
High Efficient Scheduling Mechanism for Distributed Knowledge
Discovery Platform

Meiqun Liu, K un Gao

Culture and Communication College
Computer Science and Information Technology College

Zhejiang Wanli University
No. 8 South Qianhu Road, Ningbo 315100

China
http://www.zwu.edu.cn

Abstract: - Distributed data mining plays a crucial role in knowledge discovery in very large database. Since
the distributed knowledge discovery process is both data and computational intensive, the Grid is a natural
platform for deploying a high performance data mining service. The key issue for distributed data mining Grid
system is how to scheduling data mining tasks in a high efficient way. In this paper, we propose a novel and
efficient mechanism which is based on decomposing and mapping data mining tasks to DAG, and ordering
them according the respective execution cost. The results show that this mechanism is scalable and feasibility.

Key-Words: - Grid Computing, Data Mining, Tasks Scheduling

1 Introduction
Distributed computing plays an important role in the
Knowledge Discovery process for several reasons.
On the one hand, Data Mining often requires huge
amounts of resources in storage space and
computation time. To make systems scalable, it is
important to develop mechanisms that distribute the
work load among several sites in a flexible way. On
the other hand, data is often inherently distributed
into several databases, making a centralized
processing of this data very inefficient and prone to
security risks. Distributed Data Mining explores
techniques of how to apply Data Mining in a non-
centralized way.

Data mining, which targets the goal of retrieving
information automatically from large data sets, is
one of the most important business intelligence
technologies. Because of its high computational
intensiveness and data intensiveness, data mining
serves a good field of application for Grid
technology.

The idea of data mining on the Grid is not new,
but it has become a hot research topic only recently.
The number of research efforts up to now is still
quite limited (for a short summary see [1]). Many of
the existing systems, such as NASA’s Information
Power Grid [2], TeraGrid [3] and Discovery Net [4]
are either utilizing non-standard data mining
techniques, or restricted to a special domain in the
scientific realm.

The implementation of a Grid-based data mining
system in the business realm will reveal the
importance of specific requirements that are not so
evident in the scientific realm, and will contribute to
a generic design and implementation.

Advanced applications are continuing to
generate ever larger amounts of valuable data, but
we are in danger of being unable to extract fully the
latent knowledge within the data because of
insufficient technology [5]. The cost of producing
this data is sometimes very high. Without effective
ways to retrieve, analyze and manipulate it, this
great expense will not yield the benefits to society
that we might expect. Depending on the application
area, the datasets mentioned above may include data
produced by business transactions, medical
investigations, scientific simulations, along with
data obtained from satellites, telescopes,
microscopes, seismic or tomographic techniques, etc.
The volume of these datasets is already measured in
terabytes and will soon total petabytes. They are
often geographically distributed and their
complexity is increasing, meaning that the
extraction of meaningful knowledge requires more
and more computing resources. The communities of
users that need to access and analyze this data are
often large and geographically distributed. This
combination of large dataset size, geographic
distribution of users and resources, and
computationally intensive analysis results in
complex and stringent performance demands that,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 11 Issue 1, Volume 6, January 2009

until recently, were not satisfied by any existing
computational and data management infrastructure.
Moreover, certain level of QoS and security has to
be guaranteed for several classes of applications
accessing the Grid data analysis services.

In tackling these problems, there are the
beginnings of a new form of information technology
known as the Computational Grid (or simply Grid)
– an infrastructure that enables the integrated use
of remote high-end computers, databases, scientific
instruments, networks, and other resources. The
fundamental challenge is to make Grid systems
widely available and easy to use for a wide range of
applications. This is crucial for accelerating their
transition into fully operational environments. A
significant amount of research for achieving these
objectives has already started both in academia as
well as industry. In the first phase, this research and
development has been almost exclusively driven by
“big science”, like distributed high-performance
simulations, high energy physics, material science,
etc. Now the focus is going to shift to more general
domains, closer to everyday life, like medical,
business, and engineering applications [6]. However,
to our best knowledge, till today, no relevant effort
has been devoted to the development of Grid tools
and services allowing to perform efficient
knowledge discovery in large distributed databases
and other datasets associated with these applications.
Therefore, we have initiated a research effort to
design and experimentally implement a novel
infrastructure called GridMiner for knowledge
discovery in databases coupled to Computational
Grids.

