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Abstract: - Distributed data mining plays a crucial role in knowledge discovery in very large database. Since 
the distributed knowledge discovery process is both data and computational intensive, the Grid is a natural 
platform for deploying a high performance data mining service. The key issue for distributed data mining Grid 
system is how to scheduling data mining tasks in a high efficient way. In this paper, we propose a novel and 
efficient mechanism which is based on decomposing and mapping data mining tasks to DAG, and ordering 
them according the respective execution cost. The results show that this mechanism is scalable and feasibility. 
 
 
Key-Words: - Grid Computing, Data Mining, Tasks Scheduling 
 
1   Introduction 
Distributed computing plays an important role in the 
Knowledge Discovery process for several reasons. 
On the one hand, Data Mining often requires huge 
amounts of resources in storage space and 
computation time. To make systems scalable, it is 
important to develop mechanisms that distribute the 
work load among several sites in a flexible way. On 
the other hand, data is often inherently distributed 
into several databases, making a centralized 
processing of this data very inefficient and prone to 
security risks. Distributed Data Mining explores 
techniques of how to apply Data Mining in a non-
centralized way. 

Data mining, which targets the goal of retrieving 
information automatically from large data sets, is 
one of the most important business intelligence 
technologies. Because of its high computational 
intensiveness and data intensiveness, data mining 
serves a good field of application for Grid 
technology. 

The idea of data mining on the Grid is not new, 
but it has become a hot research topic only recently. 
The number of research efforts up to now is still 
quite limited (for a short summary see [1]). Many of 
the existing systems, such as NASA’s Information 
Power Grid [2], TeraGrid [3] and Discovery Net [4] 
are either utilizing non-standard data mining 
techniques, or restricted to a special domain in the 
scientific realm.  

The implementation of a Grid-based data mining 
system in the business realm will reveal the 
importance of specific requirements that are not so 
evident in the scientific realm, and will contribute to 
a generic design and implementation. 

Advanced applications are continuing to 
generate ever larger amounts of valuable data, but 
we are in danger of being unable to extract fully the 
latent knowledge within the data because of 
insufficient technology [5]. The cost of producing 
this data is sometimes very high. Without effective 
ways to retrieve, analyze and manipulate it, this 
great expense will not yield the benefits to society 
that we might expect. Depending on the application 
area, the datasets mentioned above may include data 
produced by business transactions, medical 
investigations, scientific simulations, along with 
data obtained from satellites, telescopes, 
microscopes, seismic or tomographic techniques, etc. 
The volume of these datasets is already measured in 
terabytes and will soon total petabytes. They are 
often geographically distributed and their 
complexity is increasing, meaning that the 
extraction of meaningful knowledge requires more 
and more computing resources. The communities of 
users that need to access and analyze this data are 
often large and geographically distributed. This 
combination of large dataset size, geographic 
distribution of users and resources, and 
computationally intensive analysis results in 
complex and stringent performance demands that, 
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until recently, were not satisfied by any existing 
computational and data management infrastructure. 
Moreover, certain level of QoS and security has to 
be guaranteed for several classes of applications 
accessing the Grid data analysis services.  

In tackling these problems, there are the 
beginnings of a new form of information technology 
known as the Computational Grid (or simply Grid) 
– an infrastructure that enables the integrated use 
of remote high-end computers, databases, scientific 
instruments, networks, and other resources. The 
fundamental challenge is to make Grid systems 
widely available and easy to use for a wide range of 
applications. This is crucial for accelerating their 
transition into fully operational environments. A 
significant amount of research for achieving these 
objectives has already started both in academia as 
well as industry. In the first phase, this research and 
development has been almost exclusively driven by 
“big science”, like distributed high-performance 
simulations, high energy physics, material science, 
etc. Now the focus is going to shift to more general 
domains, closer to everyday life, like medical, 
business, and engineering applications [6]. However, 
to our best knowledge, till today, no relevant effort 
has been devoted to the development of Grid tools 
and services allowing to perform efficient 
knowledge discovery in large distributed databases 
and other datasets associated with these applications. 
Therefore, we have initiated a research effort to 
design and experimentally implement a novel 
infrastructure called GridMiner for knowledge 
discovery in databases coupled to Computational 
Grids. 

