
Improving Cache Global Consistency and Hit Ratio in
Dependency Objects with Semantic Spatial Locality Correlations

CHING-SHUN HSIEH1 JUI-WEN HUNG2

1Department Commercial Technology and Management
 2Department of Information and Management

12Ling Tung University
No.1, Lingdong Rd., Nantun District, Taichung City 408, Taiwan (R.O.C.)

 TAIWAN (R.O.C.)
1sjsoon@mail.ltu.edu.tw
2harng@mail.ltu.edu.tw

Abstract: - On requesting cache data in disk, the distribution of spatial locality is critical to access performance.
Unfortunately, spatial locality properties of cached data is largely ignored, and only temporal locality is
considered. Besides, an individual disk object might induce different dependency relations in different
applications and possibly partial dependency to several distributed original data source (ODS). This interesting
property might be neglected. Normally, these situations can be improved by effectiveness of storage caching,
prefetching, and prediction of the user navigation behavior, data layout of storage systems and global
consistency storage replicas. In this paper, we consider the problem and solve it using data mining techniques
and a service routable consistency framework (Global Distributed Hierarchical Cache Consistent Model;
GDHCCM). The model based on a scalable routing service algorithm that dynamic reconfiguration forwarding
data path within hierarchical enterprise region portals. A novel hypergraph scheme was also proposed to
represent the complex object relations among the applications. Instead of a local measure that depends only on
common objects among patterns, we propose a global measure process based on the semantic properties of these
patterns in the overall data set. The experiments show the effectiveness of the proposed framework. Apply
scenario can reduce the global patch service cost; improve performances and minimum the turnaround time in
access the scope of computer games or virtual environments (VE).

Key-Words: - cache, spatial locality, global consistency, hypergraph, prefetching, service routing,

virtual environments

1 Introduction
With the rapid growth of the CPU computation
abilities via VLSI development rapid and increasing
demand to develop advanced applications. It is
apparent that the disk bottleneck effect is worsening
in modern computer systems, while the role of the
hard disk as the dominant storage device will not
change in the foreseeable future, and the amount of
disk data requested by applications continues to
increase. Unfortunately, spatial locality properties of
cached data is largely ignored, and only temporal
locality is considered. Besides, an individual object
might induce different dependency relations in
different applications and partially dependency to
several distributed original data source. Several
studies are currently focusing on the design and
concept of using caching, middleware and database
replication technologies [23,24,25] to meet the
requirements. However, existing consistency
architectures do not meet real-time and globally
consistence within hierarchical enterprise region.

This paper focuses on using data mining and a
service routable consistency framework (GDHCCM)
for improving cache replica global consistency and
hit ratio in dependency objects with semantic spatial
locality correlations.

1.1 Background
The hard drive is the most commonly used as
secondary storage device supporting file accesses
and virtual memory paging. While its capacity
growth pleasantly matches the rapidly increasing
data storage demand, its electromechanical nature
causes its performance improvements to lag
painfully far behind processor speed progress. On
the other side, faced with the ever-growing
importance and immense popularity of the 3D
visualization, especially in the scope of computer
games or virtual environments (VE), users expect
intelligent processing (such as processors that
recognize their true information needs) and a broad

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 647 Issue 4, Volume 6, April 2009

and accurate coverage of all realms of their lives
(such as information on “real-world” topics or the
possibility to enhance the fidelity of the scenes).
Unfortunately, because storage systems are much
slower than processors, these applications often end
up wasting a substantial fraction of their execution
times waiting for storage requests to complete
[21,22]. We call this problem as
demand-supply-gap problem. Rather than fetching
data from disk on demand, predictive prefetching
involves fetching data from disk in anticipation of
an upcoming attempt to access data. The potential
benefit of an predictive prefetching is that, if the
anticipated attempt occurs, then the prefetching will
have hidden some or all of the time it takes to fetch
that data from disk, so the accessing application will
waste less time stalled on read/write operations. In
other words, the management for swapping objects
is dictated by the placement of data [21,22].
Judicious placement of data on storage media is
therefore critical, and can significantly affect the
overall performance of the storage system.

However, it is not an easy task to exploit the
intelligence in storage systems. One primary reason
is the system latency between VE applications and
storage systems. In such a case, VE do not consider
the problem of access times of objects in the storage
systems. Recently several researches
[11,12,13,5,6,10] reveal that they always simply
concerned about how to display the object in the
next frame during the very near future (i.e.,
temporal locality; here, we call it as transient
locality). Furthermore, previous works also fail to
take into account the relationships between objects.
As a result, the VE can only manage data at the
rendering and other related levels without knowing
any semantic information such as semantic
correlations between data. Besides, an individual
object might induce different dependency relations
in different applications and partially dependency to
several distributed original data source. This
motivates a more powerful analysis tool to discover
more complex patterns, especially semantic
patterns, in storage systems. Therefore, the aim of
our work is to decrease this latency through
intelligent organization of the access data, enabling
the clients to perform predictive fetching, and
improving cache data real-time correctness and hit
ratio in dependency objects.