The technology developed is being validated and
tested on an advanced medical application
addressing treatment of traumatic brain injury (TBI)
victims. TBIs typically result from accidents in
which the head strikes an object. The trajectory of
the TBI patient management includes the following
main points: trauma event (e.g. injury at a car or
sport accident), first aid, transportation to hospital,
acute hospital care, and home care. All these phases
are associated with data collection into databases,
which are currently autonomously managed by
individual hospitals, and are, therefore,
geographically distributed. Moreover, they are
heterogeneous and need high data security
precautions. The aim is to use the Grid technology
for building a virtual organization, in which the
cooperation of the participating hospitals and
institutions is supported by the integration of the
above databases. Knowledge discovered in these
databases can help to significantly improve the
quality of the decisions taken by the health care

specialists involved in treatment of the TBI patients.
In most situations, a nearly real-time response to
knowledge discovery queries is urgently needed. It
is obvious that this kind of applications introduces
new challenges to the Grid developers.

The paper is organized as follows. Section 2
outlines the Concepts on Grid Computing that were
followed in developing the current Grid technology,
which we use as a basis for the Scheduler design.
The kernel part, Sections 3 and 4, discusses how to
decompose and map Data Mining Application to
DAG, which is the main contribution of the paper.
The architecture and concepts of the services
developed for Grid databases access and data
mediation are described in Section 4. Experimental
Results are presented in Section 5. We briefly
conclude and outline the future work in Section 6.

2 Concepts on Grid Computing
A Grid based computational infrastructure couples a
vide variety of geographically distributed
computational resources (such as PCs, workstations,
and supercomputers), storage systems, data sources,
databases, libraries, computational kernels, and
special purpose scientific instruments, and presents
them as a unified integrated resource which can be
shared by communities (“virtual organizations”) as
they tackle common goals.

The early Grid efforts (the early to mid 1990s)
started as projects to link supercomputing sites; at
this time this approach was known as meta
computing. The objective was to provide
computational resources to a range of high
performance applications. Today the grid
infrastructure is capable of binding together more
than just a few specialized supercomputing centers.
It is more ubiquitous and can support diverse
applications requiring large-scale computation and
data. Essentially all major Grid projects are
currently built on protocols and services provided
by the Globus Toolkit (http://globus.org) that
enables applications to handle distributed
heterogeneous computing resources as a single
virtual machine. It provides the interoperability that
is essential to achieve large-scale computation.

Grid computing (or the use of a computational
grid) is the application of several computers to a
single problem at the same time - usually to a
scientific or technical problem that requires a great
number of computer processing cycles or access to
large amounts of data. A well-known example of
grid computing in the public domain is the ongoing
SETI@Home (Search for Extraterrestrial
Intelligence) project, in which thousands of people

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 12 Issue 1, Volume 6, January 2009

share the unused processor cycles of their PCs in the
search for signs of "rational" signals from outer
space. According to John Patrick, IBM's vice-
president for Internet strategies, "the next big thing
will be grid computing."

Grid computing depends on software to divide
and apportion pieces of a program among several
computers, sometimes up to many thousands. Grid
computing can also be thought of as distributed and
large-scale cluster computing, as well as a form of
network-distributed parallel processing. It can be
small -- confined to a network of computer
workstations within a corporation or it can be large -
- a public collaboration across many companies or
networks.

