
High Efficient Knowledge Extracting Platform Based on E-Delivery 
Pattern 

 
Meiqun Liu, K un Gao 

Culture and Communication College 
Computer Science and Information Technology College 

Zhejiang Wanli University 
No. 8 South Qianhu Road, Ningbo 315100 

China 
http://www.zwu.edu.cn 

 
 
Abstract: - Generally, the existing Data Mining delivery mechanisms are based on moving data to a mining 
server node or moving data mining code to data resource node. This pattern is not suit for the new requirement 
for some situations. In this paper, we proposed a novel knowledge extraction mechanism which based on E-
delivery pattern. The new mechanism can solve efficiently some problem coming from nodes having data 
resources but lack of computing power, or some node with computing power but no data resource and low 
transmission bandwidth. The kernel of the system we proposed adopts OGSA as the foundation and provides 
open service for systematic expansion. We also discuss the feasibility and the scalability in this paper. 
 
 
Key-Words: - Software delivery, Knowledge Discovery, Knowledge Extracting, OGSA 
 
1 Introduction 
An application service provider (ASP) is a business 
that provides computer-based services to customers 
over a network. Software offered using an ASP 
model is also sometimes called On-demand software 
or software as a service (SaaS). The most limited 
sense of this business is that of providing access to a 
particular application program (such as customer 
relationship management) using a standard protocol 
such as HTTP. 

The need for ASPs has evolved from the 
increasing costs of specialized software that have far 
exceeded the price range of small to medium sized 
businesses. As well, the growing complexities of 
software have led to huge costs in distributing the 
software to end-users. Through ASPs, the 
complexities and costs of such software can be cut 
down. In addition, the issues of upgrading have been 
eliminated from the end-firm by placing the onus on 
the ASP to maintain up-to-date services, 24 x 7 
technical support, physical and electronic security 
and in-built support for business continuity and 
flexible working. 

The importance of this marketplace is reflected 
by its size. As of early 2003, estimates of the United 
States market range from 1.5 to 4 billion dollars. 
Clients for ASP services include businesses, 
government organizations, non-profits, and 
membership organizations. 

There are several forms of ASP business. These 
are: 
 A specialist or functional ASP delivers a 
single application, such as credit card payment 
processing or timesheet services; 
 A vertical market ASP delivers a solution 
package for a specific customer type, such as a 
dental practice;  
 An enterprise ASP delivers broad spectrum 
solutions;  
 A local ASP delivers small business services 
within a limited area.  
Some analysts identify a volume ASP as a fifth 

type. This is basically a specialist ASP that offers a 
low cost packaged solution via their own website. 
PayPal was an instance of this type, and their 
volume was one way to lower the unit cost of each 
transaction. 

In addition to these types, some large multi-line 
companies (such as IBM), use ASP concepts as a 
particular business model that supports some 
specific customers. 

The application software resides on the vendor's 
system and is accessed by users through a web 
browser using HTML or by special purpose client 
software provided by the vendor. Custom client 
software can also interface to these systems through 
XML APIs. These APIs can also be used where 
integration with in-house systems is required. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 1 Issue 1, Volume 6, January 2009



Common features associated with ASPs include: 
 ASP fully owns and operates the software 
application(s)  
 ASP owns, operates and maintains the servers 
that support the software  
 ASP makes information available to customers 
via the Internet or a "thin client"  
 ASP bills on a "per-use" basis or on a 
monthly/annual fee  
The advantages to this approach include: 
 Software integration issues are eliminated 
from the client site  
 Software costs for the application are spread 
over a number of clients  
 Vendors can build more application 
experience than the in-house staff  
 Key software systems are kept up to date, 
available, and managed for performance by 
experts  
 Improved reliability, availability, scalability 
and security of internal IT systems  
 A provider's service level agreement 
guarantees a certain level of service  
 Access to product and technology experts 
dedicated to available products  
 Reduction of internal IT costs to a predictable 
monthly fee.  
 Redeploying IT staff and tools to focus on 
strategic technology projects that impact the 
enterprise's bottom line  
Some inherent disadvantages include: 
 The client must generally accept the 
application as provided since ASPs can only 
afford a customized solution for the largest 
clients  
 The client may rely on the provider to provide 
a critical business function, thus limiting their 
control of that function and instead relying on the 
provider  
 Changes in the ASP market may result in 
changes in the type or level of service available 
to clients  
 Integration with the client's non-ASP systems 
may be problematic  
Evaluating an Application Service Provider 

security when moving to an ASP infrastructure can 
come at a high cost, as such a firm must assess the 
level of risk associated with the ASP itself. Failure 
to properly account for such risk can lead to: 
 Loss of control of corporate data  
 Loss of control of corporate image  
 Insufficient ASP security to counter risks  