1.2 Contributions of the paper
In this paper, we consider the problem and solve
this using data mining techniques [1]. Two main
observations can support the adoption of data
mining schemes. First, at a broad level, data mining

is the process by which one can extracts accurate
and previously unknown information from large
volumes of data. This information should be in a
form that can be understood, acted on, and used for
improving decision processes in scientific
applications, especially in 3D visualization
applications [13,12,2,5,6,10]. Second, it is clearly
when users traverse in a VE, some potential
semantic characteristics will emerge on their
traversal paths. If we collect the users’ traversal
paths, mine and extract some kind of information of
them, such semantic information can help to
improve the performance of the interactive VE. For
example, we can reconstruct the placement order of
the objects into a storage system according to the
common section of users’ path. In other word,
exploring these correlations is very useful for
improving the effectiveness of storage caching,
prefetching, data layout, and disk scheduling.

Compared with the previous schemes, our
approach has the following different characteristics.
(1).Scheme_based: traditional schemes always
utilize the tree_based data structure with locality
(either parent-child locality (i.e., temporal locality)
or spatial locality); (2).Complexity_based: previous
schemes manage these data structures to fit the
memory constraints without considering the real
demand for object; (3).Semantic_based: the
semantic property seems very weak compared with
ours; (4).Knowledge_based: the knowledge of
previous schemes only hold for very near future. If
the time went by longer, the prediction may be
wrong. Besides, we focus on the process of
knowledge construction especially. Knowledge
construction is a process that reflects not the end
result a user would want, or what the system should
produce, but rather the operations a user will
perform using the tools of a knowledge construction
environment. This is an important distinction
because it places the user first in the knowledge
construction process, but it also highlights the
semantic gap between desired outcomes and the
available tools. Existing cache-related
environments focus on identifying what kind of
information the system needs to discover
successfully. However, it is very important to take
the design initiative of enabling the users’ expertise
within a knowledge construction process, rather
than attempting to supplant it.

This paper also presents a service routable
consistency framework (GDHCCM) that is capable
of supporting ripple propagate cache updating
copies that existed in distributed heterogeneity of
storage. Besides, an individual object might induce
different dependency relations in different

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 648 Issue 4, Volume 6, April 2009

applications and partially dependency to several
distributed original patch data source (OPDS). By
using a new scalable web service routing policies
that can dynamic reconfiguration distributed
forwarding cache patch data path in hierarchical
enterprises storage and improving cache data
real-time correctness and hit ratio.

A novel approach is used to discover the
promising patterns, cluster similar patterns in a
hypergraph form and layout these clusters into the
storage systems for efficient predicting runtime
access patterns. First, the VSPM algorithm [16] was
used to discover semantic patterns in VE. Besides,
two clustering methods were proposed to cluster the
similar patterns for reducing the access time. One is
based on the idea of co-occurrence of transaction
data have developed. They are usually measured by
Jaccard coefficient SIM(T1, T2)= |T1∩T2| / |T1∪
T2| [8]. The other clustering scheme is based on the
hypergraph-based model. Our purpose is to propose
a semantic clustering learning technique, which
collects the frequent patterns and uses hypergraph
to represent different but complex relationship
among the objects, then obtains the semantic
clusters by a semantic-based hypergraph
partitioning. In this model, the vertex set
corresponds to the distinct objects in the VE and the
hypergedges correspond to the frequent sequential
patterns. Both of them will make similar objects
much closer to be accessed in one time. These result
in less access times and much better performance.
We also compare the distinctions between them.
Moreover, we also have evaluated the benefits of
object correlation-directed prefetching and disk
data layout using the real system workloads.

On the basis of the ubiquitous service routable
framework, several models were built. The OPDS
dependency spatial cache usage mining rate is a
function of dependency replica operation response
time and turnaround time. The updating route
policy scheduling rate is a function of usage mining
and reservation priority. The production rate of
activity represented as a time variable. Different
value added update service schema was also
analyzed. For example, active updating OPDS
pushed by real time, periodic, reservation, and
queuing with priority/degradation/preemption etc.
Apply scenario can reduce the global cache patch
service cost of transnational enterprise storage
cache and minimum the turnaround time of cache
patch delay.

1.3 Outline of paper

The remainder of the paper is organized as follows.
Related works are given in Section 2. In Section 3, we
describe our hypergraph model and problem
formulation. The suggested clustering mechanism is
explained with illustrative examples shown in Section
4. In Section 5, the forwarding Enterprise Portal (EP)
agent [26-29] use pipeline mechanism automatically
conversion all kinds of dependency patch and update
special locality caches with OPDS dependencies. The
OPDS hierarchical ripple propagation web service
[30-32] routing algorithm discussion is given in Sect.
6. Section 7 presents our experiment results. Finally,
we summarize our current results with suggestions for
future research in Section 8.

2 Related Works
In this section, we will briefly describe related works
about the traditional prefetching and caching
mechanisms applied to virtual environments and
hypergraph clustering schemes, respectively.