Grid computing is a form of distributed
computing whereby a "super and virtual computer"
is composed of a cluster of networked, loosely-
coupled computers, acting in concert to perform
very large tasks. This technology has been applied
to computationally-intensive scientific,
mathematical, and academic problems through
volunteer computing, and it is used in commercial
enterprises for such diverse applications as drug
discovery, economic forecasting, seismic analysis,
and back-office data processing in support of e-
commerce and web services.

What distinguishes grid computing from
conventional cluster computing systems is that grids
tend to be more loosely coupled, heterogeneous, and
geographically dispersed. Also, while a computing
grid may be dedicated to a specialized application, it
is often constructed with the aid of general purpose
grid software libraries and middleware.

"Distributed" or "grid" computing in general is a
special type of parallel computing which relies on
complete computers (with onboard CPU, storage,
power supply, network interface, etc.) connected to
a network (private, public or the Internet) by a
conventional network interface, such as Ethernet.
This is in contrast to the traditional notion of a
supercomputer, which has many processors
connected by a local high-speed computer bus.

The primary advantage of distributed computing
is that each node can be purchased as commodity
hardware, which when combined can produce
similar computing resources to a multiprocessor
supercomputer, but at lower cost. This is due to the
economies of scale of producing commodity
hardware, compared to the lower efficiency of
designing and constructing a small number of
custom supercomputers. The primary performance
disadvantage is that the various processors and local
storage areas do not have high-speed connections.
This arrangement is thus well-suited to applications

in which multiple parallel computations can take
place independently, without the need to
communicate intermediate results between
processors.
The high-end scalability of geographically dispersed
grids is generally favorable, due to the low need for
connectivity between nodes relative to the capacity
of the public Internet.

There are also some differences in programming
and deployment. It can be costly and difficult to
write programs so that they can be run in the
environment of a supercomputer, which may have a
custom operating system, or require the program to
address concurrency issues. If a problem can be
adequately parallelized, a "thin" layer of "grid"
infrastructure can allow conventional, standalone
programs to run on multiple machines (but each
given a different part of the same problem). This
makes it possible to write and debug on a single
conventional machine, and eliminates complications
due to multiple instances of the same program
running in the same shared memory and storage
space at the same time.

As was already mentioned, Grid computing
began with an emphasis on compute-intensive tasks,
which benefit from massive parallelism for their
computation needs, but are not data intensive; the
data that they operate on does not scale in portion to
the computation they perform. In recent years, this
focus has shifted to more data-intensive applications,
where significant processing is done on very large
amounts of data.

Group developed a specification for a collection
of OGSI-Compliant Grid database services. The
first implementation of the service interfaces,
OGSADAIS Release 1, is already available.

So far, only a little attention was devoted to
knowledge discovery on the Grid [7, 8, 9], and to
our best knowledge, no research effort about
development of OGSA-based data mining services
has been reported. Our solutions discussed in
forthcoming sections can be viewed as a result of
the natural evolution of parallel and distributed data
mining technology and Grid Services and Grid
Database Services development, and represent the
first steps towards development standards for Open
Service Architecture for data mining in Grid
environments.

The application scenario described above
reveals some important properties which advocate
the adoption of a Grid-based data mining approach.

First, security is crucial for distributed data
mining in enterprises. The business data are so
sensitive that they should in no case be accessed
without proper privileges.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 13 Issue 1, Volume 6, January 2009

Second, Grid-based data mining system for
enterprises should be able to cope with the
heterogeneity of not only computers, operating
systems, networks, but also that from the different
sources of data and different data mining software.

Third, in the highly competitive business
environment, enterprises tend to be more flexible
and dynamic. As a result, data mining systems in
enterprises face stronger demand on the capability
of processing data that are dynamically organized.
In the franchise supermarket scenario, it often
happens that new stores are opened for business
expansion and non-profitable stores are closed.

With all above properties, a Grid-based
approach becomes the natural choice, although there
could be other similar techniques that are capable of
achieving the same goal.