 Exposure of corporate data to other ASP 
customers  
 Compromise of corporate data  
Some other risks include failure to account for 

the financial future of the ASP in general, i.e. how 
stable a company is and if it has the resources to 
continue business into the foreseeable future. For 
these reasons Cisco Systems has developed a 
comprehensive evaluation guideline. This guideline 
includes evaluating the scope of the ASP's service, 
the security of the program and the ASP's maturity 
with regard to security awareness. Finally the 
guidelines indicate the importance of performing 
audits on the ASP with respect to: 
 Port/Network service  
 Application vulnerability  
 ASP Personnel  
Physical visits to the ASP to assess the formality 

of the organization will provide invaluable insight 
into the awareness of the firm. 
 
 
2 Software as a Service 
Software as a Service (SaaS, typically pronounced 
'sass') is a model of software deployment where an 
application is hosted as a service provided to 
customers across the Internet. By eliminating the 
need to install and run the application on the 
customer's own computer, SaaS alleviates the 
customer's burden of software maintenance, ongoing 
operation, and support. Conversely, customers 
relinquish control over software versions or 
changing requirements; moreover, costs to use the 
service become a continuous expense, rather than a 
single expense at time of purchase. Using SaaS also 
can conceivably reduce that up-front expense of 
software purchases, through less costly, on-demand 
pricing. From the software vendor's standpoint, 
SaaS has the attraction of providing stronger 
protection of its intellectual property and 
establishing an ongoing revenue stream. The SaaS 
software vendor may host the application on its own 
web server, or this function may be handled by a 
third-party application service provider (ASP). This 
way, end users may reduce their investment on 
server hardware too. 

The concept of "software as a service" started to 
circulate prior to 1999 and was considered to be 
"gaining acceptance in the marketplace" in Bennett 
et al., 1999 paper on "Service Based Software" [1]. 

Whilst the term "software as a service" was in 
common use, the CamelCase acronym "SaaS" was 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 2 Issue 1, Volume 6, January 2009



allegedly not coined until several years later in a 
white paper called "Strategic Backgrounder: 
Software as a Service" [2] by the Software & 
Information Industry's eBusiness Division published 
in Feb. 2001, but written in fall of 2000 according to 
internal Association records. 

As a term, SaaS is generally associated with 
business software and is typically thought of as a 
low-cost way for businesses to obtain the same 
benefits of commercially licensed, internally 
operated software without the associated complexity 
and high initial cost. Consumer-oriented web-native 
software is generally known as Web 2.0 and not as 
SaaS. Many types of software are well suited to the 
SaaS model, where customers may have little 
interest or capability in software deployment, but do 
have substantial computing needs. Application areas 
such as Customer relationship management (CRM), 
video conferencing, human resources, IT service 
management, accounting, IT security, web analytics, 
web content management and e-mail are some of the 
initial markets showing SaaS success. The 
distinction between SaaS and earlier applications 
delivered over the Internet is that SaaS solutions 
were developed specifically to leverage web 
technologies such as the browser, thereby making 
them web-native. The data design and architecture 
of SaaS applications are specifically built with a 
'multi-tenant' backend, thus enabling multiple 
customers or users to access a shared data model. 
This further differentiates SaaS from client/server or 
'ASP' (Application Service Provider) solutions in 
that SaaS providers are leveraging enormous 
economies of scale in the deployment, management, 
support and through the Software Development 
Lifecycle. 

 
 

2.1 Key Charac teristics  
The key characteristics of SaaS software, according 
to IDC, include:[3] 
 network-based access to, and management of, 
commercially available software  
 activities that are managed from central 
locations rather than at each customer's site, 
enabling customers to access applications 
remotely via the Web  
 application delivery that typically is closer to a 
one-to-many model (single instance, multi-tenant 
architecture) than to a one-to-one model, 
including architecture, pricing, partnering, and 
management characteristics  

 centralized feature updating, which obviates 
the need for downloadable patches and upgrades.  
 SaaS is often used in a larger network of 
communicating software - either as part of a 
mashup or as a plugin to a platform as a service. 
Service oriented architecture is naturally more 
complex than traditional models of software 
deployment.  
SaaS applications are generally priced on a per-

user basis, sometimes with a relatively small 
minimum number of users and often with additional 
fees for extra bandwidth and storage. SaaS revenue 
streams to the vendor are therefore lower initially 
than traditional software license fees, but are also 
recurring, and therefore viewed as more predictable, 
much like maintenance fees for licensed software. 

