WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Leonardo Machado, Orlando Filho, Joao Ribeiro

UWE-R: an extension to a Web Engineering methodology for Rich

Internet Applications

LEONARDO MACHADO, ORLANDO FILHO and JOAO RIBEIRO
Faculdade de Engenharia
Universidade do Rio de Janeiro - UERJ
R. Sao Francisco Xavier, 524, 5° Andar, Bloco D, sala 5028, 20550-900 Rio de Janeiro — RJ
BRAZIL
Ichaves @iname.com - orlando @eng.uerj.br - araujo@eng.uerj.br

Abstract: - This paper introduces UWE-R, an extension to an existing Web Engineering Methodology (UML

For Web Engineering — UWE) to model Rich Internet Applications (RIA). Initially it presents the basic

concepts behind RIA and UWE, showing the reasons for choosing this methodology among many others. After
presenting the proposed extensions for UWE-R, a modeling instance is shown using a real web site with RIA

features. This work concludes with future directions and issues to be addressed.

Key-Words: Rich Internet Applications, Web Engineering Methodology, Unified Modeling Language

1 Introduction

The same way the Internet and the World Wide
Web have revolutionized how people interact with
software applications, the so called Rich Internet
Applications (RIA) are a revolution for Web
applications. Sites like Google Maps, Gmail, Flickr,
to name a few, bring a much richer user experience,
but
modeling. A

also present greater challenges for their
simple web application can be
developed without modeling, but this is not the case
for  complex ones. Unfortunately web
methodologies for RIA are still in their childhood.

This paper's goal is helping to fill this gap.

2 RIA - Rich Internet Applications

There are some definitions for RIA as in [1] and [2].
propose the following: RIA
that  benefit the
ubiquitousness and enhance the traditional web

Here we are

applications from web
rich user interface
flexible

asynchronous server interaction mechanism. The

application model adding

elements altogether with a and

final user experience resembles that of a desktop

ISSN: 1790-0832

601

application, since the user is no longer required to
wait for a synchronous server response for each link
that is activated.

There is a great variety of RIA technologies.
Most of them involve somehow Asynchronous
Javascript with XML (AJAX), which is a set of
technologies (XML, DOM, XHTML, Javascript and
XmlHttpRequest) that allows an asynchronous
interaction with the server [3]. However, RIA is not
just AJAX. Technologies like Adobe's Flex and Sun
Microsystems' Java also offer asynchronous
communication with the server and a rich graphical

user interface.

3 Web Engineering Methodologies

The Unified Modeling Language has become the
standard for object-oriented applications. Both in
the corporate and academic worlds it is used to
model applications in general. Nevertheless, when
Web applications must be modeled, new challenges
arise, since navigation, user interaction and content
type for this kind of applications do not have
appropriate support in UML's kernel. Another work

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

[4] deals with this lack of support. In that paper 15
different
evaluated using a set of criteria that are relevant for

Web engineering methodologies are
RIA modeling, and the conclusion is the necessity of
a new methodology to encompass RIA features, like
visual continuity, asynchronous interaction and
multimedia content.

For the present paper we proceeded to a detailed
study of those 15 methodologies and other 2 that
were not referenced in [4]. Our goal was to evaluate
which one could be extended to incorporate RIA
features. For the sake of brevity, only this study's
results are presented here. Some important notes
before: 2 methodologies referenced in [4] were not
considered: DMM+t and AHAM. The former
because it is an extension to OMMMA-L, which
was part of our study and its new aspects are not
relevant for RIA. The latter was not included
because it has a different modeling purpose:
Adaptive Hypermedia Systems (AHS), i.e., systems
that have their content adapted to the user or user
profile.

Web Application Extension (WAE) as defined in
[5] was included in our study since it is well
referenced in several papers. Rich User eXperience
model (RUX) as in [6] was also included, because it
is the only one, as of this writing, which
contemplates RIA aspects.

UML for Web Engineering (UWE) was chosen
from all of these, for the reasons that will be

explained in the next section.

3.1
One of this work's purpose is to leverage, as much

Reasons for choosing UWE

as possible, existing concepts and languages. No
Web engineering methodology has had a wide
uniform adoption. One of the possible reasons for
that is the great amount of such methodologies.
Object-orientation itself only started to spread when
their
modeling languages into UML. Therefore, although

Booch, Rumbaugh e Jacobson unified
it is necessary to create new methodologies for new

concepts, like RIA, it is important to rely on
advances that are well established in the developer's

ISSN: 1790-0832

602

Leonardo Machado, Orlando Filho, Joao Ribeiro

community. Otherwise, our proposition would be
“yet another web engineering methodology”.

One of these concepts in systems modeling is
Object-Orientation itself. That is why HMBS [7],
RMM [8], HDM [9] and HMT [10] were not
considered for this work's extension, since they are
not OO based. HFPM [11] was not considered
because it is not a methodology that adds
contributions on navigation and presentation
aspects. DEMALIS [12] was excluded because it is a
tool an not a methodology per se.

From the remaining ones (WAE [5], OMMMA-
L [13], W2000 [14], WebML [15], OO-H [16],
UWE [17], OOHDM [18] and WSDM [19]) we
used, as a first filter criteria, the amount of
references in ACM Portal [20]. According to a
research on the references to their main and derived
papers, WebML, OOHDM and UWE are the most
(79, 69 and 60
respectively). From those, only UWE is completely
adherent to UML, which led to our choice.

Although RUX has undeniable merits, we have

referenced ones references

chosen to extend from another methodology because
RUX does not use only UML. It involves an array
of other languages and recommendations (like
XICL, UiML, SMIL and XML Events) for concrete
interface diagram models. If they allow a more
precise definition for those models, they also imply
in a more sloped learning curve to the software
modeler. Using our proposed extension, UWE-R, a
modeler only needs to know UML and a few
extension mechanisms. Even the same modeling
CASE tool can be used out of the box with UWE-R.

3.2 UWE Basic Concepts
In order to understand the proposed extensions in
UWE-R, it is mandatory to understand UWE ([21]
and [22]) first. Due to the size limitations of this
paper, be
introduced here.

UWE is an UML profile, or a light extension to
UML. This means that only stereotypes, tagged

only its main characteristics will

values and constraints, which are standard UML
extension mechanisms, are used. That is the reason

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

why any CASE tool can be used with UWE (and
also with UWE-R, that follows the same
conditions). There is a tool called ArgoUWE, based
on ArgoUML, which goes a step further: it provides
automatic checking for restrictions and perform
some transformations, according to Model-Driven
Architecture (MDA). Not using this tool does not
prevent anyone to benefit from UWE and UWE-R
immediately.

As an UML extension, UWE expresses its
stereotypes and diagrams using a metamodel. In
UML, a metamodel is a model, in a higher level of
abstraction, which uses class diagram's notations to
express features and concepts not
in UML. UWE is

extension to UML version 2.0. By conservative, it

originally
conceived a conservative
means that none of the UML original elements are
altered in any way. All new elements in UWE's
metamodel are referenced as extensions (a similar
mechanism to to

elements in UML. In order to define the static

inheritance among classes)

semantics for these new elements, Object Constraint
Language (OCL) is used. Since UWE is compatible
with the Meta-Object Facility (MOF), a model that
is written based on UWE's metamodel can be read
in other CASE tools which support XML Metadata
Interchange (XMI). As in UML's
superstructure document [23]: in the instance model,

explained

a metaclass from the metamodel becomes a
stereotype, a metaclass' attribute becomes a tagged
value, and a role becomes a constraint expressed in
OCL.

UWE's metamodel has two high level packages
to group their metaclasses: Core and Adaptivity.
Inside Core's package are located UWE's main sub-
Content, Navigation,
UWE-R
extensions to Navigation, Presentation and Process

packages: Requirements,

Presentation and Process. introduces

sub-packages.

4 UWE-R

UWE-R's purpose is not to be a complete Web
engineering methodology for RIA. Its focus is on
navigation, interaction

presentation and server

ISSN: 1790-0832

603

Leonardo Machado, Orlando Filho, Joao Ribeiro

(processes) which are the differences between a
Web application and RIA. Other
methodologies, including UWE, already effectively

traditional

cover the remaining aspects, like requirements.

Since our goal is to

compatibility, UWE-R will also be a light extension

keep maximum

or profile to UWE, meaning that no UWE metaclass
will be modified. Every extension was conceived as
add-ons to express RIA concepts.

4.1 Navigation Extensions

UWE already defines a metaclass for navigation
(NavigationClass). In its definitions, though, there
are restrictions which ties it to traditional Web
applications: it refers to a hypertext structure and
mandates a one-to-one relationship to a respective
content class. Both restrictions are too constraining
for RIA. For those applications, what would be a
navigation class might not be in hypertext (might be
inside a Flash object or Java applet) and several
content classes can be related to it (see Google
Maps, for instance). This required the creation of a
new metaclass to represent this concept. It is
important, though, that the basic UWE framework is
respected and a composition relationship to UWE's
NavigationProperty is leveraged (to reference the Ul
elements in the presentation model). That is why our

new metaclass, RichNavigationClass, extends
UWE's Node metaclass.

Additionally it is required to create a new
metaclass for the link concept. UWE's

NavigationLink metaclass can only express links
between nodes that are not processes. As for RIA, a
navigation can imply a local or remote process
that the
RichNavigationClass (visual continuity), potentially

triggering, would return to same

changing some of its attributes. Besides, there are
like
relevant to be modeled in this new type of link. This

characteristics, asynchronism which are
one is called RichNavigationLink. In Fig. 1, a
metamodel diagram excerpt is shown. Only UWE-
R's new metaclasses (in gray) and their direct

associated metaclasses from UWE are presented.

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

_sgurce - Dutlinks

Node -

1 Link

- isAutomatic ;. Boolean

- isLandMark . Boaolean
- isHome : Boolean

- target
- inLi
yay 1\/"‘(

RichMavigationLink

Dialogue RichMavigationClass

- isAsynchronous ;. Boolean
- isCallback : Boolean

1 - changedProperties

*

{subsets ownedattribute}

MNavigationProperty

- selectionExpression : String[0 .. 1]

Fig. 1: UWE-R Navigation's extensions

A class to represent a dialogue was also
introduced, since this type of navigation entity
interposes itself in a different way to the navigation
nodes.

An example that illustrates those metaclasses is
in Fig. 2:

changedProperties =
"Map::zoom"

< <richNavigationLink> > j

; < <richMavigationClass= =
’ Map

< <richMavigafionLinks >
g < <richMawigationLink >

<<clientProcessClasss »
ZoomcCalculator

Fig. 2: Synchronous navigation example

A new stereotype (clientProcessClass) is used
above, which is part of our UWE-R extension in the
Process sub-package. It will be further detailed in
section 4.3, but it is already possible to figure out
that it represents a process (set of actions taken by
the application) that runs on the client side
(browser). In the case where a process needs to be
executed on the server side, the rich navigation link
can be modeled using the asynchronous attribute
from its metaclass. And its response will be
typically a callback to the client. This is the main

ISSN: 1790-0832

604

Leonardo Machado, Orlando Filho, Joao Ribeiro

novelty in RIA (asynchronous server interaction)
and can be expressed as in Fig. 3:

< <richMWavigationClass > »
ARichMavigationClass

< <richMavigationLink > >
ack}

< <richMawigationLink = =

{call fasynchronous}

< <senverProcessClasss »
AProcessClass

Fig. 3: Asynchronous navigation example

One might argue that there is some information
overload in the diagram with stereotypes and tagged
values on the links. In a complete model this can
really harm readability. If that is the case, then some
of these can be suppressed. Others can be
conventionally taken for granted, like the one above:
if there was an asynchronous request to the server,
the response will always be a callback. Some UML
CASE tools allow adding all those informations, but
choosing to show them or not. What matters most is
that the concept and according notation is clear for
developers and modelers. A suggested good practice
when using diagrams as the above, is not trying to
grasp the whole application with a single one, but
having one navigation diagram per use case. If in a
traditional Web application it is possible to follow a
great variety of links from a node, in RIA this is

even more critical, due to its visual continuity.

4.2 Presentation Extensions

From the presentation point of view, it is important
to add some metaclasses to express RIA richness in
the UI aspect. However it is not necessary to create
a new metaclass to extend the already existing
PresentationClass from UWE. This one carries the
idea of nesting various presentation elements (by the
so called inclusion trees). It also allows composing
UlIElement (which inherits
PresentationElement) with PresentationProperty

metaclasses from

metaclass. This last one is associated with a

PresentationElement, providing such composition.

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Therefore, only metaclasses that extend from
UlContainer and UIElement were created. They are

shown in Fig. 4:

WNCentainer LIElement
O”w * ?
Panel Canvas
Audio " Video DialogueWindow
11
T |
TreePanel TabbedPanel AccordeonPanel

Fig. 4: UWE-R presentation's extensions

The Canvas metaclass is the most important,
from the RIA perspective in this sub-package. It
represents a free drawing area where mouse events
can be captured. As shown in Fig. 4, other elements
can be composed and visually overlaid in a Canvas,
like this
extension, there were only 2 types of UlContainers:
in UWE. With
Canvas it is possible to model Geographical
(GIS) and games. Each
overlaid canvas can be a map layer or the game

images and other canvases. Before

Form and AnchoredCollection

Information Systems

scenario and characters.

UWE's presentation metamodel intends to be a
rather abstract one, i.e., not concerned with user
like
position, etc.. Nonetheless it is interesting to provide

interface details, component size, exact
a generic advice of visual layout for the UI
elements. The Panel metaclass was created with that
purpose. Some sub-metaclasses were also proposed
as in Fig. 4.

Much of the richness in RIA comes from the
possibility to mix video an audio content in a Web
This the

above. DialogueWindow

application. justifies
At

represents a very common type of Ul element.

corresponding
metaclasses last,

One last note on this sub-package that will be
further detailed in the next section: according to
UWE, when Ul elements belong to the same
inclusion tree, the respective navigation nodes are
if the links

presented as were automatically

ISSN: 1790-0832

605

Leonardo Machado, Orlando Filho, Joao Ribeiro

followed. If they don't belong to it, then it is
necessary a user action (modeled by the metaclass
UserAction) to trigger this presentation. As it will
be shown in 4.3, in RIA there is a type of action for
which this is not true. Actions can be related not
only to the user, but also to browser events and
server callbacks. Those events can trigger a
presentation change as well. They will be modeled
as the AutonomousAction metaclass in the Process

sub-package.

4.3 Process Extensions

In this sub-package, there are three extensions
proposed by UWE-R: distinguishing client from
server processes, sequence diagram usage with a
type
creation of AutonomousAction metaclass to model
UWE-R's

specific message (ControlMessage) and

user independent actions. Below,

extensions are shown diagrammatically:

CalArtion

(From UML)

T

AutonomousAction

UserAction
ProcessClass

[l}.

ClientProcessClass ServerProcessClass

— trigger : 5tring
— triggerParameters : String[]

0.1 Y1 vl 0.1
- recej - SEn - recepve
- send 1
01 "
0.1 ControlhMessage

- protocalType © 3tring
- dataType : String
— dataTypeDefinition : String

v

Message

(From UML)

Fig. 5: UWE-R process' extensions

Distinguishing if a process runs on the client
side (in a browser as a script or plugin API) or on
the server side is very relevant in the RIA context.
Since for this type of Web applications there is an
important part of the code that runs on the client
side, it is worthwhile having mechanisms to model

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

this fact. Eventually one might use the ProcessClass
metaclass from UWE in the analysis phase. That
stage has a higher level of abstraction. However at
the design phase, this separation is very significant.
If UWE-R were not intended to be a light extension
to UWE, the ProcessClass metaclass could be
changed into an abstract metaclass.

UWE's process sub-package has three goals: 1)
integrating business processes into the navigation
model, 2) defining a user interface to support the
process and 3) defining the application behaviour. In
RIA, there are asynchronous communications and
data is not always transferred as simple HTTP GET
or POST with parameters. Other formats, like XML
(using or not the Simple Object Access Protocol —
SOAP) or JSON can be used as well. Therefore,
extensions are provided in UWE-R to model this
reality. Sequence diagrams are used for that purpose
(in UWE, only activity diagrams were used to detail
the processes). A specific metaclass is proposed:
ControlMessage (extending UML's “Message”
metaclass from Basiclnteractions package). Its name
is borrowed from the Model-View-Control (MVC)
pattern, since it is a message between model and
control layers. UML's Message already has an
attribute (messageSort) that indicates whether the
message is synchronous or not. It can be visually
distinguished by the arrow head. ControlMessage
new attributes are: isCallback (only true if it is a
callback from the server to the client), protocolType
(reserved values: “LOCAL” when inside the client,
“HTTP” for simple GET/POST, “FTP”, “REST” for

Representation State Transfer and “SOAP”),
dataType (reserved values: “JSON”, “XML”,
“KML”, “GML” and  “STRING”) and
dataTypeDefinition (W3C's Schema or DTD

element that defines the XML type, or EBNF that
defines the JSON format). As an example, see Fig.
6:

ISSN: 1790-0832

606

Leonardo Machado, Orlando Filho, Joao Ribeiro

< <clientProcessClasss> >
maplayerReguester

< <serverProcessClasss >
maplayerfrox

< <controlMessages >
1: getlayer(
u {protocolType: S0AP}

IdataTywpe: XML}
{dataTvpeDefinition: LayerkEeq}

<<controlMessage s >
20 returnlayer()

|
|
|
|
{protocolType: S04AP} U
|
|
|

|
|
|
D< IdataTywpe XML}

[{dataTypeDefinition:LayerResp
| {callback}

|
|

Fig. 6: ControlMessage example

In Fig. 6 an asynchronous request is performed
from the client to the server to get a map layer (with
type LayerReq, from a W3C's Schema element) and
the response (with type LayerResp, also from a
Schema) comes synchronously from the server as a
callback. Consequently during the design phase a
very clear picture — with frequency and data type
details — on how the application exchanges data is
formed. This is particularly important to ensure that
the application is “rich”, not only from the UI point
of view but also in the user interaction perspective.
Nowadays it is very common to find Web sites that
use RIA technologies but their design is the same as
in traditional Web applications. Many of them do
not take advantage of asynchronous interaction and
leads to a poor result. With a diagram as in Fig. 6,
the lack of a RIA oriented design is made evident
before implementing the code.

There
ControlMessage

are other advantages of

metaclass testing

using
in and
performance evaluation. Testing as soon as possible
is one of the reasons for modeling an application.
The same way that use cases definition enables test
cases definition, using diagrams as above enables
unit and integration tests definitions sooner. As for
performance, data types and interaction's frequency
are clearly shown in such a diagram. From those,
data transfer volumes can be estimated and eventual
bottlenecks can be easily detected and solved.
UWE-R's last extension in this sub-package is
AutonomousAction metaclass creation. This one is

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

different from UWE's UserAction, because it does
not depend on user interaction. In RIA, an action
can be triggered by a browser event (on page load,
for instance), by a timer or a server callback. This
metaclass'  attributes are: triggerType (reserved
values: “EVENT” for browser events, “TIMER”
and “ONCALLBACK”), triggerName (browser's
event name of callback function name. Not used for
timer) and triggerParameters (parameter set for
browser event or callback function, if necessary, or
the timer interval). To avoid confusion with UML's
AcceptEventAction name like
“EventAction” was not chosen for this metaclass.

metaclass, a

5 Applying UWE-R to Google Maps
This section will show how to apply UWE-R to
Google Maps Web site as a demonstration of this
extension's expressive power. Web GIS are complex
enough to justify UWE-R's usage. Since that site's
source code is not available, what is shown here is a
reverse engineering model, observing the site's
behaviour. Having a browser opened at Google
Maps [24] will ease this section's understanding.

Navigation, presentation and process models
will be presented covering one application use case
with emphasis on UWE-R's new elements. Search
by address was the chosen use case. Navigation
model follows:

< <richMavigatianLink = =
changedProperties =
"Map:: houndingBaox",
"Map:: zoom"

< caccessPrimitive > >
accessedattributes =
"Map:centroidAaddress”

< <richMavigationClass > » *
GoogleMapViewer

1 < <OUERYT >
{ GoogleMapQuery

< =richMawigationLink> >
{resultmapFound}

< <richMawvigationLink = >
{resultmaptotFound}

<«clientProcessClasss >
GoogleMapFinder

Fig. 7: UWE-R for Google Maps: navigation

ISSN: 1790-0832

607

Leonardo Machado, Orlando Filho, Joao Ribeiro

Most noticeable is the rich navigation class
(GoogleMapViewer). In this case and the vast
majority, while navigating all links return to this
very same node, showing the typical RIA visual
continuity. A navigation class with <<query>>
stereotype is also used. This stereotype (a metaclass
in the metamodel) is UWE's. The other element,
GoogleMapFinder, UWE-R's
<<clientProcessClass>> stereotype. Therefore this
is a process that runs on the browser, with a possible
server interaction to be further explained later on.
The <<richNavigationLink>> stereotypes denote the
process return to the same node, but with some
changed attributes: the maps bounding box and
zoom are changed to reflect the search result. Both
situations (map was found or not) are shown by the
“result” tagged value (between curly braces) defined
in the respective metaclass as its attribute. That is a
synchronous request situation, thus no “callback”
tagged value is shown.

Following UWE's guidelines only the main
(GoogleMapFinder) the
navigation model. It is necessary to have a process
model (represented by an activity diagram) that
details how the whole process is executed. Before

has

process is drawn in

that, a class diagram must indicate the processes that
are part of this main one. In our case, this is such
diagram:

< «clientProcessClass > >
GoogleMapFinder

< <UsErAction: > < <serverProcessClasss » < <autonomaousaAction > >
GoogleEnterAddress GoogleServerMapFinder GoogleMapPrefetcher

Fig. 8: UWE-R for Google Maps: process classes

In Fig. 8 a UWE's stereotype to represent a

action UWE-R's
is used to
indicate another process that might be invoked by
the client as it will be clear in the following UWE's
process model:

user is employed.

<<serverProcessClass>> stereotype

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Client Side

3' map ° Magtache
T
\

< <UserAction: > |
Al
A

CoogleEnterAddress

i
N

.
I( rache. getMapFromaAddress() )<

J,

Server Side

“{< <serverProcessClass > »)
‘\GDDgIeSer\rerM apFinder)

map == null

map 1= null |
CoogleMapyiewer.
showhd 2

<< autonomousAction = >
GoogleMapPrefetcher.
prefetchi

cache. addMap(

Fig. 9: UWE-R for Google Maps: process model

In this model swimlanes were used to make it
the
interactions. Initially on the client side the map is

visually explicit client and server side
searched in the cache, according to the user input
address. As any well designed RIA, Google Maps
shows this behaviour: the server is accessed only
when it is absolutely necessary. It can be observed,
while using it, that if the map is already in the local
machine no server request is performed. This
suggests some caching mechanism, although we had
no access to Google Maps source code. This
behaviour can also be found when the user tries to
displace the map to contiguous regions. Google
Maps brings those adjacent maps asynchronously
while the user is not interacting with the application.
Therefore Google Maps can provide the illusion of a
desktop application, that is server independent,
because the user displaces the map and the
neighbour image is promptly displayed. This can
only be modeled with UWE-R's AutonomousAction
as in the following sequence diagram:

ISSN: 1790-0832

608

Leonardo Machado, Orlando Filho, Joao Ribeiro

Object? : < < AUtonoDmMousALtion > < <serverProcessClasss =
MapCache Objectd : Ohjects :

GoogleMapPrefetcher GoogleServerMapFinder

| |
| << controlMessages > |
|1 getsurroundingMaps( .

’

{protocolType:REST}
’ {dataType: KML}
4 {dataTypeDefinition: mapCentroigd}

|
|
|
T |
| <<controlMessages >

T
|
|
|
| .
|
|
| |
|
|
|
| |
| | receivesurroundingMaps( |
| {protocolType: REST}
| {dataType kKML}
| }
|
|

rd
HtriggerType TIMER}
{triggerParameters: 105}

{dFltaT\apeDeﬂnit\on:mapRespon
{callback}
2 addMap( |

Fig. 10: UWE-R for Google Maps: map prefetch

The autonomous action GoogleMapPrefetcher
has the tagged values “TIMER” and “10s” as its
trigger type and parameter. This means that after 10
seconds of user inactivity, this action is triggered.
The received map is added to the cache to avoid
future unnecessary server requests.

In Fig. 10 the message traffic is explicit.
<<controlMessage>>, as proposed by UWE-R, is
used and shows an asynchronous server interaction.
The tagged values make it clear what are the used
data types and protocols. In this case, KML was
assumed, since this is Google's format for this type
of data. The response comes with a callback, as
indicated.

At last, the presentation model is as follows:

< <page> >
GoogleMapsPage

< <tabbedPanel = >
QueryTab

< <button > >
QueryButton

< <textinputs >
Addressinput

< <tabbedPanel = >
ResultTab

< <Canvass x
MapViewer

< S Lanvas > =

< <anchoredCollections > MapLayer

Resultlist

< wCanwvass >
SatelliteLayer

< < CANVAS > >
TerrainLayer

Fig. 11: UWE-R for Google Maps: presentation

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

This model abstracts from other Ul elements
that can be found in other panels (like texts, images
and links) for the sake of readability. If a more
literal model is desirable, it would be enough to add
a presentation class inside GoogleMapsPage, with
those additional elements. Notice the convenient
usage of tabbed panels, which are in fact present in
Google Maps site, and the canvas classes to
represent the map region with its several layers.

4 Conclusion

In this paper UWE-R was introduced and used in a
complex web site. Google Maps has a great variety
of features and makes extensive usage of RIA
concepts. In our models, those concepts were
accordingly modeled. Therefore, we believe that
UWE-R has a good expressive power to model RIA
and leverages existing concepts and tools. Naturally
there are some future possible works. Among them,
we can include: more complete example models,
more Ul elements metaclasses and a complete and
formal metamodel specification.

References:

[1] Klein, N., Carlson, M. and McEwann, G.,
Laszlo in Action, Manning Publications, 1st.
Edition, Chapter 1, 2007.

Adobe. Rich
http://www.adobe.com/resources/business/rich_

Internet

2] Applications,
internet_apps/, 2007.

Zakas, N., McPeak, J. and Fawcett, J.,
Professional AJAX, Wiley Publishing, Inc., 2nd.
Edition, 2007, pp. 299-335.
Preciado, J., Linaje, M.

(3]

(4] E.,

Necessity of methodologies to model Rich

and Sanchéz,

Internet Applications, Proceedings of the 2005
Seventh IEEE International Symposium on Web
Site Evolution (WSE’05), 2005, pp. 7-13.
Conallen, J., Building Web Applications with
UML, 2nd Edition, Addison-Wesley Longman
Publishing Co., 2002.
[6] Preciado, J., Linaje M. and Sanchéz, F.,
Enriching Model-based Web Applications

[5]

ISSN: 1790-0832

609

Leonardo Machado, Orlando Filho, Joao Ribeiro

Presentation, Journal of Web Engineering, Vol.
7, Number 3, 2008, pp 239-256.
Oliveira, M., Turine and M., Masiero, P., A
Statechart-Based ~ Model
Applications, ACM
Information Systems, Vol. 19, No. 1, 2001, pp.
28-52.
Isakowitz, T. and Balasubramanian, P., RMM,
A Methodology for Structured Hypermedia
Design, Communications of the ACM, ACM
Press, vol 38, issue 8, 1995, pp. 33-44.
Garzotto, F., Paolini, P and Schwabe, D., HDM
— A Model-Based Approach to Hypertext
Application Design, ACM Transactions on
Information Systems, Vol. 11, IWO. 1, 1993, pp.
1-26.
[10] Specht, G. and Zoller, P., HMT: Modeling
Temporal Aspects in Hypermedia Applications,

for Hypermedia

Transactions on

Ist International Conference on Web-Age
Information Management, Springer-Verlag,

Shanghai, 2000, pp. 256-270.
[11] Olsina, L., Building a Web-based information

system applying the hypermedia flexible
process modeling strategy, Ist ACM
International ~ Workshop on  Hypermedia

Development with Hypertext, 1998.
[12] Bailey, B., Konstan, J. and Carlis, J., DEMAIS:
with
Interactive Storyboards, 9th ACM international
conference on Multimedia, ACM Press, 2001,
pp- 241-250.
[13] Sauer, S. and Engels, G., Extending UML for
Modeling of Multimedia Applications, [EEE
IEEE

Designing Multimedia  Applications

Symposium Visual
Computer Society, 1999, pp 80-87.

[14] Barei L., Garzotto, F. and Maritati, M., W2000

MOF Metamodel, 6th  World

Multiconference on Systemics Cybernetics and

on Languages,

as a

Informatics - Web Engineering track, vol. 1,
2002.

[15] Ceri, S., Fraternali, P. and Bongio, A., Web
Modeling Language (WebML): a Modeling
Language for Designing Web Sites, 9th
International WWW Conference, 2000, pp. 137-
157.

Issue 4, Volume 6, April 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

[16] GoOmez, J. and Cachero, C., Information
Modeling for Internet Applications, Idea Group
Publishing, pp. 144-173, 2003.

[17] Koch, N. and Kraus, A., The Expressive Power
of UML-based Engineering, Second
International Workshop on Web Oriented
Software Techonlogy, CYTED, 2002, pp. 105-
119.

[18] Schwabe, D., Rossi, G. and Barbosa, S.,
Systematic Hypermedia Design with OOHDM,
7th  ACM International Conference on
Hypertext, ACM Press, 1996, pp.116-128.

[19] De Troyer, O. and Leune, C., WSDM: A User
Centered Design Method for Web Sites,
Proceedings of the 7th International World
Wide Web Conference, 1998, pp. 85-94.

[20] ACM  Portal, The ACM  Portal,
http://portal.acm.org, 2008.

[21] Koch, N., Knapp, A., Zhang, G. and
Baumeister, H., UML-Base Web Engineering —
An approach based on standards, chapter 7 in
Web Engineering: Modelling and Implementing
Web Applications, Springer Verlag, 2008, pp.
143-177.

[22] KroiP, C. and Koch, N., The UWE Metamodel
and Profile — User Guide and Reference,
http://www.pst.informatik.uni-
muenchen.de/projekte/uwe/download/UWE-
Metamodel-Reference.pdf, 2008.

[23] OMG, OMG Unified Modeling Language
(OMG UML), Superstructure V2.1.2,
http://www.omg.org/spec/UML/2.1.2/Superstru
cture/PDF/, 2007.

[24] Google Maps Homepage, Google Maps.
http://maps.google.com/, 2008.

ISSN: 1790-0832

610

Leonardo Machado, Orlando Filho, Joao Ribeiro

Issue 4, Volume 6, April 2009