3 Decomposing Data Mining
Application to DAG
K-Grid services can be used to construct complex
Problem Solving Environments, which exploit DM
kernels as basic software components that can be
applied one after the other,her, in a modular way. A
general DM task on the K-Grid can therefore be
described as a Directed Acyclic Graph (DAG)
whose nodes are the DM algorithms being applied,
and the links represent data dependencies among the
components. In this section, we present how to map
data mining application to DAG.

3.1 Modeling Data Mining Applications
We surveyed three major classes of data mining
applications, namely association rule mining,
classification rule mining, and pattern discovery in
combinatorial databases. We note the resemblance
among the computation models of these three
application classes.

A task is the main computation applied on a
pattern. Not only are all tasks of any one application
of the same kind, but tasks of different applications
are actually very similar. They all take a pattern and
a subset of the database and count the number of
records in the subset that match the pattern. In the
classification rule mining case, counts of matched
records are divided into c baskets, where c is the
number of distinct classes.

The similarities among the specifications of
these applications are obvious, which inspired us to
study the similarities among their computation
models. They usually follow a generate-and-test
paradigm-generate a candidate pattern, then test

whether it is any good. Furthermore, there is some
interdependence among the patterns that gives rise
to pruning, i.e., if a pattern occurs too rarely, then so
will any superpattern. These interdependences entail
a lattice of patterns, which can be used to guide the
computation.

In fact, this notion of pattern lattice can apply to
any data mining application that follows this
generate-and-test paradigm. We call this application
class pattern lattice data mining. In order to
characterize the computation models of these
applications more concretely, we define them more
carefully in Section 3.2.

3.2 Defining Data Mining Applications

1. A database D.
2. Patterns and a function len(pattern p) which

non-negative integer. We use {} to represent zero-
length patterns in association rule mining.

3. A function goodness(pattern p) which returns
a measure of p according to the specifications of the
application.

4. A function good(p) which returns 1 if p is a
good pattern or a good subpattern and 0 otherwise.
Zero-length patterns are always good.

The result of a data mining application is the set
of all good patterns. If a pattern is not good, neither
will any of its superpatterns be. In other words, it is
necessary to consider a pattern if and only if all of
its subpatterns are good.

Let us define an immediate subpattern of a
pattern q to be a subpattern p of q where len(p) =
len(q)-1. Conversely, q is called an immediate
superpattern of p.

Except for the zero-length pattern, all the
patterns in a data mining problem are generated
from their immediate subpatterns. In order for all
the patterns to be uniquely generated, a pattern q
and one of its immediate subpatterns p have to
establish a childparent relationship (i.e., q is a child
pattern of p and p is the parent pattern of q). Except
for the zero-length pattern, each pattern must have
one and only one parent pattern. For example, in
sequence pattern discovery, *FRR* can be a child
pattern of *FR*; in association rule mining, {2, 3, 4}
can be a child pattern of {2, 3}; and in classification
rule mining, (C = c1) (̂B = b2) (̂A = a1) can be a
child pattern of (C = c1) (̂B = b2).

3.3 Solving Data Mining Applications
Having defined data mining applications as above, it
is easy to see that an optimal sequential program

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 14 Issue 1, Volume 6, January 2009

that solves a data mining application does the
following:

1 generates all child patterns of the zero-length
pattern;

2 computes goodness(p) if all of p's immediate
subpatterns are good;

3 if good(p) then generate all child patterns of p;
4 applies 2 and 3 repeatedly until there are no

more patterns to be considered.
Because the zero-length pattern is always good

and the only immediate subpatterns of its children is
the zero-length pattern itself, the computation starts
on all its children, which are all length 1 patterns.
After these patterns are computed, good patterns
generate their child sets. Not all of these new
patterns will be computed-only those whose every
immediate subpattern is good will be.

3.4 Mapping data mining application to
DAG
We propose to use a directed acyclic graph (dag)
structure called exploration dag (E-dag, for short) to
characterize pattern lattice data mining applications.
We first describe how to map a data mining
application to an E-dag.