 
 

2.2 Implementation 
According to Microsoft, SaaS architectures 
generally can be classified as belonging to one of 
four "maturity levels," whose key attributes are 
configurability, multi-tenant efficiency, and 
scalability.[4] Each level is distinguished from the 
previous one by the addition of one of those 
attributes: 

Level 1 - Ad-Hoc/Custom: At the first level of 
maturity, each customer has its own customized 
version of the hosted application and runs its own 
instance of the application on the host's servers. 
Migrating a traditional non-networked or client-
server application to this level of SaaS typically 
requires the least development effort and reduces 
operating costs by consolidating server hardware 
and administration.  

Level 2 - Configurable: The second maturity 
level provides greater program flexibility through 
configurable metadata, so that many customers can 
use separate instances of the same application code. 
This allows the vendor to meet the different needs 
of each customer through detailed configuration 
options, while simplifying maintenance and 
updating of a common code base.  

Level 3 - Configurable, Multi-Tenant-Efficient: 
The third maturity level adds multi-tenancy to the 
second level, so that a single program instance 
serves all customers. This approach enables more 
efficient use of server resources without any 
apparent difference to the end user, but ultimately is 
limited in its scalability.  

Level 4 - Scalable, Configurable, Multi-Tenant-
Efficient: At the fourth and final SaaS maturity level, 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 3 Issue 1, Volume 6, January 2009



scalability is added through a multitier architecture 
supporting a load-balanced farm of identical 
application instances, running on a variable number 
of servers. The system's capacity can be increased or 
decreased to match demand by adding or removing 
servers, without the need for any further alteration 
of application software architecture.  

Virtualization also may be used in SaaS 
architectures, either in addition to multi-tenancy, or 
in place of it.[5] One of the principal benefits of 
virtualization is that it can increase the system's 
capacity without additional programming. On the 
other hand, a considerable amount of programming 
may be required to construct a more efficient, multi-
tenant application. Combining multi-tenancy and 
virtualization provides still greater flexibility to tune 
the system for optimal performance.[6] In addition 
to full operating system-level virtualization, other 
virtualization techniques applied to SaaS include 
application virtualization and virtual appliances. 

Various types of software components and 
frameworks may be employed in the development 
of SaaS applications. These tools can reduce the 
time to market and cost of converting a traditional 
on-premise software product or building and 
deploying a new SaaS solution. Examples include 
components for subscription management, grid 
computing software, web application frameworks, 
and complete SaaS platform products.[7] 

 
 

2.3 SaaS and SOA 
Much like any other software, Software as a Service 
can also take advantage of Service Oriented 
Architecture to enable software applications to 
communicate with each other. Each software service 
can act as a Service provider, exposing its 
functionality to other applications via public brokers, 
and can also act as a Service requester, 
incorporating data and functionality from other 
services. 

The traditional rationale for outsourcing of IT 
systems is that by applying economies of scale to 
the operation of applications, a service provider can 
offer better, cheaper, more reliable applications than 
companies can themselves. The use of SaaS-based 
applications has grown dramatically, as reported by 
many of the analyst firms that cover the sector. But 
it’s only in recent years that SaaS has truly 
flourished. Several important changes to the way we 
work have made this rapid acceptance possible. 

Everyone has a computer: Most information 
workers have access to a computer and are familiar 
with conventions from mouse usage to web 
interfaces. As a result, the learning curve for new, 
external applications is lower and less hand-holding 
by internal IT is needed.  

Computing itself is a commodity: In the past, 
corporate mainframes were jealously guarded as 
strategic advantages. More recently, the applications 
were viewed as strategic. Today, people know it’s 
the business processes and the data itself—customer 
records, workflows, and pricing information—that 
matters. Computing and application licenses are cost 
centers, and as such, they’re suitable for cost 
reduction and outsourcing. The adoption of SaaS 
could also drive Internet-scale to become a 
commodity.[8]  

Insourcing IT systems requires expensive 
overhead including salaries, health care, liability and 
physical building space.  

Applications are standardized: With some 
notable, industry-specific exceptions, most people 
spend most of their time using standardized 
applications. An expense reporting page, an 
applicant screening tool, a spreadsheet, or an e-mail 
system are all sufficiently ubiquitous and well 
understood that most users can switch from one 
system to another easily. This is evident from the 
number of web-based calendaring, spreadsheet, and 
e-mail systems that have emerged in recent years.  