2.1 Prefetching and caching methods in V.E.
Since the navigation in virtual environments consists
of many different detailed objects, e.g., of CAD data
that cannot all be stored in main memory but only on
hard disk. Many techniques were proposed for
rendering complex models used today, as [6] cited,
the previous researches fall into three categories:
First, data-related: it is concerned with the
organization of objects, such as object partitioning,
connectivity and block size. Like the level-of-detail
(LOD) management [20], hierarchical view-frustum
and occlusion culling [12], working-set management
(geometry caching) [20] are these examples; Second,
traversal-related: this focus on reduction of access
times for objects. Traditional cache-efficient layouts
[10,11] (also called cache-aware), based on the
knowledge of cache parameters, utilize the different
localities to reduce the number of cache misses and
the size of the working set; Finally, another variation
is cache-oblivious algorithms [5]. Instead, they do not
require any knowledge of cache parameters or block
sizes of the memory hierarchy involved in the
computation.

However, large polygons of such highly
complex scenes require a lot of hard disk space so
that the additional data could exceed the available
capacities [3,10]. As Chim et. Al. [19] shows that
LRU-based and related schemes do not appropriate in
a context where objects accessed by a client might
change over time. However, the semantics of data
access is more important in defining the placement

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 649 Issue 4, Volume 6, April 2009

policy [3,15,17,18,9]. To meet these requirements, an
appropriate data structure and an efficient technique
should be developed with the constraints of memory
consumption.

2.2 Hypergraph_based pattern clustering

methods
The fundamental clustering problem is to partition a
given data set into groups (clusters), such that data
points in a cluster are more similar to each other (i.e.,
intra-similar property) than points in different
clusters (i.e., inter-similar property) [2,4,7].These
discovered clusters are used to explain the
characteristics of the data distribution [2,4,,7].
However, these schemes fail to produce meaningful
clusters, if the number of objects is large or the
dimensionalities of the VE (i.e., the number of
different features) are diverse and relatively large.

2.3 Cache mutual inconsistent with

distributed OPDS
Today’s global cache consistent solution have been
proposed using data integration middleware [24]
techniques like xml-based integration middleware,
xml-based data integration platform and
xml-powered integration middleware. All these data
integration system that enables enterprises to rapidly
build web services and applications that can query
multiple, disparate data sources and provides a
unified result. If cache with partial dependency
relationships with specific OPDS object keeps mutual
consistency, the following problems will be
happened. 1. The Bullwhip Effect will be occurred in
dependency cache replicas flow chain operation. 2.
Enterprise storages can’t make sure the newest
version caches. 3. Enterprise knowledge base will
occur horizontal information lacks harmony. 4. If
OPDS site can’t control its cache updating flow,
transaction and usage mining results, it will not be
able to support different priority and value added
updating services. 5. The dependent cache replicas
usage mining results can’t be sent to OPDS site to
make adaptive cache updating route policies and
value added updating services.

3 Hypergraph Model and Problem

Formulation
Before we explain our hypergraph model, one
motivation of example is show below. This can be
classified into two different conditions for the
relationships among the objects. Under the concern
of intra-similarity, every object represents some
importance. For example, the support for frequent

pattern abcd is 5, but the supports for the object a, b, c,
d are 5,6,7,8 respectively. Under the concern of
inter-similarity, shown in Figure 1, every frequent
pattern represents some importance. Besides, the
support for frequent pattern abcd is 5, but the
supports for the object abe, abcde, cd, df are 5, 4, 6, 8
respectively. From the above observations, these
patterns are intertwined with the relationships and
should be properly and efficiently managed.
Therefore, those observations also motivate us to
adopt the HG model for representing the
relationships.

In this section, given that the valuable frequent
pattern found, we employ a HG-based clustering
strategy for our hierarchical placement method. The
HG was used for representing both intra-relationships
and inter-relationships. Finally, we propose a simple
and efficient HG-based partition scheme to cluster
these partitions for data layout. There are two
problems involved in this situation. One is persistent
clustering − significant improvements are
accomplished, but are at the expense of the quality of
the final placement solution. As the operations for
clustering increase, the quality of clustering
deteriorates. Another problem is the control of
physical cluster sizes. During the placement step, the
size of clustered objects may be too large relative to
decision dimensionality, which results in the
degradation of the final placement solution quality.
Therefore, our goal of HG_based clustering is to
address these two deficiencies. First, we try to
generate high-quality clustering solution so that any
potential loss of the final placement solution quality
is minimized. Second, we take advantage of the
hierarchical nature of clustering so that the clustered
objects are maximization of intra-similarity and
minimization of inter-similarity. The notations used
in the HG_based model are as follows.

Fig. 1. Demonstration for intra-/inter-relationships among
the frequent patterns.

3.1 Notations for hypergarph partition
A hypergraph Ή =(V, N) [3,7] is defined as a set of
vertices V and a set of nets (hyper-edges) N among

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 650 Issue 4, Volume 6, April 2009

those vertices. Every net nj∈N is a subset of vertices,
i.e., nj

⊆ V. The size of a net nj is equal to the number
of vertices it has, i.e., sj =| nj |. Weight (wj) and cost
(cj) can be assigned to the vertices (vj) and edges
(nj∈N) of the HG, respectively. К = {V1, V2, …, VК}is
a К-way partition of Ή and satisfies the following
conditions: (1) each partition is a nonempty subset of
V; (2) partitions are pairwise disjoint; (3) union of К
partitions is equal to V.

In our model, we assign every object to one
vertex, and every frequent pattern is represented by
one hyper-edge (net). As shown in Figure 1,
according to how many objects involved, object a, b,
c, d, e, and f are circled together in different line form,
respectively. Since there are five different patterns,
we plot five different nets for demonstration.

Finally, we will define our problem in two
phases. Phase I: given a frequent pattern set P = {p1,
p2,…, pn}, we design a efficient formulation scheme
to bridge two different domain knowledges (i.e., P
and HG model); phase II: in order to reduce the disk
access time, we distribute P into a set of clusters, such
that minimize inter-cluster similarity and maximize
intra-cluster similarity.

4 Our Hypergraph-based Clustering

 Algorithm
First, as mentioned previously, let the object
corresponds to a vertex, and a frequent pattern also
corresponds to a hyperedge. The weight ψe of a
hyperedge e is defined as 1/|e|, which is inversely
proportional to the number of objects that are
incident to the hyperedge. Based on main concepts of
[2], we propose our semantic-based hypergraph
clustering scheme. Let two objects u and v are given,
the similarity score d (u,v) for between u and v is
defined as

∑
+

=
∈∈ evuEe

e

vmum
vud

,|))()((
),(

ψ
 (1)

Where e is a hyperedge connecting objects u and

v, ψe. is a corresponding edge weight, and m(u) and
m(v) are the some interesting measures of u and v,
respectively. As Han. et. al. [7] cited that the support
measure is not a proper measure used in a hypergraph
model. Therefore, in our experiments, shown in next
section, adopt the confidence measure. The similarity
score of two objects is directly proportional to the
total sum of edge weights connecting them and is
inversely proportional to the sum of their measures.
Suppose Nu is the set of neighboring objects to a
given object u. We define the closest object to u,

denoted c(u), as the neighbor object with the highest
similarity score to u, i.e., c(u) = v such that d (u,v) =
Max {d (u,z)| z∈Nu}.

Now, we will explain our clustering algorithms.
The main ideas come from both object-based and
HG-based mechanisms. Since there are multiple
relationships exist in object-to-object and
pattern-to-pattern formats. There are not sufficient to
represent such relationships if the non-hypergraph
models are used. This is our main motivation for
HG-model.

Fig. 2. The initial condition.

In Figure 2, the dot lines denote which vertexes are
connected in the hyperedges. The circle is especially
for represented one hyperedge {A,C,F}. Since the
multiplicity of hyperedge {A,C} is two. Therefore,
there are two hyperedges between vertex A and C.

In order to identify the globally closest pair of
objects with the highest score, a data structure with
priority-queue (PQ) mechanism is implemented.
There are two phases in our algorithm. Phase 1: we
would like to build the PQ structure initially. First,
for each object u in the Obj (Object Set), the closest
object v and its associated similarity score are found,
and inserted into the PQ with the key d. Note that for
each object u, only one tuple with the closest object v
is inserted and maintained. Due to the less complexity
in computation, this vertex-oriented PQ is more
efficient than methods of edge-based. Phase 2: First,
we pick up the top tuple (u, v, d) in the PQ (step 7). If
conditions are satisfied, the pair of objects (u, v) is
clustered and created a new object u’ (step 8). In step
9 and 10, the new closest object v’ is found and the T
set is updated. Therefore, a new tuple (u’, v’, d’) is
inserted into PQ with d’ as the new key. Since the
clustering changes the vertex-connectivity of HG,
some of previously calculated similarity scores might
become invalid. Thus, the similarity scores of the
neighbors of the new object u’ need to be
re-calculated, and the PQ is adjusted accordingly.
The following is the pseudo codes of object-based
hypergraph clustering algorithm.

- Object-oriented Hypergraph_based Clustering

(OHGC) Algorithm

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 651 Issue 4, Volume 6, April 2009

// D is the database. P is the set of frequent patterns.
Obj is the set of frequent patterns. T is the set of
clusters, and is set to empty initially.
Input: D, P, Obj, and T.
Output: T
Begin
// Phase 1: Initialization step for

Priority_Queue (PQ)
1. While (let each object u∈Obj and Obj

is not empty) do
2. Begin
3. Find closest object v, and its

associated similarity score d;
4. Insert the tuple (u, v, d) into PQ

with d as key;
5. End; // while in Phase 1.

// Phase 2: Hypergraph Clustering based

on PQ
6. While (user-defined cluster number is

not reached or top tuple’s score
d >0) do

7. Pick top tuple (u, v, d) from PQ;
8. Cluster u and v into new object u’

and update the T;
9. Find closest object v’ to u’ its

associated similarity score d';
10. Insert the tuple (u’, v’, d’) into

PQ with d’ as key;
11. Update similarity score of all

neighbors of u;
12. End; // while in Phase 2.

Fig. 3. After the computation of step1 to step4, the vertex
C was chosen and merged with vertex A.

Example 1 (OHGC). Assume that the system has 6
objects and 8 frequent patterns. Let Obj = {A, B, C, D,
E, F, G} and frequent patterns ser P = {P1= AB; P2 =
AC; P3 = AD; P4 = AE; P5= AF, P6= AC, P7=BC, and
P8= ACF}. Note that the multiplicity of hyperedge
{A,C} is two. This is one of main differences between
other methods and ours. We set up the level-wise
threshold for the multiplicity of frequent patterns.
For example, if the support of Pi is less than some
fixed constant, say α, then the multiplicity of Pi is set
up to be 1; otherwise if the support of Pi is less than or
equal to some fixed constant 2α but great than α, then
the multiplicity of Pi is set up to be 2. This idea will

alleviate the complexity of HG-model for future
partitioning. The above initial conditions are shown
in Figure 3.

5 GDHCC Model Description
Application operation patch caches in intranet have
three kinds of models. In Figure 4, patch cache with
partial specific remote OPDS dependency
relationships were denoted by (a). Patch cache with
OPDS role in extranet enterprise flow chain was
denoted by (b). A replica with partial dependency
with a specific self-enterprise intranet OPDS was
denoted by (c). Each EP can be two roles, FP
(Forwarding Portal) and FPC (Forwarding Portal
Cluster).

Fig. 4. Enterprise Portal (EP) Model

The ERP (Enterprise Root Portal) can get optimize
web service routing table according by receiving
dependency replica updating request from low layer
EPs. Then ERP configure each EP web service
forwarding table based on a shortest path algorithm
to create the appropriate distributed data path.

5.1 Problem formulation
For a given data path, a set of EPs are needed to
perform web service processing functions from an
ingress EP to an egress EP, and these EPs can be
physically distributed and can be duplicated. Hence,
several paths are possible between ingress and egress
EP nodes since multiple duplicated EPs can perform
the distributed data path. For a given datapath, DP is
used to denote a vector of EPj involved in the
datapath formation:

DP = (EPj) for 1 ≤ j ≤ F. (2)

which is also equivalent to a vector of sets A involved
in the data path formation:

DP = (Aj) for 1 ≤ j ≤ F. (3)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 652 Issue 4, Volume 6, April 2009

Figure 5 shows an example of a given FPC data path
DP in enterprise intranet and extranet environment.

Symbol description: Enterprise is denoted by E.

Routing path is denoted by r. flow path is denoted by
b and c. EP encountered OPDS dependency patch
replica flow will generate three kinds of message
flow path , as follows.

Fig. 5. A graph model of Forwarding Portal Clusters (FPCs)

Apply in enterprise extranet data path, like (4).

E5→b3→r1→r3→{c7|c8}→{E7|E8}→{b6|b9}→r1
→r3 (4)

For redirect updating replica to other hierarchy
enterprise, flow path like formula (5).

E5→b3→r1→r2→{c1|c2|c3|c4}→{E1| E2| E3| E4 }
→{b1|b2|b4|b7}→r1→r2 (5)

For synchronize trigger multiple EP horizontal patch
replica consistency, the feedback intranet OPDS
updating copy must be built , like formula (6)

E8→b9→r1→{{r2 same above (a)} | {r3 same
above (5)}} (6)

5.2 OPDS ripple propagation patch routing

mechanism
In this section, which consists of OPDS subscribe and
ripple propagation message chain shown in Figure 6.
When OPDS object was triggered by update event,
the message was propagation in active, real time, and
automation. Then all patch cache with the specific
OPDS dependent relationship could be globally
updated.

5.3 GDHCCM model of patch cache consistency
In this paper, a novel framework was proposed
which consists of active, real time, automation, and
global routing patch replica from OPDS domain to
GDHCCM set. See in Figure 7.

When OPDS object occurred add/insert events,
according to subscribe lists. New copies will
propagation push to all global EP which contained
dependency cache replica information.

Fig. 6. OPDS ripple propagation patch chain

Fig. 7. GDHCCM concept model

The EP then make one of the choices about
discard/rerouting to lower hierarchy portal, automatic
pipeline processing and schema transformation. All
wide area OPDS dependent cache replica consistency
and correctness can be automatic maintenance.
Enterprise intranet application system need not
change any source code.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 653 Issue 4, Volume 6, April 2009

5.4 System sequential diagram
In Figure 8 describe the UML sequential diagram
about the concept model of system object.

Fig. 8. System object sequential diagram

6 Ripple Propagation OPDS Routing

Algorithm
Routing algorithm was built into each EP for
assisting the xml data stream route path choosing.

6.1 Basic principle
The routing table fields description include: 1. OPDS
dependency replica updates request information
always maintained by EP. 2. Information Included
UUID value, PK value , Hop count, web service
client etc. need to log in portal routing table from
lower hierarchy enterprise request issues. 3. Portal’s
replica update routing information can come from
intranet and extranet enterprise. 4. When a OPDS
update replica publish to Portal, it will discard, send
to processing unit, or reroute to lower portal depend
on routing table check results. 5. For each route
request from lower hierarchy portal will add a HC
value to routing table’s Hop Count value field.

Table 1. Routing table field’s definition

6.2 Routing algorithms
Apply the rules to each route request. The

ASF(Action State Flag) is sent from lower layer EP
by portal agent and web services. By modifying
Bellman-Ford Equation (DV algorithm) :
Let dx(y) is the minimum path cost from node x to y,
c(x,v) is a moving path from x to v.

 dx(y)=minv{c(x,v)+dv(y)} (7)

In distributed and asynchronous algorithm, each node
will transfer its distance vector copy to all
adjacencies at random time.

Fig. 9. Cache WS ripple patch routing algorithms

The following; Figure 10; is a demonstration for
using above algorithm to adjust the P1 portal routing
table. Figure 11,12,13 is a demonstration for
enterprise portal add/change/delete its position
issues.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 654 Issue 4, Volume 6, April 2009

Fig. 10. Demonstration for routing algorithm

Fig. 11. Demonstration when portal node add/delete its

position issues

Fig. 12. Demonstration when portal node change its

position issues

Fig. 13. Demonstration when portal node delete its position

issues

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 655 Issue 4, Volume 6, April 2009

6.3 Estimate of routing algorithms for
distributed consistency

In this section we estimate three kinds of distributed
consistency schemas applied in hierarchical and
distributed storage environment like schools. . 1. P2P
push based eager replica updating. 2. Proxy pull
based lazy replica updating. 3. ODS push based and
active web service propagate routing algorithm for
global consistency. Simulation environment estimate
experimental setups are discussed as follow.

6.3.1 Simulation goal
All administrative information on the hard disk
containing the ODS copys of partial dependency set.
Through a set of comprehensive, proactive and
real-time update mechanism can achieve consistency
of the global convergence goals. So that all the
schools’ decentralized system, will no longer have
access to inconsistent or outdated information.

Fig. 14. P2P push based eager replica updating

6.3.2 The scope of simulation
The scope of simulation is based on Ling Tung
university campus administrative group, access the
information on disk which was part of dependency
with Personnel part ODS copy. At present, for
improving the application performance by the latest
copy, accuracy and timeliness toward 2 directions.
Including；1. Cache of time and space to improve
regional exchange of information on the frequency
problem. 2. Accuracy and real-time upgrade
distributed dependency copy.

The following will discuss 3 kinds’ global
consistency models for evaluating and comparing the
effectiveness of its operations.

(a) P2P push based eager replica updating
The uses of P2P subscribe/publish eager push mode
send updated copy of the personnel changes to
subscribed agency. The advantage is immediately,
one-way dissemination to all registered
administrative units. The shortcomings is the

Personnel must to set up individual Peer to Peer's
relations subscribe lists. Personnel must also be
effective at any time to verify the transmission list of
groups available. How to ensure to meet the goal of
global convergence consistency is the most difficult.
The operation is shown in Figure 14.

(b) Proxy pull based lazy replica updating
Personnel sent the staff-to-date update copy to school
proxy. If all administrative units of application
required the ODS dependency copy must through
pull and data integration mechanism way. The
advantage of lazy changes is to reduce non-essential
message conversion and the time to send a message.
The disadvantage that proxy server is a single point
of failure risks. That wills not real-time changes all
the dependency replicas on the copy of the
application easy access to information inconsistent
results. The operation is shown in Figure 15.

Fig. 15. Proxy pull based lazy replica updating

(c) ODS push based and active web service

propagate routing algorithm
The goal of routing algorithm proposed is using
Subscribe/Publish and active XML web service
propagates routing Mechanism for global
consistency. In a comprehensive, active and
hierarchical automation ripple propagation way to
reach global consistency of dependency information
copy in school. All administrative units’ application
is able to integrate information at the lowest cost.
Advantage: 1. No longer based on individual
applications repeat investment in different database
middleware system. 2. There is no need to
periodically pull to obtain a copy of
dependency-to-date information. For the
shortcomings: 1. Root portal and business units to be
implemented with replicas routing algorithm. 2.
Enterprise portals have to implement ODS update
replica schema transformation. The operation is
shown in Figure 16.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 656 Issue 4, Volume 6, April 2009

Fig. 16. ODS push based and active web service

propagate routing algorithm

Assume in measure the global consistency
convergence time is ignored the following metric
including processing delay, queuing delay,
transmission delay. There are considered the storage
replica updating delay and network propagation
delay. In practically, then transmission delay is
usually between several μs. and ms.

Fig. 17. Comparison of different algorithms on global
consistency convergence time

7 Performance Analysis
In this section we describe our experimental results
and use cache object-oriented layouts to improve the
performance of one 3D visualization − virtual power
plant. Moreover, we used different measure metrics
for comparing the performance under different
circumstances.

7.1 Experimental setups
In this section, the effectiveness of the proposed
clustering algorithm is investigated. All algorithms
were implemented in Java. The experiments were run

on a PC with a Pentium 4 1.60GHz and 512MB
megabytes main memory, running Microsoft
Windows 2000 server. The Total Objects per View,
Response Time (in ms), Cluster Cohesion,
Intra-Cluster Similarit, Number of Retrieval Files per
View-radius and Response Time per View-radius
were used as measure metric. In order to compare
with traditional tree-like data structures [6], the
mechanism of Access Path Predictor (APP) was
implemented for performance comparisons. The
detailed experimental results were shown in the
following diagrams.

In the meanwhile, we select the different support
threshold for comparison. Figure 18 and 19 show the
results. Algorithms with clustering outperform other
algorithms without clustering. Since the clustering
mechanisms can accurately support prefetching
objects for future usage. Not only the access time is
cut down but also the I/O efficiency is improved.
Note that HG_clustering represents the Hypergraph
clustering scheme.

In summary, we can determinate that our
HG_clustering algorithm is better overall at cluster
cohesion and inter-cluster similarity. This means that
our HG_clustering algorithm can groups more
similar patterns together and do more improvements
on the efficiency of storage systems.

Fig. 18. Comparison of different algorithms on the number

of objects retrieved under the same view_radius.

Fig. 19. Comparison of different algorithms on system

response time under the same view_radius.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 657 Issue 4, Volume 6, April 2009

8 Conclusions and Future Work
This paper presents a hypergraph based clustering
technique for accesses to 3D pattern clusters. In other
words, the underlying premise of our approach is that
in the case of cluster accesses, the next objects
requested by users of the VE are typically based on
the current and previous objects requested.
Furthermore, if the requested objects have a lot of
links to some “important” object, that object has a
higher probability of being the next one requested.
An experimental evaluation of the clustering
mechanism is presented using real VE traces. The
results show the hypergraph based scheme does
better random prefetching for clustered accesses,
with access reduction of 28 % in almost cases.

This work represents a novel application of
association rule discovery techniques for identifying
previously hidden knowledge in the fields of 3D
visualization. A full automatic strategy for
discovering new knowledge about traversal
sequences has been developed based on
identification of association rules between object
correlations.

The paper also propose a service routable
consistency framework (GDHCCM) that is capable
of supporting ripple propagate cache updating copies
that existed in distributed heterogeneity of storage.
Besides, an individual object might induce different
dependency relations in different applications and
partially dependency to several distributed original
patch data source. By using a new scalable web
service routing policies that can dynamic
reconfiguration distributed forwarding cache patch
data path in hierarchical enterprises storage and
improving cache data real-time correctness and hit
ratio.

Our approach have the following different
characteristics: (1).Scheme_based: traditional
schemes always utilize the tree_based data structure
with locality (either parent-child locality (i.e.,
temporal locality) or spatial locality);
(2).Complexity_based: previous schemes manage
these data structures to fit the memory constraints
without considering the real demand for object;
(3).Semantic_based: the semantic property seems
very weak compared with ours;
(4).Knowledge_based: the knowledge of previous
schemes only hold for very near future. We are
currently building a distributed VR system. This
work is also investigating the appropriate depth and
breadth thresholds for cluster identification. We are
investigating the type of VR models that can benefit
from the hypergraph based approach and its
variations.

References:
[1] S. Chakrabarti, Mining the Web Discovering

Knowledge from Hypertext Data, Morgan
Kaufmann Publishing, 2003.

[2] G-J. Nam, S. Reda, C.J. Alpert, P.G. Villarrubia,
A.B. Kahang, A Fast Hierarchical Duadratic
Placement Algorithm., IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, Vol.25, No.4, 2006, pp. 678-691.

[3] E. Ohbuchi, A Ral-Time Defraction Venderer
for volume objects using a polygon-rendering
scheme, Proceeding of Computer Graphics,
2003, pp. 190-195.

[4] J. Comg and S.K.Lim., Edge Separability-based
Circuit clustering With Application to
Multilevel Circuit Partitioning., IEEE
Transaction Computer-Aided Design Integrated
Circuits and Systems, Vol. 24, No.3, 2004,
pp.346-357.

[5] S-E Yoon, P. Lindstrom, V. Pascucci, D.
Manocha.,: Cache-Oblivious Mesh Layouts.,
ACM Transactions on Graphics, Vol. 24, No.3,
2005.

[6] D. Chisnall, M. C. Risualization. IEEE-VGTC
Symposium on Visualization, 2006.

[7] E-H. Han, G. Karypis, V. Kumar and B.
Mobasher., Clustering based on association rule
hypergraph. ,Workshop on Research Issues on
Data Mining and Knowledge Discovery, 1997.

[8] P. Jaccard. ,The distribution of the flora of the
alpine zone. ,New Phytologist, 1912, pp. 37-50.

[9] M. Sivathanu, V. Prabhakaran, F. Popovici, T.E.
Denehy, A.C. Arpaci-Dusseau, and R.H.
Arpaci-Dusseau., Semantically-smart disk
systems., Proceedings of the Second USENIX
Conference on File and Storage Technologies,
2003.

[10] W. T. Correa, J. T. Klosowaki, and C. T. Silva.,
Visibility-based prefetching for interactive
out-of-core rendering., IEEE Symposium on
Parallel and Large-Data Visualization and
Graphics (PVG'03), 2003, pp.2-8.

[11] S.E. Yoon, D. Manocha., Cache-efficient
layouts of bounding volume hierarchies. ,
Eurographics, Vol.25, No.3, 2006.

[12] P. Cignoni, F. Ganovelli, E. Gobbetti, F.
Marton. , Batched multi triangulation. , IEEE
Visualization, 2005, pp. 207-214.

[13] C.V. Apte, S.J. hong, R. Nataraian, E.P.D.
Pednault, F.A. Tipu, and S.M. Weiss.,
Data-intensive analytics for predictive
modeling., IBM Journal of Research and
Development, Vol.47, No.1, 2003, pp. 17-23.

[14] Tesegay, Y., Yurpin, A., and Zobel, Justine,:
Weiss., Data-intensive Analytics for Predictive

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 658 Issue 4, Volume 6, April 2009

Modeling., IBM Journal of Research and
Development, Vol.47, No.1, January, 2003, pp.
17-23.

[15] B. Hu and M.M. Sadowaks., Fine Granularity
Clustering-based Placement., IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol.23, No.4,
2004, pp. 527-536.

[16] S. Sun and X. Zhou., Semantic Caching for
Web-based Spatial Applications., In:APWeb
2005, LNCS 3399, 2005, pp. 783-794.

[17] S.S. Hung, and D.S.M. Liu., Using Predictive
Prefetching to Improve Interactive Walkthrough
Latency., Computer Animation and Virtual
Worlds Journal, Vol.17, No.3, 2006, pp.
469-478.

[18] R. Lario, R. Pajarola, F. Tirado., Cached
Geometry Manager for Xiew-dependent LOD
rendering., Proceedings International
Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision
(WSCG), 2005, pp.9-16.

[19] C. Zhang, C. Ding, Y. Zhong, Y. Wu., A
hierarchical model of data locality., In:
Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, 2006.

[20] Zhu, Y. , Uniform Remeshing with an Adaptive
Domain: A New Scheme for View-Gependent
level-of-detail rendering of meshes., IEEE
Transactions on Visualization and Computer
Graphics, Vol.11, No.3, May-June, 2005, pp.
306-316.

[21] Ding, X.., Jiang, S., Chen, F., Davis K., and
Zhang, Z.: DiskSeen, Exploiting Disk Layout
and Access History to Enhance I/O Prefetch., In:
Proceedings of the 2007 USENI Annual
Technical Conference, (USENIX'07), Santa
Clara, California, June 17-22, 2007.

[22] Chen, S., Shen, B., Wee S., and Zhang, X.:
SProxy, A Caching Infrastructure to Support
Internet Streaming., In. IEEE Transaction on
Multimedia, Vol. 9, No. 5, August 2007, pp.
1062-1072.

[23] R. Ladin, B. Liskov, L. Shrira, and S.
Ghemawat., Providing high availability using
lazy replication., ACM Transactions on
Computer Systems, Vol.10, No.4, 1992.

[24] M. Patiño-Martinez, R. Jimenez-Peris, B.
Kemme, G. Alonso., Consistent Database
Replication at the Middleware Level"., ACM
Transactions on Computer Systems (TOCS).,
2003.

[25] Thanasis Loukopoulos, Ishfaq Ahmad, Static
and Adaptive Data Replication Algorithms for

Fast Information Access in Large Distributed
Systems, 20th IEEE International Conference
on Distributed Computing Systems (ICDCS'00),
2000, p. 385.

[26] Yung Bok Kim and Soon Woo Lee,
Performance Evaluation of Mobile Agents for
Knowledge-Based Web Information Services
KES-AMSTA, Springer Lecture Notes in
Computer Science, Vol. 4496, 2007, pp.
209-218.

[27] Ruey-Kei Chiu and Kuo-Chin Tsai and
Chi-Ming Chang and S. C. Lenny Koh and
Kuan-Chih Lin, The implementation of an agile
information delivery system in building
service-oriented e-healthcare network,
International Enterprise Network Management
Inderscience Publishers, Vol. 1, ,March 14
2007., pp. 283-298.

[28] Ákos Hajnal and David Isern, Knowledge
Driven Architecture for Home Care CEEMAS,
Springer Lecture Notes in Computer Science,
Vol. 4696, 2007, pp. 173-182.

[29] Aurora Vizcaíno and Juan Pablo Soto and Javier
Portillo-Rodríguez and Mario Piattini, A
Multi-agent Model to Develop Knowledge
Management Systems, IEEE Computer Society.,
HICSS, 2007, p. 203.

[30] Mahmoud Brahimi and Mahmoud Boufaïda and
Lionel Seinturier, Integrating Web Services
within Cooperative Multi Agent Architecture,
IEEE Computer Society., AICT/ICIW, 2006, p.
197.

[31] Nicolas Singer and Jean-Marie Pecatte and
Sylvie Trouilhet, Combining Web Services and
Multi-Agent Technology to Increase Web
Cooperative Capacities, IEEE International
Conference on Internet and Web Applications
and Services (ICIW'07), Mauritius, 2007.

[32] Oh Byung Kwon, Multi-agent system approach
to context-aware coordinated web services
under general market mechanism, Decision
Support Systems, Vol.41, No.2, 2006, pp.
380-399.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ching-Shun Hsieh, Jui-Wen Hung

ISSN: 1790-0832 659 Issue 4, Volume 6, April 2009