Fig. 1: A complete E-DAG for an association rule
mining application on the set of items {1, 2, 3, 4}.

The E-dag constructed for a data mining
application has as many vertices as the number of
all possible patterns (including the zero-length
pattern). Each vertex is labeled with a pattern and no
two vertices are labeled with the same pattern.
Hence there is a one-to-one relation between the set
of vertices of the E-dag and the set of all possible
patterns. Therefore, we refer to a vertex and the
pattern it is labeled with interchangeably.

There is an incident edge on a pattern p from
each immediate subpattern of p. All patterns except
the zero-length pattern have at least one incident
edge on them. The zero-length pattern has an
outgoing edge to each pattern of length 1. Figure 1
shows an E-dag mapped from an association rule
mining application.

4 Knowledge Grid Scheduler

4.1 Serialization Process
We consider that the basic building blocks of a DM
task are algorithms and datasets. They can be
combined in a structured way, thus forming a DAG.
DM components correspond to a particular
algorithm to be executed on a given dataset,
provided a certain set of input parameters for the
algorithm. We can therefore describe each DM
components L with the triple: L = (A, D, {P}).
Where A is the data mining algorithm, D is the input
dataset, and {P} is the set of algorithm parameters.
For example if A corresponds to “Association
Mining”, then {P} could be the minimum
confidence for a discovered rule to be meaningful. It
is important to notice that A does not refer to a
specific implementation. We could therefore have
more different implementations for the same
algorithm, so that the scheduler should take into
account a multiplicity of choices among different
algorithms and different implementations. The best
choice could be chosen considering the current
system status, the programs availability and
implementation compatibility with different
architectures.

Scheduling DAGs on a distributed platform is a
non-trivial problem which has been faced by a
number of algorithms in the past. See [10] for a
review of them. Although it is crucial to take into
account data dependencies among the different
components of the DAGs present in the system, we
first want to concentrate ourselves on the cost model
for DM tasks and on the problem of bringing
communication costs into the scheduling policy. For

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 15 Issue 1, Volume 6, January 2009

this reason, we introduce in the system an additional
component that we call serializer (Figure 2), whose
purpose is to decompose the tasks in the DAG into a
series of independent tasks, and send them to the
scheduler queue as soon as they become executable
w.r.t. the DAG dependencies.

Such serialization process is not trivial at all and
leaves many important problems opened, such as
determine the best ordering among tasks in a DAG
that preserve data dependencies and minimizes
execution time.

Fig. 2 Serializer

Nevertheless, at this stage of the analysis, we are
mainly concerned with other aspects in the system,
namely the definition of an accurate cost model for
single DM tasks and the inclusion of
communications into the scheduling policy.

4.2 Cost Model
The following cost model assumes that each input
dataset is initially stored on a single machine mh,
while the knowledge model extracted must be
moved to a machine mk. Due to decisions taken by
the scheduler, datasets may be moved to other
machines and thus replicated, or may be partitioned
among diverse machines composing a cluster for

parallel execution. Therefore, the scheduler has to
take into account that several copies (replicated or
distributed) of a dataset may exist on the machines
of its Grid.

Sequential execution. Suppose that the whole
dataset is stored on a single machine mh. Task ti is
executed sequentially by a code running on machine
mj, with an execution time of eij . In general we also
have to consider the communications needed to
move Di from machine h to machine mj, and the
further communications to move the results

| () |i iDa
to machine mk. The total execution time is thus:

| | / | () | /ij i hj ij i i jkE D b e D bα= + +
Of course, the relative communication costs

involved in dataset movements are zeroed if either
h=j or j = k
Parallel execution. Task ti is executed in parallel

by a code running on a cluster clJ , with an execution
time of eiJ. In general, we have also to consider the
communications needed to move Di from machine
mh to cluster clJ, and to move the results

| () |i iDa
to machine mk. The total execution time is thus:

| | / | | | () | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b

α
∈ ∈

= + +∑ ∑
Of course, the relative communication costs are

zeroed if the dataset is already distributed, and is
allocated on the machines of clJ.