Parametric applications are usable: In older 
applications, the only way to change a workflow 
was to modify the code. But in more recent 
applications, particularly web-based ones, 
significantly new applications can be created from 
parameters and macros. This allows organizations to 
create many different kinds of business logic atop a 
common application platform. Many SaaS providers 
allow a wide range of customization within a basic 
set of functions.  

A specialized software provider can target global 
markets: A company that made software for human 
resource management at boutique hotels might once 
have had a hard time finding enough of a market to 
sell its applications. But a hosted application can 
instantly reach the entire market, making 
specialization within a vertical not only possible, but 
preferable. This in turn means that SaaS providers 
can often deliver products that meet their markets’ 
needs more closely than traditional “shrinkwrap” 
vendors could.  

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 4 Issue 1, Volume 6, January 2009



Web systems are reliable enough: Despite 
sporadic outages and slow-downs, most people are 
willing to use the public Internet, the Hypertext 
Transfer Protocol and the TCP/IP stack to deliver 
business functions to end users.  

Security is sufficiently well trusted and 
transparent: With the broad adoption of SSL, 
organizations have a way of reaching their 
applications without the complexity and burden of 
end-user configurations or VPNs.  

Availability of enablement technology: 
According to IDC, organizations developing 
enablement technology that allow other vendors to 
quickly build SaaS applications will be important in 
driving adoption. Because of SaaS' relative infancy, 
many companies have either built enablement tools 
or platforms or are in the process of engineering 
enablement tools or platforms. A Saugatuck study 
shows that the industry will most likely converge to 
three or four enablers that will act as SaaS 
Integration Platforms (SIPs).[9]  

Wide Area Network's bandwidth has grown 
drastically following Moore's Law (more than 100% 
increase each 24 months) and is about to reach slow 
local networks bandwidths. Added to network 
quality of service improvement this has driven 
people and companies to trustfully access remote 
locations and applications with low latencies and 
acceptable speeds.  

 
 

2.4 Limiting Factors 
Widespread implementation of SaaS requires that 
the services be well defined. That can achieve an 
economy of scale and the capacity to balance supply 
and demand. This requires areas of IT that are 
ubiquitous and commodity-like. SaaS is therefore 
not suitable for innovative or highly specialized 
niche systems, though SaaS may be used to provide 
one or more components in such systems. 

As with manufacturing, a lack of substitutability 
and second sourcing options with any commodity 
creates a strategic weakness for any customer in 
terms of security, competition and pricing. Various 
forms of this weakness, such as 'vendor lock-in', are 
often cited as a barrier to adoption of SaaS as the 
current industry lacks portability and 
interoperability between vendors. This means that to 
change from one vendor to another will take a 
considerable amount of effort and time. This 
situation is resolvable by the introduction of open 

sourced standards and the development of markets 
based upon such standards.[10] 

Whilst the severe lack of substitutability is 
unresolved, many vendors counter the concerns over 
potential security and operational risk with the 
argument that the professionals operating SaaS 
applications may have much better security and 
redundancy tools available to them. 

Furthermore the concern that SaaS applications 
pose some difficulty for businesses that need 
extensive customization is countered with the claim 
that many vendors have made progress with both 
customization and publication of their programming 
interfaces. It should be noted that customization will 
reduce substitutability and given that SaaS covers 
commodity-like activities, the strategic benefit of 
customization is highly dubious. 

In addition to this, the availability of open source 
applications, inexpensive hardware and low cost 
bandwidth combine to offer compelling economic 
reasons for businesses to operate their own software 
applications, particularly as open source solutions 
have become higher quality and easier to install. 

Users of SaaS must be able to trust the provider 
of the service, particularly if the application stores 
the user's data. The provider needs to be trusted with 
both the intention and the ability to safeguard this 
information. 
 
 
3 E-service Delivery Pattern for Data 
Mining 
Data mining is emerging as a suitable and 
commercially viable application for delivery as an 
e-service. This is evident from the growing number 
of commercial data mining application service 
providers (ASPs). In this section we review the 
operation of commercial data mining ASPs. 

In the commercial domain, the modus operandi 
for data mining ASPs is illustrated in figure 1. A 
client organization has a single service provider who 
meets all the data mining needs of a client. The 
client is well aware of the capabilities of the service 
provider and there are predefined agreements 
regarding quality of service, cost and protocols for 
requesting services. The service provider hosts one 
or more data mining systems that support a specified 
number of mining algorithms. The interaction 
protocol for this model is as follows: 

1. Client requests a service using a well-defined 
instruction set from the service provider. 

2. The service provider maps the request to the 
functionality of the different data mining 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 5 Issue 1, Volume 6, January 2009



systems that are hosted to determine the most 
appropriate one. 