The technology developed is being validated and 
tested on an advanced medical application 
addressing treatment of traumatic brain injury (TBI) 
victims. TBIs typically result from accidents in 
which the head strikes an object. The trajectory of 
the TBI patient management includes the following 
main points: trauma event (e.g. injury at a car or 
sport accident), first aid, transportation to hospital, 
acute hospital care, and home care. All these phases 
are associated with data collection into databases, 
which are currently autonomously managed by 
individual hospitals, and are, therefore, 
geographically distributed. Moreover, they are 
heterogeneous and need high data security 
precautions. The aim is to use the Grid technology 
for building a virtual organization, in which the 
cooperation of the participating hospitals and 
institutions is supported by the integration of the 
above databases. Knowledge discovered in these 
databases can help to significantly improve the 
quality of the decisions taken by the health care 

specialists involved in treatment of the TBI patients. 
In most situations, a nearly real-time response to 
knowledge discovery queries is urgently needed. It 
is obvious that this kind of applications introduces 
new challenges to the Grid developers. 

The paper is organized as follows. Section 2 
outlines the Concepts on Grid Computing that were 
followed in developing the current Grid technology, 
which we use as a basis for the Scheduler design. 
The kernel part, Sections 3 and 4, discusses how to 
decompose and map Data Mining Application to 
DAG, which is the main contribution of the paper. 
The architecture and concepts of the services 
developed for Grid databases access and data 
mediation are described in Section 4. Experimental 
Results are presented in Section 5. We briefly 
conclude and outline the future work in Section 6. 
 
 
2   Concepts on Grid Computing 
A Grid based computational infrastructure couples a 
vide variety of geographically distributed 
computational resources (such as PCs, workstations, 
and supercomputers), storage systems, data sources, 
databases, libraries, computational kernels, and 
special purpose scientific instruments, and presents 
them as a unified integrated resource which can be 
shared by communities (“virtual organizations”) as 
they tackle common goals. 

The early Grid efforts (the early to mid 1990s) 
started as projects to link supercomputing sites; at 
this time this approach was known as meta 
computing. The objective was to provide 
computational resources to a range of high 
performance applications. Today the grid 
infrastructure is capable of binding together more 
than just a few specialized supercomputing centers. 
It is more ubiquitous and can support diverse 
applications requiring large-scale computation and 
data. Essentially all major Grid projects are 
currently built on protocols and services provided 
by the Globus Toolkit (http://globus.org) that 
enables applications to handle distributed 
heterogeneous computing resources as a single 
virtual machine. It provides the interoperability that 
is essential to achieve large-scale computation. 

Grid computing (or the use of a computational 
grid) is the application of several computers to a 
single problem at the same time - usually to a 
scientific or technical problem that requires a great 
number of computer processing cycles or access to 
large amounts of data. A well-known example of 
grid computing in the public domain is the ongoing 
SETI@Home (Search for Extraterrestrial 
Intelligence) project, in which thousands of people 
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share the unused processor cycles of their PCs in the 
search for signs of "rational" signals from outer 
space. According to John Patrick, IBM's vice-
president for Internet strategies, "the next big thing 
will be grid computing." 

Grid computing depends on software to divide 
and apportion pieces of a program among several 
computers, sometimes up to many thousands. Grid 
computing can also be thought of as distributed and 
large-scale cluster computing, as well as a form of 
network-distributed parallel processing. It can be 
small -- confined to a network of computer 
workstations within a corporation or it can be large -
- a public collaboration across many companies or 
networks. 

Grid computing is a form of distributed 
computing whereby a "super and virtual computer" 
is composed of a cluster of networked, loosely-
coupled computers, acting in concert to perform 
very large tasks. This technology has been applied 
to computationally-intensive scientific, 
mathematical, and academic problems through 
volunteer computing, and it is used in commercial 
enterprises for such diverse applications as drug 
discovery, economic forecasting, seismic analysis, 
and back-office data processing in support of e-
commerce and web services. 

What distinguishes grid computing from 
conventional cluster computing systems is that grids 
tend to be more loosely coupled, heterogeneous, and 
geographically dispersed. Also, while a computing 
grid may be dedicated to a specialized application, it 
is often constructed with the aid of general purpose 
grid software libraries and middleware. 

"Distributed" or "grid" computing in general is a 
special type of parallel computing which relies on 
complete computers (with onboard CPU, storage, 
power supply, network interface, etc.) connected to 
a network (private, public or the Internet) by a 
conventional network interface, such as Ethernet. 
This is in contrast to the traditional notion of a 
supercomputer, which has many processors 
connected by a local high-speed computer bus. 

The primary advantage of distributed computing 
is that each node can be purchased as commodity 
hardware, which when combined can produce 
similar computing resources to a multiprocessor 
supercomputer, but at lower cost. This is due to the 
economies of scale of producing commodity 
hardware, compared to the lower efficiency of 
designing and constructing a small number of 
custom supercomputers. The primary performance 
disadvantage is that the various processors and local 
storage areas do not have high-speed connections. 
This arrangement is thus well-suited to applications 

in which multiple parallel computations can take 
place independently, without the need to 
communicate intermediate results between 
processors. 
The high-end scalability of geographically dispersed 
grids is generally favorable, due to the low need for 
connectivity between nodes relative to the capacity 
of the public Internet. 

There are also some differences in programming 
and deployment. It can be costly and difficult to 
write programs so that they can be run in the 
environment of a supercomputer, which may have a 
custom operating system, or require the program to 
address concurrency issues. If a problem can be 
adequately parallelized, a "thin" layer of "grid" 
infrastructure can allow conventional, standalone 
programs to run on multiple machines (but each 
given a different part of the same problem). This 
makes it possible to write and debug on a single 
conventional machine, and eliminates complications 
due to multiple instances of the same program 
running in the same shared memory and storage 
space at the same time. 

As was already mentioned, Grid computing 
began with an emphasis on compute-intensive tasks, 
which benefit from massive parallelism for their 
computation needs, but are not data intensive; the 
data that they operate on does not scale in portion to 
the computation they perform. In recent years, this 
focus has shifted to more data-intensive applications, 
where significant processing is done on very large 
amounts of data. 

Group developed a specification for a collection 
of OGSI-Compliant Grid database services. The 
first implementation of the service interfaces, 
OGSADAIS Release 1, is already available. 

So far, only a little attention was devoted to 
knowledge discovery on the Grid [7, 8, 9], and to 
our best knowledge, no research effort about 
development of OGSA-based data mining services 
has been reported. Our solutions discussed in 
forthcoming sections can be viewed as a result of 
the natural evolution of parallel and distributed data 
mining technology and Grid Services and Grid 
Database Services development, and represent the 
first steps towards development standards for Open 
Service Architecture for data mining in Grid 
environments. 

The application scenario described above 
reveals some important properties which advocate 
the adoption of a Grid-based data mining approach. 

First, security is crucial for distributed data 
mining in enterprises. The business data are so 
sensitive that they should in no case be accessed 
without proper privileges. 
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Second, Grid-based data mining system for 
enterprises should be able to cope with the 
heterogeneity of not only computers, operating 
systems, networks, but also that from the different 
sources of data and different data mining software. 

Third, in the highly competitive business 
environment, enterprises tend to be more flexible 
and dynamic. As a result, data mining systems in 
enterprises face stronger demand on the capability 
of processing data that are dynamically organized. 
In the franchise supermarket scenario, it often 
happens that new stores are opened for business 
expansion and non-profitable stores are closed. 

With all above properties, a Grid-based 
approach becomes the natural choice, although there 
could be other similar techniques that are capable of 
achieving the same goal. 
 
 
3   Decomposing Data Mining 
Application to DAG 
K-Grid services can be used to construct complex 
Problem Solving Environments, which exploit DM 
kernels as basic software components that can be 
applied one after the other,her, in a modular way. A 
general DM task on the K-Grid can therefore be 
described as a Directed Acyclic Graph (DAG) 
whose nodes are the DM algorithms being applied, 
and the links represent data dependencies among the 
components. In this section, we present how to map 
data mining application to DAG. 
 
 
3.1   Modeling Data Mining Applications 
We surveyed three major classes of data mining 
applications, namely association rule mining, 
classification rule mining, and pattern discovery in 
combinatorial databases. We note the resemblance 
among the computation models of these three 
application classes.  

A task is the main computation applied on a 
pattern. Not only are all tasks of any one application 
of the same kind, but tasks of different applications 
are actually very similar. They all take a pattern and 
a subset of the database and count the number of 
records in the subset that match the pattern. In the 
classification rule mining case, counts of matched 
records are divided into c baskets, where c is the 
number of distinct classes. 

