits is
JDK5.0, Web application server adopts Tomcat
5.5,the database server uses MySql5.0.

The main structrue of Hibernate is shown in
Figure 3.

Fig. 3 The structrue of Hibernate

The characteristics of Hibernate is automation,
code economization, data types-independent, what
we nee is that creates a copy of the documents of
XML, the document show the class of the database
and the relation of the database table and this class,
then we obtain data as form of object or we save
object as data.

5.2 The realization of Struts
Struts is a implement of the Model-View-Controller
Struts by servlet and JavaServer Pages technologies.
As in the following Fig.4.

Fig. 4 The framework of Struts

5.3 The design and test of the stocks

invest supervision

5.3.1 Data Model
Java EE program need a set of data model and
persistence of entity bean because Entity Bean is
connected with EJB, Entity is included inside
container, so this result in repeat ,and repeat is
nightmare of the program maintenance. Java
Persistence API solves this problem. In JPA, Entity in
JPA may is away from Persistence Context as Java
class. Data model is show in Fig.5.

5.3.2 Test of the System
The system primitive page of stocks invest
supervision is shown as Fig.6.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 81 Issue 1, Volume 6, January 2009

Fig.6 Primitive page

The system of bargaining process is shown in
Fig. 7.

Fig.7 The bargaining process

The system of transaction record query is shown
in Fig.8.

Fig.8 The transaction record query

 6. Java Security
The Java platform was designed with a strong
emphasis on security. At its core, the Java language
itself is type-safe and provides automatic garbage
collection, enhancing the robustness of application
code. A secure class loading and verification
mechanism ensures that only legitimate Java code is
executed.

The initial version of the Java platform created
a safe environment for running potentially
untrusted code, such as Java applets downloaded
from a public network. As the platform has grown
and widened its range of deployment, the Java
security architecture has correspondingly evolved
to support an expanding set of services. Today the
architecture includes a large set of application
programming interfaces (APIs), tools, and
implementations of commonly-used security
algorithms, mechanisms, and protocols. This
provides the developer a comprehensive security
framework for writing applications, and also
provides the user or administrator a set of tools to
securely manage applications.

The Java security APIs span a wide range of
areas. Cryptographic and public key infrastructure
(PKI) interfaces provide the underlying basis for
developing secure applications. Interfaces for
performing authentication and access control
enable applications to guard against unauthorized
access to protected resources. The APIs allow for
multiple interoperable implementations of
algorithms and other security services. Services
are implemented in providers, which are plugged
into the Java platform via a standard interface that
makes it easy for applications to obtain security
services without having to know anything about
their implementations. This allows developers to
focus on how to integrate security into their
applications, rather than on how to implement
complex security mechanisms.

The Java platform includes a number of
providers that implement a core set of security
services. It also allows for additional custom
providers to be installed. This enables developers
to extend the platform with new security
mechanisms

 7. Conclusion
 Java EE 5.0 has many convenience and of JDK
5.0 ,furthermore Java EE 5.0 has superiority in
data persistence and EJB programming. The
system model of stocks invest supervision has

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 82 Issue 1, Volume 6, January 2009

implemented basic functions, but the system will
get along with transaction security and mobile
payment.

References:
[1] DeChao LI, J2EE Application Framwork

Realizaton Based on Open Project[D],Southeast
University, 2006

[2] JingZhou FU, Master Hibernate 3.0------Java
Database Persistence Layer Development
Practice[M], Posts & Telecom Press, 2007

[3] http://www.Hibernate.org/
[4] Ted Husted,Cedric Dumoulin,George

Franciscus,David Winterfeldt. Struts in
action .Greenwich: MANNING

[5]http://tech.ccidnet.com/art/1060/20040615/121091
_1.html

[6] Java 2 Platform Enterprise Edition
Specification,v1

[7] R. Anderson, “Trusted Computing Frequently
Asked Questions,” August 2003,
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html.

[8] Shamir, “How to share a secret,”
Communications of the ACM, vol. 22, no. 11, pp.
612–613, 1979.

[9] Y. Lindell and B. Pinkas, “Privacy preserving
data mining,” Journal of Cryptology, vol. 15, no.
3, pp. 177–206, 2003.

[10] N. Hu and S.-C. Cheung, “A new security
model for secure thresholding,” in Proceedings
of IEEE International Conference on Acoustic,
Speech and Signal Processing (ICASSP '07),
Honolulu, Hawaii, USA, April 2007.

[11] H. Lipmaa, “Oblivious Transfer or Private
Information Retrieval,” University College
London,
http://www.adastral.ucl.ac.uk/~helger/crypto/link
/protocols/oblivious.php.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Xiaoyan Yang, Weifeng Yin, Jifang Li, Deliao Yu

ISSN: 1790-0832 83 Issue 1, Volume 6, January 2009

http://www.hibernate.org/
http://211.151.93.38/index.html?Title=Struts%20in%20action&aufirst=Ted%20Husted,Cedric%20Dumoulin,George%20Franciscus,David%20Winterfeldt&issue=1
http://211.151.93.38/index.html?Title=Struts%20in%20action&aufirst=Ted%20Husted,Cedric%20Dumoulin,George%20Franciscus,David%20Winterfeldt&issue=1
http://tech.ccidnet.com/art/1060/20040615/121091_1.html
http://tech.ccidnet.com/art/1060/20040615/121091_1.html
http://www.cl.cam.ac.uk/%7Erja14/tcpa-faq.html
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/s00145-001-0019-2
http://dx.doi.org/10.1007/s00145-001-0019-2
http://www.adastral.ucl.ac.uk/%7Ehelger/crypto/link/protocols/oblivious.php
http://www.adastral.ucl.ac.uk/%7Ehelger/crypto/link/protocols/oblivious.php