3. The “suitable” data mining system processes 
the task and the results are given to the client 
in a previously arranged format. The access 
to the results is typically done through a 
secure web interface or results can be sent as 
files using email or FTP. 
 

 
 
Fig.1 Operation of Commercial Data Mining 
Service Providers 
 

The developments in e-services indicate the 
emergence of platforms to support virtual 
communities of e-services on the Internet. We have 
reviewed the operation of data mining ASPs from 
which it can be seen that the predominant approach 
adopted by them is not truly representative of the 
dynamic and ad-hoc vision of discovery and 
interaction between organisations supported by 
environments and standards such as E-Speak™ and 
UDDI. In order to illustrate the operation of a virtual 
community of data mining e-services, we present a 
model shown in figure 2. This model is 
characterized by clients being able to request data 
mining services from several service providers who 
host one or more data mining systems. 

This approach provides a higher level of 
flexibility for the client and represents the 
establishment of an open, virtual community of data 
mining e-services. The model is consistent with the 

operation of e-services environments such as E-
Speak™, which provides support infrastructure for 
discovery and interactions between clients and data 
mining service providers. The interaction protocol 
for this model is as follows: 

 
 
Fig. 2 E-service Delivery Pattern 
 
i. The client requests a service by providing a 

task specification. 
ii. The Virtual Community Manager (VCM) 

component broadcasts the client’s requests to the 
data mining service providers that are registered 
with it. The VCM maintains information about each 
data mining service provider such as the name, 
address, contact information, data mining systems 
hosted, algorithms, architectures and functionality 
supported by those systems and the available 
computational resources. 

iii. The data mining service providers evaluate 
the requested task against the capabilities and 
functionality of the data mining systems that they 
host. 

iv. If they can meet the needs of the requested 
task, the data mining service providers respond by 
presenting an estimate of the cost, possible time 
frame for completion of the task and liabilities for 
not meeting the target response time. This 
information is presented to the community manager 
in a specific, structured format. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 6 Issue 1, Volume 6, January 2009



v. The VCM can present the responses it 
receives along with the information that it already 
maintains about the respective service providers to 
the client. Alternatively, in more sophisticated 
environments the VCM can perform matching of 
client preferences with the capabilities of the service 
providers, rank the service providers on that basis 
and present this to the client. There is also scope for 
automated negotiation to be incorporated into this 
stage of the interaction protocol. 

vi. The client decides which service provider it 
deems most appropriate and informs the VCM and 
the chosen service provider. 

vii. The service provider gives the client a legal 
document/contract, which reflects the commitment 
to maintain confidentiality of the data that is mined 
and the consequent knowledge that is produced. 

viii. The client is then required to provide a 
security deposit in the form of a credit card number 
to the VCM. The actual payment is made on 
completion of the task and delivery of results to the 
client. 

ix. The client and the data mining service 
provider exchange information regarding the 
transfer of data, passwords to access systems and 
the mode of transfer of results. 

x. The data mining service provider processes 
the task, provides the results to the client (in the 
agreed format and method) and informs the VCM of 
task completion. 

xi. The client acknowledges the completion of 
the task to the VCM and the payment is made to the 
service provider. 

The above model is a hypothetical illustration of 
the functioning of a virtual community of data 
mining e-services. Current research and 
development in e-services enable this model by 
catering for the requisite functionality of the 
coordinating entity in the model, namely, the VCM. 
This includes providing the infrastructure for 
registering and discovering e-services [11], [12], 
[13] ,[14],[15], specifying protocols for interaction 
(Web Services Conversation Language (WSCL) 
[16][17] and accessing services (Web Services 
Description Language (WSDL) [18]). There is also 
an emerging recognition for the need to have 
strategies to support ranking and negotiation in such 
environments [19], [20], [21], [22]. This paper does 
not intend to focus on these issues in the model, 
which are adequately addressed by current research 
and development in industry, academia and 
standards organizations [23]. This paper addresses 
the questions that are specific to the operation of 
data mining e-services in environments 
characterized by the model presented in figure 2. 

The research presented in this paper focuses on the 
interactions and infrastructure needs of data mining 
e-services. Interactions refer to methods by which 
the entities in the model, namely the clients, the data 
mining e-service providers and the VCM 
communicate with one another to perform a data 
mining transaction. Infrastructure refers to the data 
mining systems that are hosted by the service 
provider and operate in an environment that is 
characterised by the provision of e-services on the 
Internet. We first review research in the area of 
supporting interactions in virtual communities of e-
services including work in the data mining domain. 
This is followed by a discussion on the 
infrastructure issues that arise in the context of data 
mining systems operating efficiently in such an 
environment. We survey related work in distributed 
data mining in order to analyse the strengths and 
limitations of existing models to meet the specific 
needs of a virtual community of data mining e-
services. 