The similarities among the specifications of 
these applications are obvious, which inspired us to 
study the similarities among their computation 
models. They usually follow a generate-and-test 
paradigm-generate a candidate pattern, then test 

whether it is any good. Furthermore, there is some 
interdependence among the patterns that gives rise 
to pruning, i.e., if a pattern occurs too rarely, then so 
will any superpattern. These interdependences entail 
a lattice of patterns, which can be used to guide the 
computation.  

In fact, this notion of pattern lattice can apply to 
any data mining application that follows this 
generate-and-test paradigm. We call this application 
class pattern lattice data mining. In order to 
characterize the computation models of these 
applications more concretely, we define them more 
carefully in Section 3.2. 
 
 
3.2   Defining Data Mining Applications  

1. A database D. 
2. Patterns and a function len(pattern p) which 

non-negative integer. We use {} to represent zero-
length patterns in association rule mining. 

3. A function goodness(pattern p) which returns 
a measure of p according to the specifications of the 
application. 

4. A function good(p) which returns 1 if p is a 
good pattern or a good subpattern and 0 otherwise. 
Zero-length patterns are always good. 

The result of a data mining application is the set 
of all good patterns. If a pattern is not good, neither 
will any of its superpatterns be. In other words, it is 
necessary to consider a pattern if and only if all of 
its subpatterns are good. 

Let us define an immediate subpattern of a 
pattern q to be a subpattern p of q where len(p) = 
len(q)-1. Conversely, q is called an immediate 
superpattern of p. 

Except for the zero-length pattern, all the 
patterns in a data mining problem are generated 
from their immediate subpatterns. In order for all 
the patterns to be uniquely generated, a pattern q 
and one of its immediate subpatterns p have to 
establish a childparent relationship (i.e., q is a child 
pattern of p and p is the parent pattern of q). Except 
for the zero-length pattern, each pattern must have 
one and only one parent pattern. For example, in 
sequence pattern discovery, *FRR* can be a child 
pattern of *FR*; in association rule mining, {2, 3, 4} 
can be a child pattern of {2, 3}; and in classification 
rule mining, (C = c1) (̂B = b2) (̂A = a1) can be a 
child pattern of (C = c1) (̂B = b2). 
 
 
3.3   Solving Data Mining Applications  
Having defined data mining applications as above, it 
is easy to see that an optimal sequential program 
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that solves a data mining application does the 
following: 

1 generates all child patterns of the zero-length 
pattern; 

2 computes goodness(p) if all of p's immediate 
subpatterns are good; 

3 if good(p) then generate all child patterns of p; 
4 applies 2 and 3 repeatedly until there are no 

more patterns to be considered. 
Because the zero-length pattern is always good 

and the only immediate subpatterns of its children is 
the zero-length pattern itself, the computation starts 
on all its children, which are all length 1 patterns. 
After these patterns are computed, good patterns 
generate their child sets. Not all of these new 
patterns will be computed-only those whose every 
immediate subpattern is good will be. 
 
 
3.4   Mapping data mining application to 
DAG 
We propose to use a directed acyclic graph (dag) 
structure called exploration dag (E-dag, for short) to 
characterize pattern lattice data mining applications. 
We first describe how to map a data mining 
application to an E-dag.  
 

 
 
Fig. 1: A complete E-DAG for an association rule 
mining application on the set of items {1, 2, 3, 4}. 

 

The E-dag constructed for a data mining 
application has as many vertices as the number of 
all possible patterns (including the zero-length 
pattern). Each vertex is labeled with a pattern and no 
two vertices are labeled with the same pattern. 
Hence there is a one-to-one relation between the set 
of vertices of the E-dag and the set of all possible 
patterns. Therefore, we refer to a vertex and the 
pattern it is labeled with interchangeably. 

There is an incident edge on a pattern p from 
each immediate subpattern of p. All patterns except 
the zero-length pattern have at least one incident 
edge on them. The zero-length pattern has an 
outgoing edge to each pattern of length 1. Figure 1 
shows an E-dag mapped from an association rule 
mining application. 
 
 
4   Knowledge Grid Scheduler 
 
 
4.1   Serialization Process 
We consider that the basic building blocks of a DM 
task are algorithms and datasets. They can be 
combined in a structured way, thus forming a DAG. 
DM components correspond to a particular 
algorithm to be executed on a given dataset, 
provided a certain set of input parameters for the 
algorithm. We can therefore describe each DM 
components L with the triple: L = (A, D, {P}). 
Where A is the data mining algorithm, D is the input 
dataset, and {P} is the set of algorithm parameters. 
For example if A corresponds to “Association 
Mining”, then {P} could be the minimum 
confidence for a discovered rule to be meaningful. It 
is important to notice that A does not refer to a 
specific implementation. We could therefore have 
more different implementations for the same 
algorithm, so that the scheduler should take into 
account a multiplicity of choices among different 
algorithms and different implementations. The best 
choice could be chosen considering the current 
system status, the programs availability and 
implementation compatibility with different 
architectures. 

Scheduling DAGs on a distributed platform is a 
non-trivial problem which has been faced by a 
number of algorithms in the past. See [10] for a 
review of them. Although it is crucial to take into 
account data dependencies among the different 
components of the DAGs present in the system, we 
first want to concentrate ourselves on the cost model 
for DM tasks and on the problem of bringing 
communication costs into the scheduling policy. For 
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this reason, we introduce in the system an additional 
component that we call serializer (Figure 2), whose 
purpose is to decompose the tasks in the DAG into a 
series of independent tasks, and send them to the 
scheduler queue as soon as they become executable 
w.r.t. the DAG dependencies. 

Such serialization process is not trivial at all and 
leaves many important problems opened, such as 
determine the best ordering among tasks in a DAG 
that preserve data dependencies and minimizes 
execution time. 

 

 
 
Fig. 2 Serializer 
 

Nevertheless, at this stage of the analysis, we are 
mainly concerned with other aspects in the system, 
namely the definition of an accurate cost model for 
single DM tasks and the inclusion of 
communications into the scheduling policy. 
 
 
4.2   Cost Model 
The following cost model assumes that each input 
dataset is initially stored on a single machine mh, 
while the knowledge model extracted must be 
moved to a machine mk. Due to decisions taken by 
the scheduler, datasets may be moved to other 
machines and thus replicated, or may be partitioned 
among diverse machines composing a cluster for 

parallel execution. Therefore, the scheduler has to 
take into account that several copies (replicated or 
distributed) of a dataset may exist on the machines 
of its Grid. 

Sequential execution. Suppose that the whole 
dataset is stored on a single machine mh. Task ti is 
executed sequentially by a code running on machine 
mj, with an execution time of eij . In general we also 
have to consider the communications needed to 
move Di from machine h to machine mj, and the 
further communications to move the results 

| ( ) |i iDa  
to machine mk. The total execution time is thus:  

| | / | ( ) | /ij i hj ij i i jkE D b e D bα= + +  
Of course, the relative communication costs 

involved in dataset movements are zeroed if either 
h=j or j = k 
Parallel execution. Task ti is executed in parallel 

by a code running on a cluster clJ , with an execution 
time of eiJ. In general, we have also to consider the 
communications needed to move Di from machine 
mh to cluster clJ, and to move the results 

| ( ) |i iDa  
to machine mk. The total execution time is thus: 

| | / | | | ( ) | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b

α
∈ ∈

= + +∑ ∑  
Of course, the relative communication costs are 

zeroed if the dataset is already distributed, and is 
allocated on the machines of clJ. 

Performance metrics. Eij and EiJ are the expected 
total execution times of task ti when no load is 
present in the system. When load is present on 
machines and networks, scheduling will delay the 
start and thus the completion of a task. In the 
following we will analyze the actual completion 
time of a task for the sequential case. A similar 
analysis could be done for the parallel case. 

Let Cij be the wall-clock time at which all 
communications and sequential computation 
involved in the execution of ti complete. To define 
Cij we need to define the starting times of 
communications and computation. Let shj be the 
start time of communication needed to move the 
input dataset from machine h to machine j, let sj be 
the start time of the sequential execution of task ti on 
machine j, and, finally, let sjk be the start time of 
communication needed to move the knowledge 
result model extracted from machines j to machine k. 
From the above definitions: 

1 2 1 2
| | | ( ) |( )i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

αδ δ δ δ= + + + + + = + + +

      Where 
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0(1 ≥+−=
hj

i
hjj b

D
ssδ

 
And 

0)(2 ≥+−= ijjjk essδ  
So, if Ai is the arrival time of task ti, and ti is the 

only task in execution on the system, then the 
optimal completion time of the task on machine mj  
is: 

ij i ijC A E= +  

Suppose that jm
 is the specific machine chosen 

by our scheduling algorithm for executing a task ti. 
Let  

i ijC C=
 

And 

i ijC C=
 

Let T be the set of tasks to be scheduled. The 
makespan for the complete scheduling is defined as 
max ( )

it T iCÎ  
And measures the overall thoughput of the 

system. 
 
 
4.3   Predicting DM Tasks Execution Time  
Data mining application computation times depend 
on many factors: data size, specific mining 
parameters provided by users and actual status of 
the Grid etc. Moreover, the correlations between the 
items present in the various transactions of a dataset 
largely influence the response times of data mining 
applications. Thus, predicting its performance 
becomes very difficult.  

Our application runtime prediction algorithms 
operate on the principle that applications with 
similar characteristics have similar runtimes. Thus, 
we maintain a history of applications that have 
executed along with their respective runtimes. To 
estimate a given application's runtime, we identify 
similar applications in the history and then compute 
a statistical estimate of their runtimes. We use this 
as the predicted runtime.  

The fundamental problem with this approach is 
the definition of similarity; diverse views exist on 
the criteria that make two applications similar. For 
instance, we can say that two applications are 
similar because the same user on the same machine 
submitted them or because they have the same 
application name and are required to operate on the 
same size data. Thus, we must develop techniques 
that can effectively identify similar applications. 
Such techniques must be able to accurately choose 

applications' attributes that best determine similarity. 
Having identified a similarity template, the next step 
is to estimate the applications' runtime based on 
previous, similar applications. We can use several 
statistical measures to compute the prediction, 
including measures of central tendency such as the 
mean and linear regression. 

Rough sets theory as a mathematical tool to deal 
with uncertainty in data provides us with a sound 
theoretical basis to determine the properties that 
define similarity. Rough sets operate entirely on the 
basis of the data that is available in the history and 
require no external additional information. The 
history represents an information system in which 
the objects are the previous applications whose 
runtimes and other properties have been recorded. 
The attributes in the information system are these 
applications' properties. The decision attribute is the 
application runtime, and the other recorded 
properties constitute the condition attributes. This 
history model intuitively facilitates reasoning about 
the recorded properties so as to identify the 
dependency between the recorded attributes and the 
runtime. So, we can concretize similarity in terms of 
the condition attributes that are relevant and 
significant in determining the runtime. Thus, the set 
of attributes that have a strong dependency relation 
with the runtime can form a good similarity 
template. 

The objective of similarity templates in 
application runtime estimation is to identify a set of 
characteristics on the basis of which we can 
compare applications. We could try identical 
matching, i.e. if n characteristics are recorded in the 
history, two applications are similar if they are 
identical with respect to all n properties. However, 
this considerably limits our ability to find similar 
applications because not all recorded properties are 
necessarily relevant in determining the runtime. 
Such an approach could also lead to errors, as 
applications that have important similarities might 
be considered dissimilar even if they differed in a 
characteristic that had little bearing on the runtime. 
A similarity template should consist of the most 
important set of attributes that determine the 
runtime without any superfluous attributes. A reduct 
consists of the minimal set of condition attributes 
that have the same discerning power as the entire 
information system. In other words, the similarity 
template is equivalent to a reduct that includes the 
most significant attributes. Finding a reduct is 
similar to feature selection problem. All reducts of a 
dataset can be found by constructing a kind of 
discernibility function from the dataset and 
simplifying it.  
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For further detailed information see [11]. 
 
 
 
 
4.4   Scheduling Policy and Execution Model 
We now describe how this cost model can be used 
by a scheduler that receives a list of jobs to be 
executed on the K-Grid, and has to decide for each 
of them which is the best resource to start the 
execution on. 

Choosing the best resource implies the definition 
of a scheduling policy, targeted at the optimization 
of some metric. One frequent choice [12] is to 
minimize the completion time of each job. This is 
done by taking into account the actual ready time 
for the machine that will execute the job and the 
cost of execution on that machine, plus the 
communications needed. Therefore for each job, the 
scheduler will chose the machine that will finish the 
job earlier. For this reason in the following we refer 
to such policy as Minimum Completion Time 
(MCT). 
 

Qf

SRTF

Final

Qm

Qp

Final

FIFO

 
 
Fig. 3: The model of the scheduler. 
 

Jobs L (A, D, {P}) arrive at the scheduler from 
an external source, with given timestamps. They 
queue in the scheduler and wait. We assume the jobs 
have no dependencies among one another and their 
interarrival time is given by an exponential 
distribution. 

The scheduler internal structure can be modeled 
as a network of three queues, plotted in Figure 3, 
with different policies. 

Jobs arrive in the main queue Qm, where 
predicting jobs are generated and appended to the 
predicting queue Qp. Both queues are managed with 
a FIFO policy. From Qp jobs are inserted into the 
system for execution. Once predicting is completed, 
the job in inserted in the final queue Qf , where it is 
processed for the real execution. Since the scheduler 
knows the duration of jobs in Qf , due to the prior 
predicting, Qf is managed with a Shortest 
Remaining Time First (SRTF) policy in order to 

avoid light (interactive) jobs being blocked by 
heavier (batch) jobs.  

The life-cycle of a job in the system is the 
following:  

1. Jobs arrive in the main queue Qm with a given 
timestamp. They are processed with FIFO policy. 
When a job is processed, the scheduler generates a 
predicting job and put this request in the predicting 
queue, with the same timestamp. 

2. If a job in Qm has parameters equals to that of 
a previously processed job, it is directly inserted 
into the final queue Qf , with the same timestamp. 

3. If the predicting job has finished, it is inserted 
in the Qf queue, and timestamp given by the current 
time. Every time a job leaves the scheduler, a global 
execution plan is updated, that contains the busy 
times for every host in the system, obtained by the 
cost model associated to every execution. 

4. Every time a job has finished we update the 
global execution plan. 

5. When predicting is successfully finished, jobs 
are inserted in Qf , where different possibilities are 
evaluated and the best option selected. Jobs in Qf are 
processed in an SRFT fashion. Each job has an 
associated duration, obtained from the execution of 
predicting.  
 
 
5   Some Preliminary Results 
We adopted the MCT (Minimum Completion Time) 
[13] +rough set approach to validate that our 
hypothesis is feasible and efficient. The mapper 
does not consider node multitasking, and is 
responsible for choosing the schedule for 
computations involved in the execution of a given 
task, but also of starting tasks and checking their 
completion. The MCT mapping heuristics is very 
simple. Each time a task is submitted, the mapper 
evaluates the expected ready time of each machine. 
The expected ready time is an estimate of the ready 
time, the earliest time a given resource is ready after 
the execution of jobs previously assigned to it. Such 
estimate is based on both estimated and actual 
execution times of all the tasks that have been 
assigned to the resource in the past. To update 
resource ready times, when computations involved 
in the execution of a task complete, a report is sent 
to the mapper. The mapper then evaluate all 
possible execution plans for other task and chooses 
the one that reduce the completion time of the task. 
To evaluate our MCT scheduler that exploits rough 
set as a technique for performance prediction, we 
designed a simulation framework that allowed us to 
compare our approach with a Blind mapping 
strategy, which does not base its decisions on 
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performance predictions at all. Since the blind 
strategy is unaware of predicted runtime, so it 
scheduled tasks according the principle of FCFS 
(first come first serve). 

The simulated environment is composed of 
fifteen machines installed with GT3. Those 
machines have different physical configurations, 
operating systems and bandwidth of network. We 
used histories with 500 records as the condition 
attributes for estimation applications runtime. Data 
Ming tasks to be scheduled arrive in a burst, 
according to an exponential distribution, and have 
random execution costs. Datasets are all of medium 
size, and are randomly located on those machines. 
Figure 4 shows the improvements in makespans 
obtained by our technique over the blind one when 
the percentage of heavy tasks is varied. 
 
 
6   Conclusion 
We propose a new solution for data mining task 
scheduling in Grid environment. First, we propose 
map a data mining application to DAG. Then, we 
propose a cost model for predicting the data transfer 

time and data mining execution time on Grid. 
Finally, according the priori estimation of cost, we 
propose the method for tasks scheduling to 
minimize total response time in grid environment.  
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