Performance metrics. Eij and EiJ are the expected
total execution times of task ti when no load is
present in the system. When load is present on
machines and networks, scheduling will delay the
start and thus the completion of a task. In the
following we will analyze the actual completion
time of a task for the sequential case. A similar
analysis could be done for the parallel case.

Let Cij be the wall-clock time at which all
communications and sequential computation
involved in the execution of ti complete. To define
Cij we need to define the starting times of
communications and computation. Let shj be the
start time of communication needed to move the
input dataset from machine h to machine j, let sj be
the start time of the sequential execution of task ti on
machine j, and, finally, let sjk be the start time of
communication needed to move the knowledge
result model extracted from machines j to machine k.
From the above definitions:

1 2 1 2
| | | () |()i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

αδ δ δ δ= + + + + + = + + +

 Where

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 16 Issue 1, Volume 6, January 2009

0(1 ≥+−=
hj

i
hjj b

D
ssδ

And

0)(2 ≥+−= ijjjk essδ
So, if Ai is the arrival time of task ti, and ti is the

only task in execution on the system, then the
optimal completion time of the task on machine mj
is:

ij i ijC A E= +

Suppose that jm
 is the specific machine chosen

by our scheduling algorithm for executing a task ti.
Let

i ijC C=

And

i ijC C=

Let T be the set of tasks to be scheduled. The
makespan for the complete scheduling is defined as
max ()

it T iCÎ
And measures the overall thoughput of the

system.

4.3 Predicting DM Tasks Execution Time
Data mining application computation times depend
on many factors: data size, specific mining
parameters provided by users and actual status of
the Grid etc. Moreover, the correlations between the
items present in the various transactions of a dataset
largely influence the response times of data mining
applications. Thus, predicting its performance
becomes very difficult.

Our application runtime prediction algorithms
operate on the principle that applications with
similar characteristics have similar runtimes. Thus,
we maintain a history of applications that have
executed along with their respective runtimes. To
estimate a given application's runtime, we identify
similar applications in the history and then compute
a statistical estimate of their runtimes. We use this
as the predicted runtime.

The fundamental problem with this approach is
the definition of similarity; diverse views exist on
the criteria that make two applications similar. For
instance, we can say that two applications are
similar because the same user on the same machine
submitted them or because they have the same
application name and are required to operate on the
same size data. Thus, we must develop techniques
that can effectively identify similar applications.
Such techniques must be able to accurately choose

applications' attributes that best determine similarity.
Having identified a similarity template, the next step
is to estimate the applications' runtime based on
previous, similar applications. We can use several
statistical measures to compute the prediction,
including measures of central tendency such as the
mean and linear regression.

Rough sets theory as a mathematical tool to deal
with uncertainty in data provides us with a sound
theoretical basis to determine the properties that
define similarity. Rough sets operate entirely on the
basis of the data that is available in the history and
require no external additional information. The
history represents an information system in which
the objects are the previous applications whose
runtimes and other properties have been recorded.
The attributes in the information system are these
applications' properties. The decision attribute is the
application runtime, and the other recorded
properties constitute the condition attributes. This
history model intuitively facilitates reasoning about
the recorded properties so as to identify the
dependency between the recorded attributes and the
runtime. So, we can concretize similarity in terms of
the condition attributes that are relevant and
significant in determining the runtime. Thus, the set
of attributes that have a strong dependency relation
with the runtime can form a good similarity
template.

The objective of similarity templates in
application runtime estimation is to identify a set of
characteristics on the basis of which we can
compare applications. We could try identical
matching, i.e. if n characteristics are recorded in the
history, two applications are similar if they are
identical with respect to all n properties. However,
this considerably limits our ability to find similar
applications because not all recorded properties are
necessarily relevant in determining the runtime.
Such an approach could also lead to errors, as
applications that have important similarities might
be considered dissimilar even if they differed in a
characteristic that had little bearing on the runtime.
A similarity template should consist of the most
important set of attributes that determine the
runtime without any superfluous attributes. A reduct
consists of the minimal set of condition attributes
that have the same discerning power as the entire
information system. In other words, the similarity
template is equivalent to a reduct that includes the
most significant attributes. Finding a reduct is
similar to feature selection problem. All reducts of a
dataset can be found by constructing a kind of
discernibility function from the dataset and
simplifying it.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 17 Issue 1, Volume 6, January 2009

For further detailed information see [11].

4.4 Scheduling Policy and Execution Model
We now describe how this cost model can be used
by a scheduler that receives a list of jobs to be
executed on the K-Grid, and has to decide for each
of them which is the best resource to start the
execution on.

Choosing the best resource implies the definition
of a scheduling policy, targeted at the optimization
of some metric. One frequent choice [12] is to
minimize the completion time of each job. This is
done by taking into account the actual ready time
for the machine that will execute the job and the
cost of execution on that machine, plus the
communications needed. Therefore for each job, the
scheduler will chose the machine that will finish the
job earlier. For this reason in the following we refer
to such policy as Minimum Completion Time
(MCT).

Qf

SRTF

Final

Qm

Qp

Final

FIFO

Fig. 3: The model of the scheduler.

Jobs L (A, D, {P}) arrive at the scheduler from
an external source, with given timestamps. They
queue in the scheduler and wait. We assume the jobs
have no dependencies among one another and their
interarrival time is given by an exponential
distribution.

The scheduler internal structure can be modeled
as a network of three queues, plotted in Figure 3,
with different policies.

Jobs arrive in the main queue Qm, where
predicting jobs are generated and appended to the
predicting queue Qp. Both queues are managed with
a FIFO policy. From Qp jobs are inserted into the
system for execution. Once predicting is completed,
the job in inserted in the final queue Qf , where it is
processed for the real execution. Since the scheduler
knows the duration of jobs in Qf , due to the prior
predicting, Qf is managed with a Shortest
Remaining Time First (SRTF) policy in order to

avoid light (interactive) jobs being blocked by
heavier (batch) jobs.

The life-cycle of a job in the system is the
following:

1. Jobs arrive in the main queue Qm with a given
timestamp. They are processed with FIFO policy.
When a job is processed, the scheduler generates a
predicting job and put this request in the predicting
queue, with the same timestamp.

2. If a job in Qm has parameters equals to that of
a previously processed job, it is directly inserted
into the final queue Qf , with the same timestamp.

3. If the predicting job has finished, it is inserted
in the Qf queue, and timestamp given by the current
time. Every time a job leaves the scheduler, a global
execution plan is updated, that contains the busy
times for every host in the system, obtained by the
cost model associated to every execution.

4. Every time a job has finished we update the
global execution plan.

5. When predicting is successfully finished, jobs
are inserted in Qf , where different possibilities are
evaluated and the best option selected. Jobs in Qf are
processed in an SRFT fashion. Each job has an
associated duration, obtained from the execution of
predicting.

5 Some Preliminary Results
We adopted the MCT (Minimum Completion Time)
[13] +rough set approach to validate that our
hypothesis is feasible and efficient. The mapper
does not consider node multitasking, and is
responsible for choosing the schedule for
computations involved in the execution of a given
task, but also of starting tasks and checking their
completion. The MCT mapping heuristics is very
simple. Each time a task is submitted, the mapper
evaluates the expected ready time of each machine.
The expected ready time is an estimate of the ready
time, the earliest time a given resource is ready after
the execution of jobs previously assigned to it. Such
estimate is based on both estimated and actual
execution times of all the tasks that have been
assigned to the resource in the past. To update
resource ready times, when computations involved
in the execution of a task complete, a report is sent
to the mapper. The mapper then evaluate all
possible execution plans for other task and chooses
the one that reduce the completion time of the task.
To evaluate our MCT scheduler that exploits rough
set as a technique for performance prediction, we
designed a simulation framework that allowed us to
compare our approach with a Blind mapping
strategy, which does not base its decisions on

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 18 Issue 1, Volume 6, January 2009

performance predictions at all. Since the blind
strategy is unaware of predicted runtime, so it
scheduled tasks according the principle of FCFS
(first come first serve).

The simulated environment is composed of
fifteen machines installed with GT3. Those
machines have different physical configurations,
operating systems and bandwidth of network. We
used histories with 500 records as the condition
attributes for estimation applications runtime. Data
Ming tasks to be scheduled arrive in a burst,
according to an exponential distribution, and have
random execution costs. Datasets are all of medium
size, and are randomly located on those machines.
Figure 4 shows the improvements in makespans
obtained by our technique over the blind one when
the percentage of heavy tasks is varied.

6 Conclusion
We propose a new solution for data mining task
scheduling in Grid environment. First, we propose
map a data mining application to DAG. Then, we
propose a cost model for predicting the data transfer

time and data mining execution time on Grid.
Finally, according the priori estimation of cost, we
propose the method for tasks scheduling to
minimize total response time in grid environment.

References:
[1] Cannataro, M.; Talia, D.: The Knowledge Grid,

Communications of the ACM, Vol. 46, No. 1,
pp89-93, Jan. 2003

[2] Hinke, T.; Novotny, J.: Data Mining on
NASA’s Information Power Grid, Proc. 9th
IEEE International Symposium on High
Performance Distributed Computing,
Pittsburgh, Pennsylvania, Aug. 1-4, 2000

[3] Conover, H. et.al.: Data Mining on the
TeraGrid, Poster Presentation, Supercomputing
Conference 2003, Phoenix, AZ, Nov. 15, 2003

[4] Curcin, V. et.al.: Discovery Net: Towards a
Grid of Knowledge Discovery, Proc. 8th ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining,
Edmonton, Alberta, Canada, pp658-663, 2002

[5] R. Williams et al. Large scientific databases.
Joint EU-US Workshop, Annapolis, USA,
September 1999.

Fig. 4 Gannt charts showing the busy times (in time units of 100 sec.) of our six machines when
either the 10% (a,b) or the 60% (c,d) of the tasks are expensive: (a,b) blind scheduling heuristics,
(c,d) MCT+rough set scheduling

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 19 Issue 1, Volume 6, January 2009

[6] GRIDS: e-Science to e-Business. ERCIM
News, April 2001.

[7] M. Cannataro, D. Talia, and P. Trunfio. Design
of distributed data mining applications on the
knowledge grid.

[8] M. Cannataro, D. Talia, and P. Trunfio.
Distributed data mining on the grid. Future
Generation Computer Systems, 18:1101–1112,
2002.

[9] R. Moore. Knowledge-Based Grids. Technical
Report TR-2001-02, San Diego Supercomputer
Center, January 2001.

[10] Yu-Kwong Kwok and Ishfaq Ahmad.
Benchmarking and comparison of the task
graph scheduling algorithms. Journal of
Parallel and Distributed Computing,
59(3):381–422, 1999.

[11] Kun Gao, Youquan Ji, Meiqun Liu, Jiaxun
Chen, Rough Set Based Computation Times
Estimation on Knowledge Grid, Lecture Notes
in Computer Science, Volume 3470, July 2005,
Pages 557 – 566.

[12] H. J. Siegel and A. Shoukat. Techniques for
mapping tasks to machines in heterogeneous
computing systems. Journal of Systems
Architecture, 2000.

[13] Tracy D. Braun, Howard Jay Siegel, Noah
Beck.: A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent
Tasks onto Heterogeneous Distributed
Computing Systems, Journal of Parallel and
Distributed Computing, 2001

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 20 Issue 1, Volume 6, January 2009