E-services technologies discussed above provide 
the underlying framework to enable the vision of e-
services on the Internet. That notwithstanding, the 
interaction model and data mining infrastructure that 
can be tailored to meet the constraints and needs of 
a virtual community are fundamental pre-requisites 
to enable the operation and deployment of data 
mining e-services in such an environment. Our 
discussion focuses on mechanisms to support 
interactions that exist in various e-service 
frameworks and standards. We also evaluate data 
mining query and specification languages to 
establish their applicability and suitability to meet 
the specific interaction requirements of a virtual 
community of data mining e-services. 

 
 

4 Interaction Requirements of E-
Service Delivery pattern for Data 
Mining 
E-services standards and frameworks facilitate 
interactions by providing mechanisms for specifying 
the protocol in terms of the messages and the order 
in which they need to be exchanged. These 
messages serve the following requirements: 
 Specify the information content that needs 

to be exchanged between the providers and 
consumers of an e-service. 

 Capture the requirements of clients and the 
capabilities of service providers. 

 Specify how clients and service providers 
mutually interact with each other. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 7 Issue 1, Volume 6, January 2009



 Form the basis for discovering, matching, 
ranking and negotiation in e-services. 

There are primarily two areas of study that have 
the potential to facilitate exchange of information 
between clients and service providers in a virtual 
community of data mining e-services, namely, the e-
services environments themselves and data mining 
languages. In this section we review how e-services 
standards and frameworks facilitate interaction 
between clients and service providers and examine 
data mining languages to evaluate their applicability 
for supporting interactions. 
 
 
4.1 Supports for Interactions in E-Services 
Environments 
Models for supporting interactions vary among the 
different e-services standards and frameworks. 
However, the general principle is that they all 
provide mechanisms for e-services to specify their 
respective interaction protocols. In this section we 
review interaction support provided by the 
following e-services standards: 
 Conversation Description Language (CDL) 
 Web Services Conversation Language 

(WSCL)  
 Universal Description, Discovery and 

Integration (UDDI) 
 eb-XML (e-business XML) 
 Web Services Description Language 

(WSDL)  
Conversation Description Language (CDL) and 

its improvement Web Services Conversation 
Language (WSCL) were developed at Hewlett 
Packard to provide a mechanism to model the 
interactions a service supports (e.g. that a client 
must log in to the system prior to requesting a 
catalogue of services). The WSCL specification is 
an XML schema and the full specification is 
available at http://xml.coverpages.org/wscl.html. It 
contains the following three components: 
 Document Type Descriptions, which specify 

the type of XML documents that the service 
can accept and transmit. 

 Interactions, which specify the states of the 
conversation as a series of document 
exchanges between the participants. The 
four types of interactions supported in CDL 
include: Send, Receive, ReceiveSend and 
SendReceive. 

 Transitions, which specify the ordering of 
the exchanges in terms of source 
interactions, destination interactions and the 
document types that triggers the transition. 

WSCL enables specification of a set of rich 
protocols necessary to support complex interactions. 
It requires an e-service to provide a set of XML 
documents that represent messages that have to be 
exchanged and the order in which these messages 
must be exchanged. This exchange is termed a 
conversation and the content of the messages 
constitutes the information that is exchanged. 

Interactions in eb-XML are supported by the 
Collaboration Agreement Protocol [24] which is a 
mechanism for describing a mutually agreed upon 
business arrangement and modelling of business 
processes. The specification for the interaction is 
derived by collecting the following information 
from each participant: 
 Business Profiles that describe the clients 

and service providers. 
 Business Processes that describe the roles, 

responsibilities and relationships with 
collaborators. 

 Business Service Interfaces that specify the 
software interfaces to the applications that 
are hosted. 

 Business Messages that have to be 
exchanged between the clients and service 
providers. 

The eb-XML technical architecture provides the 
infrastructure to support the specification, collection 
and maintenance of this information in a component 
called the Registry. 

In UDDI, the interactions are specified using the 
tModel or Technical Model component of the UDDI 
schema. The tModel element in the UDDI schema 
contains meta-data about the technical specification 
of the e-service. Organizations registering their 
services with the UDDI registry are required to 
provide information on how to interact with the 
service in a technical specification. The tModel has 
a reference to the technical specification (which can 
be a WSDL document or a WSCL document) 
information specified in the tModel element 
includes: a unique key, name, an optional 
description and a URL for the technical 
specification. 

Web Services Description Language (WSDL) 
does not have built in support for conversations, but 
supports interactions because it is an XML language 
for describing the interfaces of e-services. A WSDL 
document describes the operations provided by an e-
service as XML document exchanges. The messages 
element in a WSDL document specifies the data that 
needs to be exchanged between the clients and the 
providers of the e-service. 

The above discussion on support for interactions 
between clients and service providers indicates that 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 8 Issue 1, Volume 6, January 2009



interactions are a vital aspect of e-services and that 
the major e-services frameworks and standards 
provide mechanisms for services to describe how 
clients should interact with and access the service. 
XML messages are the lingua franca for exchanging 
information between clients and service providers. 
The service providers are required to provide the e-
services environment with detailed specifications of 
the structure and content of the messages and the 
order in which they are exchanged. The concept of 
service specific messages with their information 
content tailored for the service in question is 
fostered by e-services environments, be it in terms 
of a vocabulary or a tModel specification or a 
Collaboration Agreement Protocol. This need for 
specifying the information content that has to be 
exchanged between clients and service providers, 
and the necessary protocol to support coherent 
interaction in e-services is leading to active research 
in ontologies and markup languages for vertical 
domains. The current focus of interaction is on 
discovery and access since e-services environments 
primarily provide support for these processes. 
However, developments in areas such as negotiation 
and ranking necessitate support for richer and more 
complex interactions. In the context of data mining 
e-services, this leads to the question of research in 
specifying the messages necessary to support 
interactions between consumers and providers of 
data mining e-services. We now present a survey of 
languages for data mining and assess their 
applicability to support interactions in data mining 
e-services. 

 
 

5 Conclusion 
In this paper we have discussed e-services standards 
and frameworks and the current operation of data 
mining service providers. The current modus 
operandi of Internet-based data mining service 
providers does not represent a virtual community of 
services. It does not provide clients with benefits of 
a wide choice of data mining e-services and does 
not cater for selection of the most appropriate and 
cost effective service provider. However, the 
developments in the e-services domain present an 
opportunity for realisation of a virtual community of 
data mining e-services by providing the architectural 
framework necessary for such a community. We 
have presented a model for a virtual community of 
e-services that is consistent with the operation of e-
services environments. The operation of a virtual 
community of data mining e-services requires 
support for interactions between clients and service 
providers and infrastructure specific to e-services 

environments. Hence this will be explored further in 
this paper. 
 
 
References: 
[1] K. Bennett , P. Layzell , D. Budgen , P. 

Brereton , L. Macaulay , M. Munro, Service-
based software: the future for flexible software, 
Proceedings of the Seventh Asia-Pacific 
Software Engineering Conference, p.214, 
December 05-08, 2000 

[2] Strategic Backgrounder: Software as a Service. 
www.siia.net/estore/ssb-01.pdf  

[3] a b Traudt, Erin; Amy Konary, June 2005, 
Software as a Service Taxonomy and Research 
Guide.  

[4] Frederick Chong and Gianpaolo Carraro, 
Architecture strategies for catching the long tail, 
April 2006, http:// msdn2.microsoft.com/en-
us/library/aa479069.aspx  

[5]  Wainewright, Phil, October 2007, 
"Workstream prefers virtualization to multi-
tenancy.  

[6] Chong, Fred, October 2006, Multi-tenancy and 
Virtualization  

[7]  Schuller, Sinclair, March 2007, Repealing the 
SaaS Tax.  

[8]  http://www.saasblogs.com/2006/09/26/scale-
as-a-commodity-2/ SaaSBlogs: Scale as a 
Commodity  

[9]  SaaS 2.0: Saugatuck Study Shows Rapid SaaS 
Evolution to Business Platforms, April 2006.  

[10]  Breaking down the saga of vendor lock-in, 
http://wolfpaas.blogspot.com/2008/10/vendor-
lockin-are-you-kidding.html 

[11]  UDDI Version 2.0 Data Structure Reference. 
Available Online: 
http://www.uddi.org/DataStructure-V2.00-
Open-2001-0608.pdf 

[12]  Kobielus, J, G., (2001), “BizTalk: 
Implementing Business-to-Business E-
Commerce”, Prentice-Hall PTR, New Jersey, 
USA. 

[13] Graupner, S., Kim, W., Lenkov, D., Sahai, A., 
(2001), “E-Speak-an Enabling Infrastructure 
for Web-based E-Services”, International 
Conference on Advances in Infrastructure, 
Electronic Business, Science, and Education on 
the Internet (SSGRR-2000), July 31-Aug 06, 
L’Aqila, Italy, ISBN:88-85280-52-8. 
Proceedings Available Online: 
http://www.ssgrr.it/en/ssgrr2000/proceedings.ht
m 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 9 Issue 1, Volume 6, January 2009

http://www.siia.net/estore/ssb-01.pdf�
http://www.uddi.org/DataStructure-V2.00-Open-2001-0608.pdf�
http://www.uddi.org/DataStructure-V2.00-Open-2001-0608.pdf�
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm�
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm�


[14] eb-XML Technical Architecture Specification 
V1.0.4 Available Online: 
http://www.ebxml.org/specs/ebTA.pdf 

[15] eb-XML Business Process Specification 
Schema V1.0.1 Available Online: 
http://www.ebxml.org/specs/ebBPSS.pdf 

[16] Kuno, H., Lemon, M., Karp, A., and Beringer, 
D., (2001), “Conversations + Interfaces = 
BusinessLogic”, Hewlett-Packard Labs 
Technical Report HPL-2001-127, Available 
Online: 
http://www.hpl.hp.com/techreports/2001/HPL-
2001-127.html 

[17] Kuno, H., Lemon, M., and Beringer, D., (2001), 
“Using CDL in a UDDI Registry 1.0”, UDDI 
Working Draft Best Practices Document, 
Hewlett-Packard Labs Technical Report HPL-
2001-72, Available Online: 
http://www.hpl.hp.com/techreports/2001/HPL-
2001-72.html 

[18] Web Services Description Language (WSDL) 
Specification. Available Online: 
http://msdn.microsoft.com/xml/general/wsdl.as
p 

[19]  Bartolini, C., and Priest, C., (2001), “A 
Framework for Automated Negotiation”, 
Hewlett-Packard Labs Technical Report HPL-
2001-96. Available Online: 
http://www.hpl.hp.com/techreports/2001/HPL-
2001-90.html 

[20] Priest, C., Byde, A., Bartolini, C., Piccinelli, G., 
(2001), “Towards Agent-based Service 
Composition through Negotiation in Multiple 
Auctions”, Hewlett-Packard Labs Technical 
Report HPL-2001-96, Available Online: 
http://www.hpl.hp.com/techreports/2001/HPL-
2001-90.html 

[21] Tewari, G., and Maes, P., (2000), “Design and 
Implementation of an Agent-based 
Intermediary Infrastructure for Electronic 
Markets”, Proceedings of the Second ACM 
Conference on Electronic Commerce 2000, Oct 
17-20, Minneapolis, USA, pp. 86-94. 

[22] Tewari, G., and Maes, P., (2001), “A 
Generalized Platform for the Specification, 
Valuation, and Brokering of Heterogeneous 
Resources in Electronic Markets”, E-
Commerce Agents, (eds) J. Liu and Y. Ye, 
Lecture Notes in Artificial Intelligence (LNAI) 
2033, Springer Verlag, pp. 7-24. 

[23] Casati, F., and Shan, M., (2001), “Models and 
Languages for Describing and Discovering E-
Services”, ACM SIGMOD Record, Vol. 30, 
Issue 2, June. Presentation Slides of the 
Tutorial Delivered at the ACM SIGMOD 

Conference, Santa Barbara, USA, May are 
Available Online: 
http://www.hpl.hp.com/personal/Fabio_Casati/
publications.html#tutorials 

[24] eb-XML Technical Architecture Specification 
V1.0.4 Available Online: 
http://www.ebxml.org/specs/ebTA.pdf 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Meiqun Liu, Kun Gao

ISSN: 1790-0832 10 Issue 1, Volume 6, January 2009

http://www.ebxml.org/specs/ebBPSS.pdf�
http://www.hpl.hp.com/techreports/2001/HPL-2001-72.html�
http://www.hpl.hp.com/techreports/2001/HPL-2001-72.html�
http://msdn.microsoft.com/xml/general/wsdl.asp�
http://msdn.microsoft.com/xml/general/wsdl.asp�
http://www.hpl.hp.com/techreports/2001/HPL-2001-90.html�
http://www.hpl.hp.com/techreports/2001/HPL-2001-90.html�
http://www.hpl.hp.com/techreports/2001/HPL-2001-90.html�
http://www.hpl.hp.com/techreports/2001/HPL-2001-90.html�
http://www.hpl.hp.com/personal/Fabio_Casati/publications.html#tutorials�
http://www.hpl.hp.com/personal/Fabio_Casati/publications.html#tutorials�



